

Check for updates COMMUNICATION

WILEY-VCH

Formal Total Syntheses of (+)- and (-)-*ar*-Macrocarpene *via* Rh(I)-BINAP Catalyzed Conjugate Addition

Arindam Khatua,^a Souvik Pal,^a and Vishnumaya Bisai*^{a,b,c§}

Abstract: Catalytic asymmetric formal total syntheses of both antipodes of sesquiterpene, (+)-*ar*-macrocarpene (1) and (-)*ar*-macrocarpene (*ent*-1) has been achieved from 5,5-dimethyl-(3*p*-tolyl)cyclohexanone 12. Enantioenriched compound 12 was accessed in 96% ee with excellent yield from catalytic enantioselective *p*-tolylboronic acid addition onto 5,5-dimethyl cyclohexen-2-one 13 using Rh(I)-(*S*)-BINAP (L7). Further, *ent*-12 was achieved in 96% ee by using Rh(I)-(*R*)-BINAP (*ent*-L7).

Introduction

Recently, there is global interest in the synthesis of sesquiterpenoids owing to their volatile and combustible properties which make them ideal candidate for terpenebased renewable biofuels.¹ *ar*-Macrocarpene (1) and (*Z*)- γ -macrocarpene (2) are belonging to one such group of naturally occurring irregular aromatic sesquiterpenes (Figure 1), which were identified in foliage of *Cupressus macrocarpa* by Cool in 2005 in widely varying amounts.²

In spite of its limited natural range, only on Point Lobos and Cypress Point, Monterey Co., California, *Cupressus macrocarpa* Hartw. ex Gord. (Monterey cypress) is one of the most widely planted conifers in the state. *N*-Hexane extract of this species contains *ar*-macrocarpene **1** as a minor component (Figure 1).² Other structurally correlated sesquiterpenoids, include *ar*-tenuifolene (**4a**),³ laurokamurene B (**4b**),⁴ isolaurene (**5a**),⁵ isolauraldehyde (**5b**),^{5c} 12-hydroxy isolaurene (**5c**),^{5c} cuparane (**6a**),⁶ cuparenic acid (**6b**),⁶ aplysin (**7a**),⁷ and debromoaplysin (**7b**).⁷ Biogenetically,

[a] Mr. Arindam Khatua, Mr. Souvik Pal, and Dr. Vishnumaya Bisai
Department of Chemistry
Indian Institute of Science Education and Research Bhopal
Bhopal Bypass Road, Bhauri
Bhopal – 462 066
Madhya Pradesh, India
E-mail: vishnumayabisai@gmail.com
[b] Dr. Vishnumava Bisai

- Department of Chemistry Indian Institute of Science Education and Research Tirupati *Transit Campus* Mangalam, Karkambadi Road Tirupati – 517 507 Andhra Pradesh, India
- [c] Dr. Vishnumaya Bisai
 Department of Chemical Sciences
 Indian Institute of Science Education and Research Berhampur
 Transit Campus Engg. School Junction (Govt. ITI Building)
 Berhampur 760 010
 Odisha, India
- [§]This work is dedicated to Professor Subrata Ghosh, IACS Kolkata on the occasion of his 70th birthday.

these sesquiterpenoids are structural isomers with rearranged structural scaffolds as shown in Figure 1. In addition brominated sesquiterpenoid, majapolene B (**3**),⁸ was originally isolated from *Laurencia majuscula*.

Structurally, macrocarpene (1) shares a common 3,3,4'trimethyl-1,1'-(bicyclohexyl) skeleton,² whereas, the three methyl groups are situated on the 1-arylcyclopentane ring in 2,2,3-fashion in laurokamurenes (4b) (Figure 1).⁴ There are sesquiterepenoids, where three methyl groups are situated in 1,2,3-fashion, such as isolaurene (6),⁵ isolauraldehyde (5b),⁵c and 12-hydroxy isolaurene (5c).⁵c The same is true for other tricyclic sesquiterpenoids, such as aplysin (7a),⁷ and debromoaplysin (7b).⁷ Further, three methyl groups are found in 1,2,2-fashion in case of cuparane (6a),⁶ and cuparenic acid (6b).⁶ With regard to its biogenetic connection, *ar*macrocarpene 1 seems to be possibly originated from bisabolyl cation (10c) via the intermediacy of congener *Z*- γ macrocarpene (2) and other hypothetical intermediates 10d and 10e (Scheme 1).

aplysin (**7a**)

debromoaplysin (**7b**)

Figure 1: *ar*-Macrocarpene (1) and structurally related naturally occurring sesquiterpenes.

A plausible biogenetic connection between naturally occurring sesquiterpenes is shown in Scheme 1. Biosynthetically, bisabolyl cation (**10c**) can be obtained from a farnesyl pyrophosphate (FPP) **10a** with a C-15 unit *via* its isomeric rearranged scaffold nerolidyl pyrophosphate **10b** having C-15 unit (Scheme 1).⁹ Whereas, other sesquiterpenes having a cyclopentane frame-work are supposed to be synthesized

WILEY-VCH

COMMUNICATION

from intermediate secondary carbocation **11a** (Scheme 1) *via* the rearrangement of methyl group (1,2-shift of methyl group) to establish a 3° carbocation intermediates such as **11b** (for isolaurene **6**). It is obvious to think that, the cyclopentane based 2° carbocation **11a** could be generated from a bisabolyl cation intermediate (**10c**) via a C-C bond forming reaction (Scheme 1). On the other hand, the hypothetical triene intermediate **10d** could have arisen from an elimination of 3° carbocation intermediate **10c**. Further, it has been hypothesized that 3° carbocation intermediate **10e** possibly responsible for the synthesis of *ar*-Macrocarpene (**1**) via naturally occurring (*Z*)-γ-Macrocarpene (**1**).

Scheme 1: A plausible biogenetic connections between different sesquiterpenes.

A number of reports has been directed toward the synthesis of natural sesquiterpenoids. In fact, soon after the isolation of ar-macrocarpene (1) in 2005, the first synthesis (racemic approach) of this secondary metabolite was featured by Srikrishna and co-workers in 2007.¹¹ However, there was no report of asymmetric total synthesis ar-macrocarpene (1) until very recently our report on the catalytic asymmetric synthesis via a key late-stage allylic diazene rearrangement (ADR) (7 steps from commercially strategy available 5.5dimethylcyclohexane 1,3-dione),^{12a} catalytic asymmetric enone reduction using Corey-Bakshi-Shibata catalyst as key steps (6 steps from commercially available 4,4-dimethylcyclohex-2enone),12b and Pd(II)-catalyzed asymmetric conjugate addition of arylboronic acid onto (4 steps from commercially available dimidone).^{12c} In spite of these approaches, there is still an urgent need for concise asymmetric synthesis of armacrocarpene 1 (Figure 1). Herein, we report a formal catalytic enantioselective total synthesis of (+)-armacrocarpene (1) via a key enantioselective Rh(I)-catalyzed arylboronic acid addition onto 5,5-dimethyl 2cyclohexenone.13

Results and Discussion

Retrosynthetically, we imagined that enantioenriched 3-arylcyclohexanone $12\,$ may serve as an advanced

intermediate for asymmetric synthesis (+)-*ar*-macrocarpene (**1**) via a Wolf-Kishner reduction,^{12,14} which in turn could be accessed from a catalytic enantioselective (*p*-tolyl)boronic acid addition onto 5,5-dimethyl cyclohexen-2-one **13** (Scheme 2).¹³

Scheme 2: Retrosynthetic analysis of (+)-ar-macrocarpene (1).

For our synthesis, precursor 5,5-dimethyl cyclohexen-2-one **13** was synthesized from a well known Stork-Danheiser sequence of vinylogous ester.^{12a, 12c} Initially, we carried out the optimization reaction using 1 equivalent of **13**^{12c} with 2 equivalent of *p*-tolylboronic acid in the presence of 5 mol% [Rh(COD)₂]BF₄ in combination with 10 mol% of (*S*)-'Bu-PHOX **L1** in tetrahydrofuran and water (10:1 mixture).¹³ This reaction led to the formation of the expected product **12** in 90% isolated yield, however, with only 6% ee (entry 1). Therefore, we tested a number of phosphine based ligands such as 'Bu-PHOX (**L2**), Trost's DACH ligand **L3**, and (*R*,*R*)-DUPHOS (**L4**), phosphoramidite **L5** to enrich enantioselectivity in product (Table 1). However, these reactions afforded only up to 34% ee with good yields (entries 1-5, table 1).

 Table 1. Optimization of conjugate addition of 5,5-dimethyl cyclohexen-2-one 13.

WILEY-VCH

COMMUNICATION

1.	5 mol% Rh(l)	THF:H ₂ O (10:1)	70 ºC	29 h	90%	12% ^d
2.	5 mol% Rh(l) & 10 mol% L2	THF:H ₂ O (10:1)	70 ºC	27 h	87%	21% ^d
3.	5 mol% Rh(l) & 10 mol% L3	(THF:H ₂ O (10:1)	70 ºC	30 h	85%	33% ^d
4.	5 mol% Rh(l) & 10 mol% L4	THF:H₂O (10:1)	100 ℃	29 h	79%	-21% ^d
5.	5 mol% Rh(I) & 10 mol% L5	THF:H₂O (10:1)	70 ºC	24 h	93%	34% ^d
6.	5 mol% Rh(I) & 6 mol% L6	THF:H ₂ O (10:1)	70 ºC	24 h	91%	89% ^e
7.	5 mol% Rh(I) & 10 mol% L7	THF:H ₂ O (10:1)	70 ºC	24 h	95%	90% ^d
8.	5 mol% Rh(l) & 10 mol% L6	dioxane:H 20 (10:1)	100 ⁰C	24 h	90%	91% ^d
9.	5 mol% Rh(l) & 10 mol% L7	dioxane:H 20 (10:1)	100 ⁰C	24 h	89%	93% ^d
10	3 mol% Rh(I) & 6 mol% L6	dioxane:H 20 (10:1)	100 ⁰C	24 h	92%	93% ^e
11	3 mol% Rh(l) & 6 mol% L7	dioxane:H 2O (10:1)	100 ⁰C	24 h	94%	96% ^e

^aReactions were carried out on a 1 mmol of **13** with 2 mmol of (*p*-tolyl)boronic acid in organic solvent and water (10:1 ratio). ^bIsolated yields after column chromatography. ^cee's were determined by using chiralpak OD-H column. ^dsubstrate to catalyst ratio = 20:1. ^esubstrate to catalyst ratio = 33:1.

Next, we carried out exhaustive optimization studies using axially chiral C2-symmetric bisphone ligands such as (*S*)-SEGPHOS (L6), and (*S*)-BINAP (L7). To our delight, it was found that corresponding product 3-(*p*-tolyl)-5,5-dimethyl cyclohexanone 12 was obtained in 91% yield with 89% ee, in dioxane:H₂O (10:1) at 70 °C in the presence of 5 mol% [Rh(COD)₂]BF₄ and 6 mol% of (*S*)-SEGPHOS (L6) ligand (entry 6, Table 1). Under similar conditions (*S*)-BINAP (L7) afforded cyclohexanone 12 in 90% ee (entry 7, Table 1).

Further, by changing the solvent to dioxane and water (10:1), 6 mol% of (*S*)-SEGPHOS (**L6**) and (*S*)-BINAP (**L7**) furnished product **12** in 91% ee (entry 8) and 93% ee (entry 9), respectively. Noteworthy to observe was that a reaction in the presence of 3 mol% [Rh(COD)₂]BF₄ and 6 mol% of (*S*)-SEGPHOS (**L6**), compound **12** was obtained in 92% yield and 93% ee (entry 10). Delightfully, 3 mol% [Rh(COD)₂]BF₄ in combination with 6 mol% of **L7** afforded required 3-(*p*-tolyl)-5,5-dimethyl cyclohexanone **12** in 94% yield with 96% ee (entry 11).

^aReactions were carried out on a 1 mmol of **13** with 2 mmol of arylboronic acid in dioxane and water (10:1 ratio) in the presence of 3 mol% of [Rh(COD)₂]BF₄ in combination with 6 mol% (*S*)-BINAP. ^bee's were determined by using chiralpak OD-H column. ^cIsolated yields after column chromatography.

Scheme 3. Substrate scope of arylboronic acid addition onto 5,5dimethyl cyclohexen-2-one 13.

Further, the optimized condition in hand, two aryl boronic acids sharing tolyl group were tested and the results are summarized in Scheme 4. As can be seen, 5,5-dimethyl-3-(tolyl)cyclohexanones (**14a-b**) could be synthesized in good yield (90-95% and excellent enantioselectivities (92-96% ee) in the presence of 3 mol% [Rh(COD)₂]BF₄ in combination with 6 mol% of (*S*)-BINAP (**L7**) (Scheme 3).

^aReactions were carried out on a 1 mmol of **13** with 2 mmol of arylboronic acid in dioxane and water (10:1 ratio) in the presence of 3 mol% of [Rh(COD)₂]BF₄ in combination with 6 mol% (*S*)-BINAP. ^bee's were determined by using chiralpak OD-H column. ^cIsolated yields after column chromatography.

WILEY-VCH

COMMUNICATION

Scheme 4. Catalytic asymmetric (*p*-tolyl)boronic acid addition using Rh(I)-(*R*)-BINAP ligand (*ent*-L7).

Further in search for the asymmetric synthesis of naturally occurring sesquiterpenoid, (+)-*ar*-macrocarpene **1**, we have carried out the asymmetric (*p*-tolyl)boronic acid addition onto 5,5-dimethyl cyclohexen-2-one **11** using enantiomeric (*S*)-BINAP ligand (L7). Importantly, (*p*-tolyl)boronic acid addition onto **11** using 3 mol% of [Rh(COD)₂]BF₄ in combination with 6 mol% of L7 furnished *ent*-**12** in 91% yield with 96% ee (Scheme 4).

Since, the total syntheses of (+)-1 and (-)-*ent*-1 are known from **12** (Scheme 3) and *ent*-**12** (Scheme 4), our effort culminated in formal total syntheses of (+)-*ar*-macrocarpene (1) and (-)-*ar*-macrocarpene (*ent*-1).

Conclusion

In conclusion, a formal total synthesis of naturally occurring sesquiterpenoid, (+)-*ar*-macrocarpene (1) has been developed from 5,5-dimethylcyclohex-2-enone 13. The key step of this synthesis is the Rh(I)-catalyzed asymmetric conjugate addition of *p*-tolylboronic acid onto 13 in the presence of (*S*)-BINAP (up to 96% ee). Further asymmetric formal total synthesis of unnatural (–)-*ar*-macrocarpene (*ent*-1) has also been achieved with similar efficiency using Rh(I)-(*R*)-BINAP (96% ee). Further research to access other naturally occurring sesquiterpenoids is currently under active investigation in our laboratory.

Acknowledgements

V.B. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology (DST) for a research grants [CS-021/2014]. Facilities from Department of Chemistry, IISER Bhopal, IISER Tirupati, and IISER Berhampur are gratefully acknowledged.

Keywords: Conjugate addition, (*p*-tolyl)boronic acid, Rh(I)-Catalyzed, Sesquiterpenoid, *ar*-Macrocarpene

References and Notes

1. (a) H. R. Beller, T. S. Leea, L. Katz, *Nat. Prod. Rep.*, **2015**, *32*, 1508–1526. (b) P. Gupta, S. C. Phulara, *J. App. Microbiol. 119*, **2015**, 605-619.

2. Isolation of *ar*-macrocarpene (1): L. G. Cool, *Phytochemistry* **2005**, *66*, 249–260.

3. (a) Isolation of *ar*-tenuifolene (4): (a) A. T. Kreipl, W. A. König, *Phytochemistry* **2004**, *65*, 2045-2049. (b) H. Tesso, W. A. König, Y. Asakawa, *Phytochemistry* **2005**, *66*, 941-949. For synthesis of (±)-*ar*-tenuifolene (4), see; (c) A. Srikrishna, B. Baire, *Indian J. Chem.* **2005**, *44B*, 1641-1643. (d) A. Vázquez-Sánchez, J. G. Ávila-Zárraga, *Tetrahedron Lett.* **2015**, *56*, 5321-5323.

4. (a) F. Surup, B. Thongbai, E. Kuhnert, E. Sudarman, K. D. Hyde, M. Stadler, *J. Nat. Prod.* **2015**, *78*, 934-938. (b) M. K. Das, B. K. Dinda, V. Bisai, *Tetrahedron Lett.* **2019**, *60*, 2039-2042. 5. (a) B. M. Fraga, *Nat. Prod. Rep.*, **2008**, *25*, 1180-1209. (b) X. –L. Li, T. Kurtán, J.-C. Hu, A. Mándi, J. Li, X.-W. Li, Y.-W. Guo, *J. Agric. Food. Chem.* **2017**, *65*, 1550-1555. (c) W. M. Alarif, S. S. Al-Lihaibi, S.-E. N. Ayyad, M. A. Abdel-Rhman, F. A. Badria, *Eur. J. Med. Chem.* **2012**, *55*, 462-466. (d) S. Niyogi, A. Khatua, V. Bisai, *Tetrahedron Lett.* **2019**, *60*, 150941.

6. (a) R. C. Pandey, S. Dev, *Tetrahedron* **1968**, *24*, 3829–3839. (b) K. L. McPhail, M. T. Davies-Coleman, J. Starmer, *J. Nat. Prod.* **2001**, *64*, 1183-1190. (c) Y. Asakawa, A. Ludwiczuk, *J. Nat. Prod.* **2018**, *81*, 641-660.

7. (a) R. C. Ronald, M. B. Gewali, B. P. Ronald, *J. Org. Chem.* **1980**, 45, 2224-2229. (b) S. Biswas, A. Ghosh, R. V. Venkateswaran, *J. Org. Chem.* **1990**, *55*, 3498-3502.

8. (a) Isolation of majapolene B (3): K. L. Erickson, J. A. Beutler, G. N. Gray, J. H. Cardellina, II; M. R. Boyd, *J. Nat. Prod.*, **1995**, *58*, 1848-1860. (b) Majapolene B acetate: J. W. Blunt, B. R. Copp, W.-P. Hu, M. H. G. Munro, P. T. Northcote, M. R. Prinsep, *Nat. Prod. Rep.*, **2008**, *25*, 35-94. (c) B.-G. Wang, J. B. Gloer, N.-Y. Ji, J.-C. Zhao, *Chem. Rev.* **2013**, *113*, 3632-3685.

9. (a) B. M. Fraga, *Nat. Prod. Rep.* **2013**, *30*, 1226-1264. (b) R. A. Hill, A. Sutherland, *Nat. Prod. Rep.* **2017**, *34*, 1180-1184.

11. A. Srikrishna, B. Beeraiah, Synth. Commun. 2007, 37, 2855–2860.

12. For a catalytic asymmetric synthesis, see; (a) A. Khatua, S. Niyogi, V. Bisai, *Org. Biomol. Chem.* **2019**, *17*, 7140-7143. (b) A. Khatua, A. Roy, V. Bisai, *Tetrahedron* **2020**, *76*, 130918. (c) A. Khatua, Shaw, K., V. Bisai, *Tetrahedron Lett.* **2020**, *76*, doi.org/10.1016/j.tetlet.2020.151736.

13. (a) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. *J. Am. Chem. Soc.* **2002**, *124*, 5052-5058. (b) Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J. W. *J. Am. Chem. Soc.* **2002**, *124*, 12102-12103. (c) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. *J. Am. Chem. Soc.* **1999**, *121*, 11591-11592. (d) C. Nadeau, S. Aly, K. Belyk, *J. Am. Chem. Soc.* **2011**, *133*, 2878-2880. (e) Y. Wang, Y. Liu, D. Zhang, H. Wei, M. Shi, F. Wang, *Angew. Chem., Int. Ed.* **2016**, *138*, 5344-5440 and references cited.

14. Wolff-Kishner reduction: (a) W. P. Campbell, D. Todd, *J. Am. Chem. Soc.* **1942**, *64*, 928-935. (b) M. E. Furrow, A. G. Myers, *J. Am. Chem. Soc.* **2004**, *126*, 5436-5445. (c) X.-J. Dai, C.-J. Li, *J. Am. Chem. Soc.* **2016**, *138*, 5344-5440.

Accepted Manuscript

COMMUNICATION

WILEY-VCH