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Abstract: Treatment of b,b-dichloroenamides with n-butyllithium,
followed by addition of an electrophile, provides disubstituted yn-
amides in far greater yield than direct functionalization of terminal
ynamides.
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Ynamides have emerged as potentially more useful than
ynamines1 for organic synthesis because of their superior
thermal stability, and their preparation has accordingly
attracted renewed interest.2–4 The most recent methods,
which involve the copper-promoted or copper-catalyzed
coupling of amides with alkynyl bromides 12 require the
preparation of a different alkynyl bromide for each de-
sired ynamide (path A in Scheme 1). For the synthesis of
(hetero)aryl ynamides, palladium-catalyzed cross-cou-
pling strategies have been applied (path B in Scheme 1),
the Negishi procedure by our group5 and the Sonogashira
procedure by Hsung.6 However, the synthesis of nonaryl-
substituted derivatives starting from terminal ynamides 3
has not been explored thoroughly. To our knowledge,
there have been a few isolated reports of the introduction
of alkyl chains using metalated ynamides, with reaction
yields ranging from 30% to 60%.7 Considering that termi-
nal ynamides can easily be prepared at gram scale,3b,c we
envisaged that the development of a reliable path-B pro-
cedure for the introduction of nonaromatic substituents
would be a desirable complement to path A for the prepa-
ration of novel families of ynamides.

Scheme 1

We began by studying the silylation of model ynamide 4,
treating it with a strong base followed by TMSCl
(Scheme 2). Surprisingly, the reaction proceeded smooth-
ly but the yields were only moderate (Table 1): when n-
BuLi, KHMDS, or EtMgBr was used as base, ynamide 5a

was obtained in only 45%, 51% and 53% yield, respec-
tively (entries 1, 2, and 3). The best yield, 70%, was
achieved with LDA as deprotonating agent (entry 4),
somehow indicating that the metalation of terminal
ynamides is incomplete.8 Attempts to apply this procedure
to other electrophiles, e.g. benzaldehyde, were discourag-
ing, ynamide 5b being isolated in only 36% yield in the
most favorable conditions (entry 5).

Scheme 2

At this point we reconsidered our objectives and decided
to explore the versatility of b,b-dichloroenamide 6, which
in previous work5d had been transformed into 5a in 78%
yield by treatment with n-Buli and entrapment of the re-
sulting acetylide with TMSCl (Scheme 3).9,10 Probably,
the mechanism involves halogen–metal exchange as had
been suggested by Brückner.3b,c
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Table 1 Preparation of Ynamides 5a and 5b Starting from 
Ynamide 4a

Entry Base Electrophile Yield (%)b

1 n-BuLi TMSCl 45

2 KHMDS TMSCl 51

3 EtMgBr TMSCl 53

4 LDA TMSCl 70

5 LDA PhCHO 36

a Reactions were carried out using THF as solvent, 1.1 equiv of base 
and 2 equiv of electrophile.
b Isolated yield after column chromatography.
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With benzaldehyde as electrophile, the reaction of
Scheme 3 afforded 5b in much better yield (88%) than
starting from ynamide 4 (Table 2, entry 2). Similarly,
methyl ynamide 5c was obtained in 74% yield by trapping
the acetylide intermediate with dimethyl sulfate (entry
3),11 and trapping with acetic anhydride, ethyl chloro-
formate, or carbon dioxide afforded the corresponding
push–pull ynamides 5d–f in excellent yields (entries 4, 5.
and 6). tert-Butyl isocyanate and diethyl chlorophosphate
(entries 7 and 8) gave ynamides with previously un-
reported substitution patterns.12

When dichloroenamides 7a–d13 were employed, in which
the Ph of 6 had been replaced by other substituents,
treatment with n-butyllithium, and acetic anhydride
(Scheme 4) afforded acetyl ynamides 8a–d in yields
slightly inferior to that obtained for 5d.14

Scheme 4

Difunctionalized compounds can be prepared using
biselectrophiles as trapping agents. Gratifyingly, when
dichlorodimethylsilane was used (Scheme 5), silyl bisyn-
amide 9 was isolated in 63% yield as a white solid.15 This
compound is stable to air and moisture, and was amenable
to purification by silica gel column chromatography.16

Scheme 5

Finally, to exemplify the utility of the products of this new
methodology, the novel ynamides 5c and 8c were smooth-
ly transformed into their corresponding bromoenamides,
10a and 10b, under the reaction conditions recently re-
ported by Hsung17 (Scheme 6).

Scheme 6

In conclusion, we have developed a new protocol for the
synthesis of disubstituted ynamides starting from easily
accessible b,b-dichloroenamides. Treatment of the latter
with n-butyllithium, followed by the desired electrophile,
has allowed the construction of new ynamide substitution
patterns, and the preparation of silyl bisynamides.
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