Komplexchemie P-reicher Phosphane und Silylphosphane. XIII [1]

$[\eta^2 - {^tBu_2P - P = P^tBu_2}PtBr(PPh_3)]$

I. Kovacs, H. Krautscheid, E. Matern, G. Fritz*

Karlsruhe, Institut für Anorganische Chemie der Universität

J. Pikies

Gdansk/Polen, Chemische Fakultät der Technischen Universität

Bei der Redaktion eingegangen am 6. Februar 1997.

Professor Welf Bronger zum 65. Geburtstag gewidmet

Inhaltsübersicht. $[\eta^2 - {}^t Bu_2P - P = P^t Bu_2]PtBr(PPh_3)]$ **1** ist die erste Komplexverbindung aus einem Phosphino-phosphiniden-phosphoran. Die gelben Kristalle von **1**, Smp. 201–203 °C (unter Zersetzung) bilden sich bei der Umsetzung

von ${}^{t}Bu_2P-P=P(Br){}^{t}Bu_2$ mit $(Ph_3P)_2Pt \cdot C_2H_4$ oder $Pt(PPh_3)_4$. **1** kristallisiert triklin in P1 (Nr. 2) mit a = 1076,80(8) pm, b = 1344,61(8) pm, c = 1381,16(9) pm, α = 81,773(6)°, β = 85,110(8)°, γ = 88,776(7).

Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XIII [1]. $[\eta^2 - {^tBu_2P} - P = P^tBu_2]PtBr(PPh_3)]$

Abstract. $[\eta^2-{}^tBu_2P-P=P^tBu_2]PtBr(PPh_3)]$ **1** is the first transition metal complex compound resulting from a phosphinophosphinidene-phosphorane. The yellow crystals of **1** (fp. 201–203 °C, decomp.) were obtained by reacting ${}^tBu_2P-P=P(Br){}^tBu_2$ with either $(Ph_3P)_2Pt \cdot C_2H_4$, or with $Pt(PPh_3)_4$, resp. Compound **1** crystallizes triclinic in the space

1 Einleitung

 ${}^{t}Bu_2P-P=P(Br){}^{t}Bu_2$ **2** ist nur bei niedrigen Temperaturen beständig und zersetzt sich oberhalb $-30 \,^{\circ}C$ unter Bildung der Cyclophosphane $P_n(P^tBu_2)_n$, n = 3, 4. Diese entstehen über das intermediär auftretende ${}^{t}Bu_2P-P$, wie durch Abfangreaktionen nachgewiesen wurde [2]. Um einen weiteren Einblick in die Reaktionsmöglichkeiten der Phosphino-phosphiniden-phosphorane zu erhalten, untersuchten wir ihre Reaktionen

Prof. Dr. Dr. h. c. G. Fritz Institut für Anorganische Chemie der Universität Engesserstr. Geb.Nr. 30.45 D-76128 Karlsruhe group P1 (no. 2) with a = 1076.80(8) pm, b = 1344.61(8) pm, c = 1381.16(9) pm, α = 81.773(6)°, β = 85,110(8), γ = 88,776(7).

Keywords: $[\eta^2 - {^tBu_2P} - P = P^tBu_2]PtBr(PPh_3)];$ crystal structure; ¹H-, ¹³C-, ³¹P-NMR spectra

mit Übergangsmetallkomplexen. Wir berichten hier über die Reaktion von ${}^{t}Bu_2P-P=P(Br){}^{t}Bu_2$ 2 mit $(Ph_3P)_2Pt \cdot C_2H_4$ 3 und $Pt(PPh_3)_4$ 4.

2 Ergebnisse der Untersuchung

2.1 Die Synthese
von
$$[\eta^2 - {fBu_2P - P = PBu_2}PtBr(PPh_3)]$$
 1

 η^2 -1,1,3,3-Tetrabutyl-phosphinophosphiniden-phosphoran-triphenylphosphan-Platinbromid **1** wird bei der Umsetzung von 'Bu₂P-P=P(Br)'Bu₂ **2** mit (Ph₃P)₂Pt · C₂H₄ **3** oder Pt(PPh₃)₄ **4** nach Gl. (1) u. (2) gebildet.

 $(PPh_3)_2Pt \cdot C_2H_4 + {}^tBu_2P-P=P(Br){}^tBu_2$ $\rightarrow \mathbf{1} + PPh_3 + C_2H_4$ (1) $Pt(PPh_3)_4 + {}^tBu_2P-P=P(Br){}^tBu_2 \rightarrow \mathbf{1} + 3PPh_3$ (2)

^{*} Korrespondenzadresse:

Die gelbe, in Toluol mäßig lösliche Verbindung **1** ist das Hauptprodukt. Die Reaktion von **2** mit **3** nach Gl. (1) ist bereits bei $-50 \,^{\circ}$ C im 31 P{H}-NMR-Spektrum nachzuweisen. Die NMR-Daten belegen die Struktur der Verbindung **1** (Abs. 3) und stehen in Übereinstimmung mit den Ergebnissen der Kristallstrukturuntersuchung. Mit O₂ bildet **1**

 $[\eta^2-{^tBu_2(O)P-P=P^tBu_2}PtBr(PPh_3)]$ 6. Beim Erhitzen (160 °C, 8 · 10⁻⁷ bar) spaltet **1** PPh₃ ab unter Dimerisierung zu Pt_2P_6C_{32}H_{72}Br_2, wie aus den massenspektrometrischen Messungen folgt.

2.2 Die Kristallstrukturuntersuchung der Verbindung 1

Die kristallographischen Daten von 1^1) sind in Tab. 1, die Ortsparameter und isotropen Auslenkungsparameter in Tab. 2 angegeben. Abb. 1 zeigt die Molekülstruktur von 1 mit ausgewählten Atomabständen und Bindungswinkeln, Abb. 2 die Packung der Moleküle in der Elementarzelle.

 Tabelle 1
 Kristallographische Daten und Einzelheiten zur

 Strukturbestimmung von 1

Summenformel	$C_{34}H_{51}BrP_4Pt \cdot 0,5 C_6H_{14}$		
Molekulargewicht [g/mol]	880,17		
Raumgruppe	P1 (Nr. 2)		
Gitterkonstanten [pm]	a = 1076,80(8)		
	b = 1344.61(8)		
	c = 1381.16(9)		
[°]	$\alpha = 81.773(6)$		
ĽJ	$\beta = 85.110(8)$		
	$\nu = 88.776(7)$		
$[10^{6} \text{ pm}^{3}]$	V = 1971.9(2)		
Röntgenographische Dichte	1.482		
[g/cm ³]	1,.02		
Zahl der Formeleinheiten	2		
pro Elementarzelle			
Meßtemperatur [K]	203		
Meßgerät	Stoe Stadi IV		
μ (Mo–K α) [cm ⁻¹]	47,55		
Meßbereich 2θ [°]	3.0-50.0		
Zahl der gemessenen Reflexe	7346		
Zahl der unabhängigen Reflexe	6927		
R _{int}	0.047		
Unabhängige Reflexe	6126		
mit I > $2\sigma(I)$			
Zahl der Parameter	385		
Absorptionskorrektur	Psi-Scans		
R1 (beobachtete Reflexe)	0,0315		
wR2 (alle Reflexe)	0,0980		
Verwendete Programme	SHELXTL [7],		
-	SCHAKAL92 [8]		

¹) Weitere Einzelheiten zur Strukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Informationen mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-406620, der Autoren und des Zeitschriftenzitats angefordert werden.

Tabelle 2 Atomkoordinaten und äquivalente isotrope Aus-
lenkungsparameter $[Å^2]$ von 1

Atom	X	у	z	U _{eq}
Pt	0,27341(2)	0,29467(1)	0,26436(1)	0,0198(1)
Br	0,04265(5)	0,30048(5)	0,24926(5)	0,0369(2)
P1	0,4584(1)	0,22272(9)	0,29059(9)	0,0204(4)
P2	0,3155(1)	0,1170(1)	0,27878(9)	0,0243(4)
P3	0,3598(1)	0,0511(1)	0,1399(1)	0,0254(4)
P4	0,2741(1)	0,4633(1)	0,27394(9)	0,0214(4)
C1	0,5981(5)	0,2491(4)	0,1988(4)	0,025(2)
C2	0,6794(5)	0,3297(4)	0,2311(4)	0,033(2)
C3	0,5482(5)	0,2906(4)	0,1004(4)	0,029(2)
C4	0,6765(6)	0,1543(5)	0,1882(5)	0,038(2)
C5	0,4992(5)	0,2078(4)	0,4220(4)	0,028(2)
C6	0,3869(6)	0,1595(5)	0,4875(4)	0,038(2)
C7	0,6135(6)	0,1398(5)	0,4373(4)	0,043(2)
C8	0,5186(6)	0,3105(4)	0,4534(4)	0,033(2)
C9	0,2147(6)	0,0804(5)	0,0718(4)	0,034(2)
C10	0,2318(6)	0,1904(5)	0,0250(5)	0,042(2)
C11	0,0908(6)	0,0671(6)	0,1328(5)	0,048(2)
C12	0,2182(8)	0,0156(6)	-0,0121(5)	0,055(3)
C13	0,3654(6)	-0,0861(4)	0,1968(4)	0,037(2)
C14	0,4818(8)	-0,0945(5)	0,2560(5)	0,052(2)
C15	0,2503(8)	-0,1234(5)	0,2645(6)	0,061(3)
C16	0,3902(9)	-0,1520(5)	0,1152(6)	0,061(3)
C17	0,4242(5)	0,5300(4)	0,2493(4)	0,025(2)
C18	0,4929(5)	0,5523(4)	0,3245(4)	0,030(2)
C19	0,6070(6)	0,5975(5)	0,3036(5)	0,039(2)
C20	0,6563(6)	0,6215(5)	0,2082(5)	0,042(2)
C21	0,5897(6)	0,5999(5)	0,1316(5)	0,039(2)
C22	0,4740(5)	0,5542(4)	0,1530(4)	0,029(2)
C23	0,2140(5)	0,4916(4)	0,3945(4)	0,026(2)
C24	0,1650(5)	0,4138(4)	0,4629(4)	0,028(2)
C25	0,1205(5)	0,4306(5)	0,5573(4)	0,037(2)
C26	0,1233(6)	0,5259(6)	0,5833(5)	0,043(2)
C27	0,1710(6)	0,6040(5)	0,5161(5)	0,043(2)
C28	0,2174(5)	0,5878(5)	0,4224(4)	0,034(2)
C29	0,1835(5)	0,5365(4)	0.1810(4)	0,026(2)
C30	0,1852(5)	0,5032(4)	0,0896(4)	0,033(2)
C31	0,1298(6)	0,5589(5)	0,0130(4)	0,040(2)
C32	0,0701(6)	0,6481(5)	0,0264(5)	0,048(2)
C33	0,0632(7)	0,6803(5)	0,1175(6)	0,053(3)
C34	0,1201(6)	0,6250(4)	0,1949(5)	0,037(2)
C35*	0,113(3)	0,104(2)	0,647(2)	0,126(9)
C36*	0,060(3)	0,064(2)	0,579(2)	0,108(8)
C37*	0,026(3)	0,005(2)	0,531(2)	0,113(8)

2.3 Beschreibung der Struktur von 1 und Diskussion

Verbindung 1 kristallisiert in der Raumgruppe $P\overline{1}$ mit zwei Formeleinheiten und einem Molekül n-Hexan in der Elementarzelle.

In 1 bilden die Atome P1, P2, P4 und Br eine Ebene (maximale Abweichung aus der besten Ebene $\pm 1,6(3)$ pm), über der das Pt-Atom im Abstand von 11,8(3) pm liegt. Die Summe der Winkel P1-Pt-P2,

Abb. 1 Molekülstruktur des $[\eta^2 - {}^{t}Bu_2P^3 - P^2 = P^{1t}Bu_2]PtBr(PPh_3)]$ **1** mit ausgewählten Bindungslängen [pm] und Winkeln [°]. P1-P2 214,9(2); P2-P3 223,7(2); Pt-P1 223,1(1); Pt-P2 240,5(1); Pt-P4 229,1(1); Pt-Br 250,99(6). P1-P2-P3 108,29(7); P1-Pt-P2 55,08(5); P1-Pt-P4 111,99(5); Pt-P2-P1 58,34(5); Br-Pt-P4 90,83(4); Br-Pt-P2 101,49(4)

Abb. 2 Anordnung der Moleküle in der Elementarzelle von 1. Blick entlang der kristallographischen c-Achse.

P2-Pt-Br, Br-Pt-P4 und P4-Pt-P1 beträgt 359°. Die Bindung P2-P3 schließt mit dieser Ebene einen Winkel von 59,01(6)° ein. Charakteristische Merkmale des Ylids **2** [3] sind noch in der P₃-Einheit von **1** zu erkennen. So ist der Winkel P1-P2-P3 in **1** mit 108,29(7)° gegenüber dem in ^tBu₂P-P=P(Br)^tBu₂ **2** mit 105,77(7)° nur um 2,52° aufgeweitet. Während in **2** der P1-P2-Abstand (207,7 pm) einer Doppelbindung, der Abstand P2-P3 mit 220,2 pm einer P-P-Einfachbindung entspricht [3], sind in Verbindung **1** die Abstände P1-P2 (214,9(2) pm) und P2-P3 (223,7(2) pm) um 7,2 pm bzw. um 3,5 pm verlängert. In den Verbindungen 2, 1 und ${}^{t}Bu_{2}P-P=P(Me){}^{t}Bu_{2}$ 5 betragen die Differenzen der Bindungslängen (P2-P3)-(P1-P2) für 2 12,5 pm, für 1 8,8 pm und für 5 5,3 pm, womit sich die Werte für 1 zwischen denen von 2 und 5 einordnen. Der P1-P2-Abstand von 214,9 pm und die Kopplungskonstante ${}^{1}J_{P1-P2} = 482$ Hz kennzeichnen den P1-P2-Doppelbindungscharakter in 1. Die Pt-P-Abstände in 1 sind deutlich unterschiedlich. Der Abstand Pt-P2 ist mit 240,5(1) pm um 17,4 pm länger als der Abstand Pt-P1 (223,1(1) pm). Dagegen unterscheiden sich der Pt-P1-Abstand (223,1(1) pm) und der Pt-P4-Abstand (229,08 pm) nur um 6,0 pm. Der Pt-P4-Abstand in 1 entspricht dem Pt-P-Abstand in (Ph₃P)₂PtC₂H₄ mit 227 pm [4]. In Komplexverbindungen symmetrischer Diphosphene wie [Pd(PhP=PPh)(Ph₂PCH₂CH₂PPh₂)] [5] oder [$\{(C_2H_5)_3P\}_2Ni(Me_3SiP=PSiMe_3)$] [6] zeigen die M-P1-Abstände keine Differenzen, was die speziellen Bindungsverhältnisse in 1 verdeutlicht.

Reaktionsbestimmend für die Bildung von 1 aus ${}^{t}Bu_2P-P=P(Br){}^{t}Bu_2$ und $(Ph_3P)_2Pt \cdot C_2H_4$ 3 oder Pt(PPh_3)_4 4 ist die oxidative Addition unter Ausbildung der PtBr-Gruppe. Dadurch wird der an sich begünstigte Zerfall von 2 unter Ausbildung von ${}^{t}Bu_2P-P$ und dessen Kondensation unterbunden und die Anlagerung an das Pt-Atom von 3 bzw. 4 unter Ausbildung von $[\eta^2-\{{}^{t}Bu_2P-P=P{}^{t}Bu_2\}PtBr(PPh_3)]$ 1 ermöglicht. Die Cyclophosphane $P_n(P{}^{t}Bu_2)_n$ werden nicht gebildet.

3 Experimentelle Einzelheiten

3.1 Die Umsetzung von ${}^{t}Bu_2P-P = P(Br){}^{t}Bu_2$ **2** mit $(PPh_3)_2PtC_2H_4$ **3** zur Darstellung von **1**

0,0885 g (0,22 mmol) von **2** wurden in 6 ml Toluol bei -70 °C gelöst und diese Lösung mittels einer Pasteur-Pipette in die Lösung von 0,1648 g (0,22 mmol) **3** [9] in 3 ml Toluol bei 20 °C innerhalb 2 h eingetropft. Die Reaktionslösung wurde 24 h bei 20 °C gehalten, wobei eine geringe Menge eines feinen Niederschlags von Pt(PPh₃)₂Br₂ ausfällt, der durch Dekantieren von der Lösung getrennt und über das Massenspektrum identifiziert wurde. Die Reaktionslösung wurde anschließend auf 2 ml eingeengt, mit 10 ml Hexan versetzt und 24 h bei -34 °C und dann 24 h bei -78 °C gehalten. Der dabei gebildete Feststoff wurde von der Mutterlauge abgetrennt.

Das ³¹P-NMR-Spektrum der Mutterlauge zeigt überwiegend Verbindung 1 und eine Verbindung mit einem Signal bei $\delta = 25,0$ ppm (s) sowie PPh₃ und (PPh₃)₃Pt (ein breites Singulett bei $\delta = 4,7$ ppm) und Signale, die eindeutig auf weitere Pt-Komplexe hinweisen.

Der Feststoff mit dem Hauptanteil von 1 wurde in 5 ml Toluol gelöst, wobei ein geringer Rückstand an Pt(PPh₃)₂Br₂ verblieb. Die nach Dekantieren erhaltene klare Lösung wurde auf 2 ml eingeengt, 10 ml Hexan zugesetzt und 24 h auf -78 °C gehalten. Es bilden sich Kristalle von 1, von denen 0,0407 g (0,047 mmol) isoliert wurden. Die Mutterlauge wurde bis auf ca. 2 ml eingeengt, 15 ml Hexan zugesetzt und bei -78 °C gehalten. Nach 48 h wurden noch 0,0102 g von 1 isoliert, so daß die Gesamtausbeute an isolierten Kristallen 26,9% betrug. Die Einkristalle für die Kristallstrukturuntersuchung wurden durch zweimalige Kristallisation aus der gesättigten Lösung von 1 in Toluol nach Zusatz des 2- bis 3fachen Volumens Hexan bei 20 °C erhalten, Smp. 201-203 °C (unter Zersetzung). In den gesammelten Mutterlaugen aus den Kristallisationen von 1 ist in geringer Menge das Oxidationsprodukt von **1**, $[\eta^2 - {}^tBu_2(O)P - P = P^tBu_2]$ -PtBr(PPh₂)] 6 nachzuweisen. Verbindung 6 bildet sich auch direkt durch Einwirkung von O_2 auf **1** in C_6D_6 -Lösung.

3.2 Die Umsetzung von ${}^{t}Bu_2P-P=P(Br){}^{t}Bu_2$ **2** mit $(Ph_3P)_4Pt$ **4**

Eine auf -78 °C gekühlte Lösung von 0,11 g (0,27 mmol) von 2 in 10 ml Toluol wurde langsam mittels einer Pasteur-Pipette zu einer Lösung von 0,34 g (0,27 mmol) (Ph₃P)₄Pt [10] in 16 ml Benzol eingetropft und die Reaktionslösung 1 d bei 20 °C gehalten. Der gebildete nebelartige Niederschlag von (Ph₃P)₂PtBr₂ wurde durch Dekantieren entfernt und die Reaktionslösung auf 3 ml eingedampft. In ihr sind die Verbindungen 1 und Ph₃P enthalten (³¹P-NMR-Spektrum). Diese Lösung wurde mit 15 ml Hexan versetzt, wonach sich gleich ein Niederschlag von Ph₃P bildet. An der Wand des Schlenk-Gefäßes bildeten sich nach einigen Tagen schön ausgebildete Kristalle von 1.

3.3 NMR-Daten der Verbindungen

Die Bezeichnung der P-Atome entspricht Abb. 1.

Verbindung 1

 δ^{31} **P:** 61,0 (P¹); 32,0 (P³); 28,0 (P⁴); -125,9 (P²) ppm. Kopplungen (als Absolutwerte): ¹J_{Pt-P4} 3432, ¹J_{Pt-P1} 2740; ¹J_{Pt-P2}

95; ${}^{2}J_{Pt-P3}$ ca. 20; ${}^{1}J_{P1-P2}$ 482; ${}^{1}J_{P2-P3}$ 251; ${}^{2}J_{P2-P4}$ 107; ${}^{2}J_{P1-P3}$ 34; ${}^{2}J_{P1-P4}$ 22 Hz.

 $δ^{1}$ H: 7,95–7,90 (m, ortho), 7,11–7,01 (m, meta u. para), 1,868 (d, ³J_{P-H} 11,8 Hz, ^tBuP³); 1,476 (d, ³J_{P-H} 10,6 Hz, ^tBuP³); 1,260 (d,³J_{P-H} 16,9 Hz, ^tBuP¹); 1,086 (d,³J_{P-H} 15,5 Hz ^tBuP¹) ppm.

δ¹³C: 136,44 u. 136,22 (ortho), 131,07 (para), meta überlagert mit C₆D₆, 33,131 (d, ²J_{P3-C} 15,2 Hz); 32,60–32,07 (andere CCH₃ Resonanzen).

3.4 Massenspektrum von 1

Das Spektrum enthält zwei Molekülionen und die davon abgeleiteten Ionen beim Molekülabbau.

1: berechnet für ¹⁹⁵PtP₄C₃₄H₅₂⁷⁹Br 857,17725; gemessene Werte m/z von 1: 858,3 (M⁺) 1,7%, 801,2 (M⁺-C₄H₉) 6,3%, 633,2 (M⁺-C₄H₉-3 C₄H₈) 6,2%; 519,0 4,8%; 402,1 (PtP₃C₈H₁₈) 4,9%; 262,1 (PC₁₈H₁₅) 100%. Pt₂P₆C₃₂H₇₂Br₂: berechnet für ¹⁹⁴Pt¹⁹⁵PtP₆C₃₂H₇₂⁷⁹Br⁸¹Br

 $\begin{array}{l} Pt_2P_6C_{32}H_{72}Br_2: \mbox{ berechnet für } ^{194}Pt^{195}PtP_6C_{32}H_{72} \ ^{79}Br^{81}Br \\ 1191,16809; \mbox{ gemessene Werte m/z: } 1192,2 \ (M^+) \ 0,7\%, \ 1135,4 \\ (M^+-C_4H_9) \ 2,5\%; \ 1078,2 \ (M^+-C_4H_9-C_4H_8) \ 0,3\%; \ 1021,1 \\ (M^+-C_4H_9-2C_4H_8) \ 0,9\%; \ 402,1 \ PtP_3C_8H_{18}) \ 4,9\%; \ 262,1 \\ (PC_{18}H_{15}) \ 100\%. \end{array}$

6: berechnet für 195 PtP₄C₃₄H₅₁O⁷⁹Br 873,17218; gemessen: 874,3 (M⁺) 7,2%; 817,3 (M⁺-C₄H₉) 6,1%; 765,2 (M⁺-C₄H₉-C₄H₈) 7,3%; 262,1 (PC₁₈H₁₅) 100%.

Alle Untersuchungen wurden unter Stickstoff nach der Schlenk-Technik durchgeführt. Die getrockneten und von O_2 befreiten Lösungsmittel wurden über Molekular-Sieb aufbewahrt.

NMR-Spektren: Bruker AC 250 und Bruker AMX 300, Lösungsmittel C_6D_6 und $C_6D_5CD_3$. ¹H- und ¹³C-Standard TMS (extern). ³¹P-Standard 85% H₃PO₄ (extern). Die Zuordnung der Signale erfolgte durch selektive ³¹P{¹H}-Entkopplung und C–H-COSY-Experimente.

MS-Spektren: Finnigan-MAT 8230, Quelle 180 °C, Direkt-Eingang 190 °C, EI 70 EV.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Förderung der Untersuchung, den Herren *Prof. Dr. M. Scheer* und *Dr. E. Sattler* für wichtige Hinweise.

Literatur

- I. Kovacs, H. Krautscheid, E. Matern, E. Sattler, G. Fritz, W. Hönle, H. Borrmann, H. G. von Schnering, Z. Anorg. Allg. Chem. 1996, 622, 1564.
- [2] G. Fritz, T. Vaahs, H. Fleischer, E. Matern, Angew. Chem. 1989, 101, 324; Z. Anorg. Allg. Chem. 1989, 570, 54.
- [3] I. Kovacs, V. Balema, A. Bassowa, E. Matern, E. Sattler, G. Fritz, H. Borrmann, R. Bauernschmitt, R. Ahlrichs, Z. Anorg. Allg. Chem. 1994, 620, 2033.

- [4] P. T. Cheng, C. D. Cook, S. C. Nyburg, K. Y. Wan, *Inorg. Chem.* 1971, 10, 2210.
- [5] J. Chatt, P. B. Hitchcock, A. Pidcock, Ch. P. Warrens, K. R. Dixon, J. Chem. Soc., Chem. Commun. 1982, 932.
- [6] B. Deppich, H. Schäfer, Acta Crystallogr., Sect. B. 1982, 38, 748.
- [7] G. M. Sheldrick, SHELXTL-Programmpaket zur Bestimmung von Kristallstrukturen, Siemens Industrial Automation, Inc. (1994).
- [8] E. Keller, SCHAKAL92 Fortran Program for Graphical Representation of Molecular and Crystallographic Models, Freiburg (1992).
- [9] C. Cook, G. S. Jauhal, J. Am. Chem. Soc. 1968, 90, 1464.
- [10] R. Ugo, F. Cariati, G. La Monica, Inorg. Synth. 1968, 11, 105.