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An enantioselective intramolecular oxidative cyclization of 2-geranylphenols catalyzed by a Pd(II)-spiro
bis(isoxazoline) complex is reported. The reaction proceeds in a 6-endo-trig manner to give chromene
derivatives in reasonable yields and with moderate enantioselectivities. This transformation can be
applied to a protecting-group-free total synthesis of naturally occurring cordiachromene.
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1. Introduction

An intramolecular oxidative cyclization catalyzed by a palla-
dium complex, referred to as the Wacker-type cyclization, is one
of the most versatile methods for the preparation of heterocycles.!
Among them, reactions of 2-allylphenol substrates 1 have been
extensively investigated and developed to asymmetric synthesis.?
Such cyclizations usually proceed in a 5-exo-trig fashion to give
dihydrobenzofuran derivatives 2 (Scheme 1a). In contrast, there
are only a few examples of a 6-endo-trig Wacker-type cyclization
constructing a benzopyran (chromene) skeleton 3 (Scheme 1b).3
Chromenes are ubiquitous structural units found in physiologically
active compounds* and are also useful intermediates in the synthe-
sis of natural products.’ Although enantioselective 6-endo-trig
Wacker-type cyclizations are expected to be a powerful tool for
the preparation of optically active chromenes, no such reports have
been published yet. Herein, we report an enantioselective synthe-
sis of chromene derivatives via a 6-endo-trig Wacker-type cycliza-
tion of 2-geranylphenols. This transformation can be applied to a
protecting-group-free total synthesis® of cordiachromene 3a.

2. Results and discussion

Firstly, we examined several chiral ligands for an enantioselec-
tive Wacker-type cyclization using 2-geranylphenol 1b as a model
substrate (Table 1).” We were pleased to find the formation of the
desired optically active chromene product 3b with a spiro bis(isox-
azoline) ligand (SPRIX).®° Thus, the reaction of 1b in the presence
of 10 mol % of Pd(OCOCF3),, 11 mol % of (P,R,R)-i-Pr-SPRIX 4, and
4 equiv of p-benzoquinone in Cl,CHCHCI; at 60 °C for 24 h afforded
3b in 55% yield with 54% ee (entry 1). In this reaction, 5-exo-trig
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cyclization product 2b was also formed in 11% yield, albeit with
a lower stereoselectivity. Effective chiral ligands for asymmetric
5-exo-trig cyclizations of 2-allylphenols, (S,S)-i-Pr-BOXAX 52-¢
and (—)-sparteine 6,22 did not promote the reaction enantioselec-
tively (entries 2 and 3). Pd complex 7, which is known to be a valu-
able catalyst for enantioselective Wacker-type cyclizations,?® gave
a trace amount of racemic 3b (entry 4). Furthermore, other chiral
ligands (R,R)-Bn-BOX 8 and (S)-BINAP 9 did not work under these
conditions (entries 5 and 6). When the reaction was conducted
without any chiral ligands, only 15% yield of 3b was obtained (en-
try 7). This background process would be a major pathway for the
formation of racemic 3b in entries 2-6. These results obviously
demonstrate the high utility of SPRIX for the enantioselective
6-endo-trig Wacker-type cyclization.

Cordiachromene 3a was first isolated from an American tree
Cordia alliodora,'® and later from Aplidium constellatum,' Aplidium
antillense,'? and Aplidium multiplicatium.'® This chromene displays

a) 5-exo-trig

b) 6-endo-trig m
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cordiachromene 3a

Scheme 1. Wacker-type cyclization of 2-allylphenol derivatives.
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Table 1

Screening of catalyst systems in the enantioselective intramolecular Wacker-type cyclization of 1b*

Pd(OCOCF3), (10 mol %) S~ R

chiral ligand (11 mol %)
R p-benzoquinone (4 equiv) 2b

OH Cl,CHCHCI, (0.3 M) *

60°C, 24 h
1b in the dark

R= f\/\)\ 3b

Entry Chiral ligand Conv.” (%) Yield® (%) eec (%)
2b 3b 2b 3b
1 4 55 18 54
2 5 19 <5 rac
3 6 19 <5 rac
4 7¢ 5 = rac
5 8 15 - rac
6 9 17 - rac
7 None 15 - -
i-Pr \
i-Pr N N
i-Pr
(P,R,R)-i-Pr-SPRIX 4 (S,S)-i-Pr-BOXAX 5 (-)-sparteine 6

g _OAc

oj><ro PPh,

&I I PPh,
_N N

Bn Bn

7 (R,R)-Bn-BOX 8

)-BINAP 9

@ All reactions were carried out in the presence of 10 mol % of Pd(OCOCFs),, 11 mol % of chiral ligand, and 4 equiv of p-benzoquinone at 60 °C for 24 h in CI,CHCHCl, (0.3 M)

under a nitrogen atmosphere in the dark.
b Determined by '"H NMR spectroscopy.
¢ Determined by HPLC analysis.
410 mol % of chiral complex 7 was used instead of Pd(OCOCFs;),.

antibacterial activity against Staphylococcus aureus'? and anti-
inflammatory activity.!* The asymmetric total synthesis of 3a has
been achieved by utilizing the Sharpless enantioselective epoxida-
tion'® or lipase-catalyzed kinetic resolution of racemic acetates.!®
Both of these strategies provided the target product in reasonable
yields with high enantiomeric purities, but they required a lengthy
synthetic sequence. Toward an application of the Pd-catalyzed oxi-
dative 6-endo-trig cyclization for the facile synthesis of 3a, we
examined a variety of hydroquinone substrates protecting one hy-
droxy group. Representative results are shown in Table 2.!7 In spite
of moderate chemical yields and enantioselectivities, products
3c-e having an ether group were obtained (entries 1-3). Acetal
functionality was tolerated as a protecting group for the phenol
component to produce 3f (entry 4). Reactions of ester-substituted
substrates 1g-j furnished the corresponding chromenes 3g-j in
30-52% yields (entries 5-8). 2-Geranylphenol 1k bearing a bromo
moiety convertible to a hydroxy group!'® also participated in this
cyclization to give 3k in 46% yield with 55% ee (entry 9).

As shown in Table 2, the synthetic precursors 3c-k of cordia-
chromene were obtained in an optically active form. Chromenes,

however, have proven to racemize under acidic and basic'® as well
as photochemical conditions.”?° To avoid such a racemization, we
attempted to execute a protecting-group-free asymmetric synthe-
sis of cordiachromene, namely, direct conversion of non-protected
substrate 1a to 3a (Scheme 2).2! The precursor 1a was readily pre-
pared from hydroquinone and geraniol in the presence of BFs-Et,0
in 34% yield.?? Disappointingly, we could not obtain 3a in an
acceptable yield under the catalytic conditions, due to an inevita-
ble oxidation of 1a into 2-geranylbenzoquinone.?* A stoichiometric
use of the Pd salt was eventually found to be operative for the
cyclization. Thus, 3a with 54% ee was isolated in 42% yield when
1a was treated with 1equiv of Pd(OCOCF;), and 1.1 equiv of
(P,R,R)-4 at 60 °C for 2 h (Scheme 2).2* The absolute configuration
of the resulting 3a was assigned to be (R) by comparison of the sign
of the specific rotation with the reported value.!>5

This enantioselective 6-endo-trig cyclization of 1 seems to pro-
ceed through a general catalytic cycle of Wacker-type reaction,
that is, an initial coordination of the olefin to Pd(II), a subsequent
intramolecular attack of the nucleophile, and a final B-hydride
elimination producing chromenes 3. From the results shown in
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Table 2

769

Effect of substituents on the aromatic ring in the enantioselective intramolecular Wacker-type cyclization of 1%

Pd(OCOCF3), (10 mol %)
(P,R,R)-4 (11 mol %)

R'

R' =
R p-benzoquinone (4 equiv)
OH CICH,CH,CI (0.3 M) i +
1 60°C, 24 h R N
in the dark
0" * R
R= :é\/\)\ 3
Entry 1 R Yield® (%) Ratio 2/3¢ ee of 3¢ (%)
1 1c BnO 45 (24) 1/1.6 34
2 1d MeO 42 (19) 1/1.5 48
3 1e TBSO 26 (15) 1/1.4 49
4 1f MOMO 61 (33) 1/2.1 37
5 1g PivO 57 (35) 1/2.2 52
6 1h BzO 46 (37) 1/4.1 44
7 1i BocO 68 (52) 1/3.0 47
8 1j TsO 41 (30) 1/4.1 42
9 1k Br 63 (46) 1/4.7 55

@ All reactions were carried out in the presence of 10 mol % of Pd(OCOCF3),, 11 mol % of (P,R,R)-4, and 4 equiv of p-benzoquinone at 60 °C for 24 h in CICH,CH,CI (0.3 M)
under a nitrogen atmosphere in the dark. In each case, the starting material was almost consumed at the end of the reaction.
b Combined yield determined by 'H NMR spectroscopy. Isolated yields for 3 are given in parentheses.

¢ Determined by 'H NMR.
4 Determined by HPLC analysis.

W
HO

(4 equiv)
BF3-Et;0 (4 equiv)

HO\©\
OH

1,4-dioxane (0.2 M)
rt, 6 h

34%

OH
1a

Pd(OCOCFs3), (100 mol %)

(P,R,R)-4 (110 mol %)

X

CI,CHCHCI, (0.1 M)
60°C,2h
in the dark

420/0, 54% ee

\\“\\
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O

(R)-cordiachromene 3a

Scheme 2. Asymmetric protecting-group-free short total synthesis of 3a.
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Scheme 3. Plausible description of the regioselectivity.

OH unfavorable
l 5-exo-trig 6-endo-trig
2

Table 1, the use of ligand 4 is essential for promoting this cycliza-
tion. Presumably, the Pd-SPRIX complex activates the olefin signif-

icantly because of its strong Lewis acidity.’® A positive charge
induced on the C-C double bond is more stabilized at the carbon
atom possessing the two alkyl chains (Scheme 3). The nucleophilic
attack of the phenolic hydroxy group, therefore, takes place prefer-
entially at this carbon, leading to a 6-endo-trig cyclization.3?

3. Conclusion

In conclusion, we have developed an enantioselective 6-endo-trig
Wacker-type cyclization of 2-geranylphenols, where the SPRIX
ligand plays a crucial role for obtaining optically active chromene
derivatives. This reaction can be extended to a protecting-group-
free asymmetric synthesis of a natural product. (R)-Cordiachromene
was prepared in 14% overall yield over two steps from commercially
available and cheap reagents. Further improvement of conditions for
this enantioselective Wacker-type cyclization is currently ongoing
in our group.
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We indeed observed photoracemization of the products 3b-k: for example, for
3k, 55% ee was diminished to 45% ee after 24 h upon irradiation with a (room)
light.

Pd-catalyzed non-enantioselective transformation of 1a to 3a has already been
reported. Racemic 3a was obtained in 18% yield by using PdCl, (3 mol %) and
CuCl; (10 mol %) under an O, atmosphere. see: lyer, M.; Trivedi, G. K. Synth.
Commun. 1990, 20, 1347.
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Both stepwise addition of p-benzoquinone and the use of a combination of O,
with Cu co-catalyst as the oxidant were ineffective.

Experimental procedure for the synthesis of cordiachromene 3a (Scheme 2):
Under a nitrogen atmosphere, a solution of Pd(OCOCFs3);, (4.2 mg, 100 mol %)
and (P,R,R)-4 (5.2 mg, 110 mol %) in Cl,CHCH,CI (0.06 mL) was stirred at 25 °C
for 6 h. To the solution was added a solution of 1a (3.1 mg, 0.0125 mmol) in
Cl,CHCHCI; (0.06 mL). The reaction mixture was stirred at 60 °C for 2 h in the
dark. After complete consumption of 1a, the resulting mixture was directly
passed through a short pad of silica gel, which was rinsed with ethyl acetate.
The filtrate was evaporated to dryness in the dark. The crude product was
purified by preparative TLC (hexane/ethyl acetate = 10/1) in the dark to give
1.3 mg (42%) of (R)-3a as a yellow oil. The enantiomeric excess was determined
to be 54% ee by HPLC analysis using a chiral stationary phase column
[Chiralpak AD-H, hexane/i-PrOH =40/1, flow rate = 0.5 mL/min, Z=335nm:
52.0 min (minor) and 68.9 min (major)]. Analytical data for 3a: 'H NMR
(400 MHz, CDCl3): 6 1.36 (s, 3H), 1.57 (s, 3H), 1.66 (s, 3H), 1.61-1.75 (m, 2H),
2.00-2.17 (m, 2H), 4.31 (br, 1H), 5.09 (t, ] = 6.9 Hz, 1H), 5.60 (d, J = 9.9 Hz, 1H),
6.28 (d,J=9.9 Hz, 1H), 6.48 (d,J = 2.9 Hz, 1H), 6.57 (dd, ] = 8.7, 2.9 Hz, 1H), 6.64
(d, J=8.7 Hz, 1H). '3C NMR (100 MHz, CDCl5): 6 17.6, 22.7, 25.7, 26.0, 40.9,
78.1, 112.8, 115.4, 116.7, 122.0, 122.6, 124.1, 131.0, 131.7, 147.0, 149.2. IR
(film): 422, 475, 659, 715, 815, 862, 922, 1078, 1200, 1333, 1384, 1456, 1486,
2350, 2863, 2923, 2968, 3359 cm~!. HRMS (ESI): calcd for Cs;HyoNaO4: m/z
511.2824 ([2 M+Na]"), found: m/z 511.2838. [oc],zj5 = —58.1 (c 0.04, CHCls) {lit'®
[o]p = —109.1 (c 0.95, CHCl3, 95% ee)}.
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