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Enantioselective Intramolecular C-H Amination of Aliphatic Azides 
by Dual Ruthenium and Phosphine Catalysis 
Jie Qin,a Zijun Zhou,a Tianjiao Cui,a Marcel Hemminga and Eric Meggersa*

The catalytic enantioselective intramolecular C(sp3)-H amination of aliphatic azide represents an efficient method for 
constructing chiral saturated cyclic amines which constitute a prominent structural motif in bioactive compounds. We 
report a dual catalytic system involving a chiral-at-metal bis(pyridyl-NHC) ruthenium complex and tris(4-
fluorophenyl)phosphine (both 1 mol%), which in combination achieve the cyclization of aliphatic azides to chiral -aryl 
pyrrolidines with enantioselectivities of up to 99% ee, including a pyrrolidine which can be converted to the anti-tumor 
alkaloid (R)-(+)-crispine. Mechanistically, the phosphine activates the organic azide to form an intermediate 
iminophosphorane and transfers the nitrene unit to the ruthenium providing an imido ruthenium intermediate which 
engages in the highly stereocontrolled C-H amination. This dual-catalysis combines ruthenium catalysis with the 
Staudinger reaction and provides a novel strategy for catalyzing enantioselective C-H aminations of unactivated aliphatic 
azides.

Introduction
Pyrrolidines constitute a prominent structural motif in bioactive 
compounds such as natural products and pharmaceuticals (Figure 
1a).1,2 Their synthesis through a direct intramolecular C(sp3)-H 
amination is particularly appealing due to the lacking necessity for 
preinstalled functional groups which provides the prospect of an 
efficient synthesis with high atom economy.3 In this respect, organic 
azides are attractive functionalities for metal-mediated nitrene 
C(sp3)-H insertion reactions4,5 because no additional oxidant is 
required and molecular nitrogen is the only by-product. Whereas 
the amination of saturated C(sp3)-H bonds with aryl, sulfonyl, acyl 
and phosphoryl azides has been well established,6 the use of non-
activated, aliphatic azides is only a recent accomplishment.7,8 In 
addition to their lower reactivity, a major pitfall for C(sp3)-H 
aminations of primary aliphatic azides constitutes a competing 
unproductive 1,2-hydride shift of the intermediate alkyl nitrenoid 
intermediate leading to the irreversible formation of undesirable 
imines.9 Betley introduced an elegant dipyrrinato-iron(II)-catalyzed 
ring-closing C(sp3)-H amination of aliphatic azides but the reported 
turnover numbers were modest with TON < 10.8b,c Subsequently 
reported MOF-functionalized Fe(II)--diketiminate,8d iron(III)-
coordinated redox-active pyridine-aminophenol,8e and cobalt(II) 
porphyrin8g catalysts by Lin, van der Vlugt, and de Bruin, 
respectively, provided improved catalytic performances for this 
challenging tranformation. Finally, Che very recently reported an 
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H aminations of aliphatic azides to provide non-racemic pyrrolidines.
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N-heterocyclic carbene iron(III) porphyrin complex exibiting 
high activity for this transformation under microwave 
conditions.8h However, pyrrolidines as part of bioactive 
compounds are typically chiral2 but only a single example of a 
catalytic enantioselective reaction has been reported using a 
chiral cobalt(II) porphyrin achieving low yields and very low 
enantiomeric excess (Figure 1b).8g,10

Ruthenium complexes are well-established for catalyzing 
C(sp3)-H activation11 and C(sp3)-H aminations of organic azides 
such as aryl, acyl, and sulfonyl azides,6a,d,f,l-n,12 but applying 
simple primary aliphatic azides has remained elusive and this 
has been attributed at least in parts to a very efficient 1,2-
hydrogen shift of the intermediate Ru-imido complexes.9c-e 
Our group recently reported a new class of “chiral-at-metal” 
ruthenium catalysts in which two bidentate N-(2-pyridyl)-
substituted N-heterocyclic carbenes and two acetonitrile 
ligands are coordinated to a central ruthenium in a C2-
symmetric fashion.13 Despite all ligands being achiral, overall 
helical chirality originates from a stereogenic ruthenium 
center.14,15 We recently demonstrated that such complexes 
can indeed serve as catalysts for activating aliphatic azides 
towards enantioselective C-H amination, however, 
unfortunately, only in a very restricted structural context of 
converting 2-azidoacetamides into chiral imidazolidin-4-ones.16 
By discovering a novel ruthenium and phosphine dual catalysis 
scheme to activate aliphatic azides towards C-H amination, we 
here report the highly enantioselective ring-closing C(sp3)-H 
amination of simple 4-azidobutylarenes to provide chiral -aryl 
pyrrolidines with enantioselectivities of up to 99% ee (Figure 
1b).

Results and discussion
Initial optimization

We initiated our study by investigating the intramolecular C-H 
amination of 4-azidobutylbenzene (1a) to Boc-protected 2-
phenylpyrrolidine (2a). Unfortunately, despite extensive 
screening of the reaction conditions, the results were 
unsatisfactory (see details in Tables S1-4). For example, 
heating 1a under optimized conditions in 1,2-dichlorobenzene 
at 95 °C for 40 hours using -Ru1 (1 mol%) in the presence of 
Boc2O (1 equiv) provided the desired pyrrolidine 2a only in 26% 
NMR yield at a conversion of 57% but at least with an 
encouraging enantioselectivity of 81% ee (Table 1, entry 1). At 
the same time, the Boc-protected amine 3 was detected as a 
side-product in 14% yield. To our surprise, we finally 
discovered that the reaction was fastly improved when 
performed in the presence of catalytic amounts of PPh3, 
providing 2a in 44% yield with 79% conversion at an 
enantioselectivity of 82% ee (entry 2). Even slightly better 
yields were obtained with tris(4-fluorophenyl)phosphine (entry 
3), while other phosphines provided inferior results (Table S5). 
The amount of the phosphine was also investigated, and it was 
found that 1 mol% provided the optimal results (Table S6).
Next, we optimized the ruthenium catalyst for this 
transformation to improve the enantioselectivity. Our initial 

Table 1. Initial C-H amination experiments.a

Ph
N3

Ph

N
Boc

N

N
Ru

N N

N N

N
NMes

Mes
C

C

Me

Me

(PF6)2R

R

1,2-dichlorobenzene
95 °C

Me

Me

tBu CF3

R =

additive
Boc2O (1 equiv)

Ru-cat (1 mol%)

Ph
H
N

+

1a
(R)-2a

3

-Ru3 -Ru4

-Ru6 -Ru7

Boc

tBu

tBu
-Ru1

H

-Ru2

-Ru5

SiMe3

NMR yield (%)b

Entry Cat. Additive Conv. (%)b

    2a 3
ee (%)c

1d -Ru1 no 57 26 14 81

2d -Ru1 P(Ph)3 79 44 17 82

3d -Ru1 P(4-F-Ph)3 81 46 18 82

4 -Ru2 P(4-F-Ph)3 77 46 18 89

5 -Ru3 P(4-F-Ph)3 79 44 16 90

6 -Ru4 P(4-F-Ph)3 75 44 20 87

7 -Ru5 P(4-F-Ph)3 70 43 17 89

8 -Ru6 P(4-F-Ph)3 65 23 18 80

9 -Ru7 P(4-F-Ph)3 77 54 (51)e 18 95

10 -Ru7f P(4-F-Ph)3 65 42 16 94

11 -Ru7 no 45 12 14 95

12g -Ru7 P(4-F-Ph)3 <3 0h 0h n.a.i

aStandard conditions: 1a (0.2 mmol), Boc2O (0.2 mmol, 1 equiv), catalyst (0.002 

mmol, 1 mol%), and additive (0.002 mmol, 1 mol%) in 1,2-dichlorobenzene (0.5 

mL) at 95 oC for 60 h under N2 unless otherwise noted. bDetermined by 1H NMR 

of crude products using Cl2CHCHCl2 as internal standard. cDetermined by HPLC of 

crude main product on a chiral stationary phase. d40 h was used. eIsolated yield in 

parentheses. f0.5 mol% -Ru7 was used. gWithout Boc2O. hRefers to cpds without 

Boc-protection. in.a. = not applicable.

experiments were performed with the chiral-at-ruthenium catalyst 
-Ru1 which bears two very bulky 3,5-di(tert-butyl)phenyl 
substituents at the coordinating pyridine ligands. Interestingly, -
Ru2 with less bulky 3,5-(dimethyl)phenyl substituents at the pyridyl 
moieties provided an even higher enantioselectivity of 89% ee 
(entry 4). The phenyl-modified catalyst -Ru3 afforded a further 
slightly increased enantioselectivity of 90% ee (entry 5), whereas 
the plain catalyst devoid of additional substituents (-Ru4) yielded 
the Boc-protected pyrrolidine with reduced 87% ee (entry 6). 
Furthermore, a trimethylsilyl (TMS)-functionalized ruthenium 
complex -Ru5, which is the optimal catalyst in our previous work 
on enantioselective C-H aminations of 2-azidoacetamides,16 did not 
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provide better results here (entry 7). Adding a tBu-moiety at the 4-
position of the phenyl groups (-Ru6) decreased the 
enantioselectivity to 80% ee (entry 8). However, the best result was 
obtained with a 4-(CF3)Ph modification (-Ru7) which afforded (R)-
2a in 54% NMR yield at 77% conversion and with 95% ee (entry 9). 
Interestingly, even at a catalyst loading of just 0.5 mol%, the Boc-
protected pyrrolidine (R)-2a was still formed with 42% yield (65% 
conversion) and 94% ee, reflecting a turnover number of 84 (entry 
10). Thus, a careful optimization of steric and electronic effects 
provided a ruthenium catalyst (-Ru7) which, in the presence of 
tris(4-fluorophenyl)phosphine, effectively discriminates between 
the two benzylic C-H bonds of 4-azidobutylbenzene to provide the 
corresponding chiral pyrrolidine with modest yield but outstanding 
enantioselectivity.17,18

Control experiments revealed that tris(4-fluorophenyl)phosphine is 
crucial for obtaining a satisfactory yield. In its absence, the yield 
diminished to merely 12% even after an extended reaction time, 
while the enantioselectivity was not affected, thus implying that the 
phosphine is not involved in the stereocontrolling step (entry 11). 
Finally, Boc2O is also required for this reaction to proceed (entry 
12).16

Substrate scope investigation

With the optimized catalyst -Ru7 and optimized reaction 
conditions in hand, we investigated the substrate scope of this 
transformation. As shown in Figure 2, methyl groups in para or 
meta position of the benzene moiety are well tolerated 
(pyrrolidines 2b,c), but a sterically demanding ortho-methyl group 
leads to vastly diminished yields of 15%. Both electron-donating 
(leading to pyrrolidines 2e-k) and electron-accepting substituents 
(leading to pyrrolidines 2l, m) are tolerated, although electron-
accepting substituents led to decreased yields. The phenyl moiety 
can also be replaced by a naphthyl (pyrrolidine 2n) and by 
heteroaromatic moieties (pyrrolidines 2o-s). For example, a 
carbazole moiety provides the Boc-protected pyrrolidine 2s in 52% 
yield and 93% ee. However, replacing the aryl group with alkyl, 
alkenyl, or alkynyl groups suppresses the C-H amination reaction 
(Table S8, entries 1-3). Further substrates including bridging aryl 
groups could also be transformed to their pyrrolidine products 
(2t,u). Finally, a racemic substrate with a tertiary C-H group only 
provided a very modest kinetic resolution (Table S8, entry 4).
Overall, enantioselectivities of 76-99% ee were observed and 
isolated yields of 15-57%. However it has to be noted that none of 
the reactions proceed to full conversion and thus allow to 
reisolated unreacted starting materials (Figure 2). Despite the 
modest yields it is remarkable that chiral α-aryl pyrrolidines with 
outstanding enantioselectivities of up to 99% ee can be obtained 
through this challenging ring-closing C(sp3)-H amination of aliphatic 
azides.19 Importantly, chiral α-aryl pyrrolidines are prominent 
structural motifs in bioactive compounds.2 For example, pyrrolidine 
2g can be converted to the anti-tumor alkaloid (R)-(+)-crispine in 4 
steps using a Pummerer cyclization (Figure S1).2c

Ar
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Figure 2. Substrate scope with isolated yield.a

aRecovered starting materials are shown in parentheses. bLower 
substrate concentration (0.1 M) and 85 oC was used instead.

Mechanism study

We performed experiments to gain insight into the reaction 
mechanism and started with the unusual function of the phosphine. 
The role of the phosphine as a co-catalyst to activate the organic 
azide is advocated by the well-established reactivity of azides 
towards phosphines.20 Indeed, P(4-F-Ph)3 starts to react with (4-
azidobutyl)benzene already at room temperature and full 
conversion is obtained at 95 °C for 2 hours to form the 
corresponding iminophosphorane 4 (Figure 3a). We also confirmed 
that iminophosphorane 4 is catalytically competent itself (Figure 
3b). Interestingly, although such a role of phosphines in the 
activation of organic azides towards C-H amination has not been 
reported to our knowledge, the opposite reaction namely the 
phosphine-induced extraction of a nitrene from a metal imido 
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Figure 3. Mechanistic experiments.

complex was disclosed independently by McElwee-White21a and 
Sundermeyer.21b 
Next, we attempted to gain insight into the competing 1,2-hydride 
shift by comparing (4-azidobutyl)benzene and benzyl azide as 
substrates at a temperature where C-H amination does not yet 
occur. As a result, only benzyl azide provided significant amounts of 
the imine product which can be traced back to the higher activity of 
the benzylic C-H group in the ruthenium imido intermediate 
towards 1,2-H shift (Figure 3c). This is consistent with a recent 
report by Park who showed that the degree of 1,2-H shift correlates 
with the nature of the -C-H bond.9c

To understand the electronic nature of the proposed ruthenium 
nitrenoid intermediate, initial C-H amination rates of electronically 
distinct substrates 1e and 1l were determined. As a result, the 
cyclization rate of electron-rich 1e was 1.7 times faster than 
electron-deficient 1l suggesting the electrophilic nature of the 
ruthenium nitrene (Figure 3d). This is consistent with the substrate 
scope in which electron-rich substrates provided better yields 

compared with electron-deficient substrates. The C-H amination 
with mono-deuterated substrate 1a' using racemic catalyst 
provided an intramolecular kinetic isotope effect (KIE) of 1.3 (Figure 
3e), which is much lower than the value reported for iron8b,e and 
cobalt8g catalytic systems. This might suggest that the C-H 
amination appears to occur by a concerted-insertion mechanism or 
a hydrogen abstraction mechanism with fast radical 
recombination.8h However, the interpretation of the intramolecular 
KIE is complicated by the fact that the ruthenium catalyst is 
intrinsically chiral, although used as a racemic mixture for this 
experiment, and the monodeuterated substrate 1a' as well. Indeed 
the cyclization of the chiral substrate (R)-5 to (R)-6 but not (S)-5 to 
(S)-6 demonstrates the high stereospecificity of the C-H amination 
(Figure 3f). Finally, we determined a pronounced (noncompetitive) 
intermolecular KIE value of 3.1 by measuring initial C-H amination 
rates of non-deuterated (1a) and bis-deuterated (1a'') substrates 
(Figure 3e). Using alternatively a 1:1 mixture of non-deuterated (1a) 
and bis-deuterated substrate (1a'') provides a (competitive) 
intermolecular KIE of 3.9 (see Figure S6). An observation of a 
significant intermolecular KIE reveals that the C-H amination is the 
rate limiting step in the overall process.
Based on previous work8b-h on the ring-closing C-H amination of (4-
azidobutyl)arenes and our mechanism study, the following 
mechanism is proposed (Figure 4). P(4-F-Ph)3 activates the organic 
azide to form an intermediate iminophosphorane (I) through the 
well-known Staudinger reaction which then transfers a nitrene to 
the ruthenium center to afford a ruthenium imido complex 
(intermediate II), followed by a stereo-controlled insertion of the 
nitrene moiety into the -C-H bond (transition state III) to provide a 
ruthenium-coordinated pyrrolidine (intermediate IV). Alternatively, 
a stepwise process through H-atom transfer cannot be excluded at 
this point. Finally, the product is released after Boc-protection.

[Ru] N
H

Ar

[Ru]

[Ru] N

Ar
H

[Ru] N

Ar
H

Ar
N3

Ar
N

PAr3

PAr3

II

III

IV

N

Ar

Boc

Boc2O

I

N2

Figure 4. Proposed mechanism.

Conclusions
We here presented a highly enantioselective catalytic ring-
closing benzylic C(sp3)-H amination of primary aliphatic azides 
to provide chiral 2-aryl pyrrolidines by combining of chiral-at-
metal transition metal catalysis with nucleophilic phosphine 
catalysis. In this unique dual catalysis system, the phosphine 
activates the organic azide and transfers a nitrene to the 
ruthenium complex, which then executes the enantioselective 
C-H amination. This combination of ruthenium catalysis and 
Staudinger reaction introduces a novel direction for C-H 
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amination of unactivated aliphatic azides which are very 
desirable but challenging substrates for this transformation.
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By combining a chiral-at-metal ruthenium catalyst with 
catalytic amounts of tris(p-fluorophenyl)phosphine 
(both 1 mol%) the challenging catalytic enantioselective 
ring-closing C(sp3)-H amination of unactivated aliphatic 
azides has been achieved with high enantioselectivities.

Enantioselective Intramolecular C-H Amination of 
Aliphatic Azides by Dual Ruthenium and Phosphine 
Catalysis 
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