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A concise, protecting-group-free synthesis of the antipsy-
chotic agent (+)-nemonapride has been achieved featuring 
a europium(III) trifluoromethanesulfonate (Eu(OTf)3)-cata-
lyzed C4 selective aminolysis of a 3,4-epoxy alcohol by ben-
zylamine and an expedient use of the resulting 4-benzylami-
no-1,3-diol product for constructing the pyrrolidine skeleton.
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A nucleophilic ring opening of a chiral epoxide substrate 
in a regio- and stereocontrolled manner has enabled the 
construction of numerous molecules with contiguous stereo-
genic centers.1,2) Along with expanding the scope of catalytic 
enantioselective epoxidation reactions, the structural diver-
sity of chiral epoxides is increased,3–8) inspiring chemists to 
develop methods that conduct a selective nucleophilic ring 
opening of the epoxide.9–13) To date, a number of reagents and 
conditions that lead to the regio- and stereocontrolled instal-
lation of various nucleophiles have been developed employ-
ing Lewis acid catalysis.14) Among potential nucleophiles, 
N-nucleophiles,15) such as amines, azides, amides, carbamates,
and so on, have received considerable attention because the
reaction allows access to β-amino alcohols,16,17) which are
versatile intermediates for biologically active compounds,
chiral ligands, and catalysts. Due to the substantial issue of
acid-base interaction, however, amines have rather limited use
in a Lewis acid-promoted or catalyzed nucleophilic ring open-
ing of epoxides: other than a few particular exceptions,18–22)

regio- and stereoselective aminolysis of epoxides could be
operative in the case when either aromatic amines23–28) or ac-
tivated substrates27,29) (benzylic or allylic epoxides) or a large
amount30,31) of Lewis acid are applied.  Thus, state-of-the-art
aminolysis of epoxides with an aliphatic amine is still under
development in modern synthetic chemistry.

Previously, our group showed32) that europium(III) trifluo-
romethanesulfonate (Eu(OTf)3) catalyzes a highly C3-selective 
alcoholysis of various 2,3-epoxy alcohols in the presence 
of catalytic amounts of 2,6-di-tert-butyl-4-methylpyridine 
(DTBMP) to give 3-substituted 1,2-diols, together with the 

following unprecedented results in terms of chemo- and regi-
oselectivity: (1) Eu(OTf)3 enabled the highly C3-selective ami-
nolysis of a 2,3-epoxy alcohol with aliphatic amines; (2) the 
Eu(OTf)3/DTBMP system could be applicable to alcoholysis 
of a 3,4-epoxy alcohol to give the corresponding C4-adduct 
selectively. These serendipitous findings prompted us to exam-
ine a Eu(OTf)3-catalyzed aminolysis of a 3,4-epoxy alcohol27) 
using an aliphatic 1° amine, the product of which we expected 
would be promising feedstock for the expedient synthesis of 
chiral β-hydroxy-pyrrolidines.33) Reported herein is a protect-
ing-group-free, enantioselective synthesis of the antipsychotic 
agent (+)-nemonapride34–38) (1) featuring a Eu(OTf)3-catalyzed 
C4-selective ring opening of a 3,4-epoxy alcohol by benzyl-
amine, and an expedient use of the resulting 4-benzylami-
no-1,3-diol product for constructing the β-hydroxy-pyrrolidine 
skeleton.

On the condition that the Eu(OTf)3-catalyzed aminolysis 
of a 3,4-epoxy alcohol proceeds via the inversion of the con-
figuration, (2R,3R)-(+)-nemonapride (1) was retrosynthetically 
disconnected, as shown in Chart 1, in which several critical 
issues are indicated. First, a Lewis acid-catalyzed C4-selective 
ring opening of the 3,4-epoxy alcohol by an aliphatic 1° amine 
has to be achieved as a practically acceptable level (4 to 3). 
Second, highly chemoselective activation of the amino diol 
must be realized in order to conduct the intended intramo-
lecular SN2 reaction, giving the β-hydroxy-pyrrolidine skeleton 
efficiently (3 to 2).

The synthesis began with an enantioselective epoxidation 
of an (E)-homoallyl alcohol by a Shi oxidation.6) Treatment 
of (E)-3-penten-1-ol 5 with Oxone® in the presence of Shi’s 
ketone6) (30 mol%), n-Bu4NHSO4 (1.6 mol%) and K2CO3 
(5.8 eq) in dimethoxymethane (DMM)/MeCN/aqueous buffer 
(pH 9.3) at −15°C gave 3,4-epoxy alcohol 4 in 76% yield and 
90% enantiomeric excess (ee) (Chart 2). The first key reaction, 
which represents an unprecedented Lewis acid-catalyzed ring 
opening of 3,4-epoxy alcohols using an aliphatic 1° amine as 
the nucleophile, was found to proceed smoothly in the pres-
ence of 10 mol% Eu(OTf)3 and 2.0 eq of benzylamine in tolu-
ene at 60°C to give a 2.9 : 1 regioisomeric mixture of amino 
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Chart 1. Retrosynthesis of (+)-Nemonapride (1)
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diols in preference to 4-amino-1,3-diol 3 in 99% yield. After 
chromatographic purification, a 9 : 1 mixture of 3 and 3′ was 
eventually obtained. Note that the addition of DTBMP is not 
necessary, but heating was essential to promote the aminoly-
sis reaction. It should be pointed out that other Lewis acids, 
such as W(OEt)6,26) Ni(ClO4)2·6H2O,27) and LiOTf,31) which 
were reported to promote a highly regioselective nucleophilic 
ring opening of 2,3-epoxy alcohols and 3,4-epoxy alcohols 
with various nucleophiles, resulted in unsatisfactory results 
in terms of efficiency and regioselectivity.39) The second key 
reaction, that is, the alcohol-selective installation of sulfonyl 
groups in the presence of 2° amine functionality, proceeded 
smoothly on treatment of the mixture with 3.0 eq of MsCl 
in the presence of Et3N and N,N-dimethyl-4-aminopyridine 
(DMAP) in CH2Cl2 at 0°C, with a concomitant 5-exo-tet-
type intramolecular SN2 reaction to construct the pyrrolidine 
ring to give the known pyrrolidene 6 in 81% yield as a read-
ily separable product.40) Protecting-group-free synthesis of 
nemonapride (1) was completed in 46% yield by following 
Wei’s protocol37) involving azidation, Lindlar reduction of the 
azide, and condensation with aromatic carboxylic acid 8.

In conclusion, we have demonstrated the synthetic use of 
Eu(OTf)3-catalyzed C4-selective aminolysis with an aliphatic 
amine by illustrating an enatioselective and protecting-group-
free synthesis of (+)-nemonapride. The synthetic sequence 
developed in this study could be applicable to the rapid 
construction of various chiral 2-substituted 3-hydroxypyrro-
lidines.
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