

Tetrahedron Letters 42 (2001) 1339-1341

TETRAHEDRON LETTERS

Palladium-catalyzed cycloisomerization of (Z)-(2-en-4-ynyl)amines: a new synthesis of substituted pyrroles

Bartolo Gabriele,* Giuseppe Salerno,* Alessia Fazio and Maria R. Bossio

Dipartimento di Chimica, Università della Calabria, I-87030 Arcavacata di Rende, Cosenza, Italy Received 11 October 2000; revised 24 November 2000; accepted 29 November 2000

Abstract—(Z)-(2-En-4-ynyl)amines 1 bearing an internal triple bond undergo smooth cycloisomerization into pyrroles 2 in the presence of catalytic amounts of PdCl₂ in conjunction with KCl at 25–100°C in anhydrous *N*,*N*-dimethylacetamide. When the triple bond is terminal, spontaneous uncatalyzed cyclization to the corresponding pyrroles takes place. © 2001 Elsevier Science Ltd. All rights reserved.

We recently described a new approach to the construction of the furan or thiophene ring via Pd(II)-catalyzed cycloisomerization of (Z)-en-4-yn-1-ols¹ or (Z)-2-en-4yne-1-thiols,² respectively. We now wish to report a useful extension of this methodology to the synthesis of substituted pyrroles³ starting from readily available[†] (Z)-(2-en-4-ynyl)amines **1**, according to Eq. (1).

Table 1. Synthesis of pyrroles 2 by cycloisomerization of (Z)-(2-en-4-ynyl)amines 1 (1 equiv.) in anhydrous N,N-dimethylacetamide (DMA) in the presence of PdCl₂ (0.01 equiv.) and KCl (0.02 equiv.), substrate conc.: 2 mmol/mL DMA

Run	1	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	<i>T</i> (°C)	<i>t</i> (h)	Yield of 2 (%) ^a
1	1a	Bn	Н	Me	Bu	100	6	60 (53)
2	1b	Н	Н	Me	Bu	100	6	75 (69)
3	1c	Bn	Et	Н	Bu	25	6	94 (85)
4	1d	Bu	Ph	Н	Bu	25	4	93 (86)

^a GLC yield (isolated yield) based on starting 1. Substrate conversion was practically quantitative in all cases.

Scheme 1.

Keywords: cycloisomerization; enynamines; palladium; pyrroles.

^{*} Corresponding authors. Fax: +39 0984 492044; e-mail: b.gabriele@unical.it; g.salerno@unical.it

^{*} Starting 1 (R^1 =alkyl) were readily prepared in 50–80% yields from the corresponding (*Z*)-2-en-4-yn-1-ols¹ through bromination with PBr₃ in the presence of pyridine in Et₂O at -20°C, followed by nucleophilic substitution with a primary amine in DMF–EtOH at -15 to -10°C under the conditions described in Ref. 4. Substrates with R^1 =H were prepared from the corresponding (*Z*)-2-en-4-yn-1-ols¹ by reaction with phthalimide via a Mitsunobu reaction⁵ in THF at 25°C, followed by cleavage with hydrazine in refluxing methanol under the conditions described in Ref. 6.

Scheme 2.

Representative results for enynamines bearing an internal triple bond are collected in Table 1. In a typical experiment, PdCl₂ (11 mg, 0.06 mmol) and KCl (9 mg, 0.12 mmol) were added under nitrogen to a solution of **1** (6 mmol) in anhydrous N,N-dimethylacetamide (DMA)[‡] (3 mL) in a Schlenk flask. The resulting mixture was stirred under nitrogen for the time required to obtain a satisfactory conversion, as shown by GLC and/or TLC analysis (Table 1). After addition of Et₂O, the mixture was filtered from the catalyst, washed with water and dried over Na₂SO₄. The solvent was removed in vacuo, and products were purified by column chromatography (SiO₂ or neutral Al₂O₃) using appropriate hexane–ethyl acetate mixtures as eluent.

The cycloisomerization process of **1a–d** did not occur in the absence of catalyst, as shown by blank experiments. The use of PdI₂+2KI led to comparable results with respect to PdCl₂+2KCl, in terms of reaction times as well as product yields. This is in contrast to that previously observed in the cycloisomerization of (Z)-2en-4-yn-1-ols and (Z)-2-en-4-yne-1-thiols to furans¹ and thiophenes,² for which PdI₂+2KI proved to be a more active catalyst.

From the data reported in Table 1 it is evident that (Z)-(2-en-4-ynyl)amines substituted at C-2 and unsubstituted at C-3 (entries 3–4) are considerably more reactive than the analogous ones substituted at C-3 (entries 1–2). This result suggests that the triple bond coordinates to Pd(II) from the opposite side with respect to the -CH₂NHR¹ moiety; in fact, such a coordination is expected to be more favored in the absence of a substituent at C-3 for steric reasons. The activated triple bond then undergoes intramolecular 5-*exo-dig* nucleophilic attack by the nitrogen, the catalytic cycle being completed by protonolysis and aromatization or vice versa (Scheme 1, X=Cl, I; anionic halide ligands are omitted for clarity).

(Z)-(En-4-ynyl)amines bearing a terminal triple bond turned out to be unstable and spontaneously underwent cycloisomerization to the corresponding pyrroles. Thus, bromination of (Z)-3-methylpent-2-en-4-yn-1-ol followed by reaction with benzylamine directly afforded 1-benzyl-2,3-dimethylpyrrole **2e** in 49% isolated yield based on the starting enynol (Scheme 2).[§]

The reaction reported here is the first example of the synthesis of pyrroles by a Pd-catalyzed cycloisomerization of (Z)-(2-en-4ynyl)-1-amines. Pyrroles are a very important class of heterocyclic compounds which are widespread in Nature and find various significant applications.⁸

[‡] DMA was dried over 4 Å molecular sieves and distilled under nitrogen before use.

^{§ 1-}Benzyl-2,3-dimethylpyrrole 2e was characterized by comparison with literature data.7 All new pyrroles were fully characterized by IR, ¹H and ¹³C NMR spectroscopy, mass spectrometry, and elemental analysis. Spectroscopic and MS data of new compounds: Compound 2a, yellow oil: IR (neat) 2954 (s), 2927 (s), 2857 (m), 1490 (m), 1453 (m), 1382 (w), 1354 (w), 1333 (m), 726 (m), 698 (s) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.17 (m, 3H on phenyl ring), 7.01-6.95 (m, 2H on phenyl ring), 6.49 (d, J=2.9, 1H, H-5), 5.98 (d, J=2.9, 1H, H-4), 4.97 (s, 2H, NCH₂), 2.43 (t, J=7.6, 2H, =CCH₂CH₂), 2.05 (s, 3H, =CCH₃), 1.39-1.17 (m, 6H, $CH_2CH_2CH_2CH_3$), 0.85–0.79 (m, 3H, CH_2CH_3); ¹³C NMR (75) MHz, CDCl₃) δ 139.10, 129.76, 128.61, 127.24, 126.45, 119.45, 115.23, 108.80, 50.53, 31.64, 29.86, 24.34, 22.44, 13.95, 11.59; MS m/e 241 (M⁺, 23), 185 (17), 184 (100), 92 (7), 91 (70), 65 (10). Compound 2b, yellow oil: IR (neat) 3383 (s), 2955 (m), 2927 (m), 2856 (m), 1463 (w), 713 (m) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (br s, 1H, NH), 6.52-6.48 (m, 1H, H-5), 5.99-5.94 (m, 1H, H-4), 2.48 (t, J=7.6, 2H, =CCH₂), 2.02 (s, 3H, =CCH₃), 1.58–1.44 (m, 2H, =CCH₂CH₂CH₂), 1.39–1.20 (m, 4H, CH₂CH₂CH₃), 0.89 (t, J=6.9, 3H, CH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 128.40, 114.70, 113.54, 109.82, 31.50, 29.81, 25.72, 22.39, 13.87, 10.74; MS m/e 151 (M⁺, 17), 95 (7), 94 (100). Compound 2c, yellow oil: IR (neat) 2958 (s), 2929 (s), 2869 (m), 1454 (m), 1354 (w), cm⁻¹; ¹H NMR δ 7.29–7.14 (m, 3H on phenyl ring), 7.00–6.93 (m, 2H on phenyl ring), 6.36-6.33 (m, 1H, H-5), 5.85-5.81 (m, 1H, H-3), 4.91 (s, 2H, CH₂Ph), 2.52–2.43, (m, 2H, =CCH₂CH₃), 2.42–2.35 (m, 2H, =CCH₂CH₂), 1.61-1.48 (m, 2H, =CCH₂CH₂), 1.34-1.23 (m, 4H, $CH_2CH_2CH_3$), 1.80 (t, J=7.5, 3H, $=CCH_2CH_3$), 0.89–0.82 (m, 3H, CH₂CH₂CH₃); ¹³C NMR δ 139.87, 133.40, 128.50, 127.06, 126.33, 125.10, 117.21, 105.85, 49.92, 31.61, 28.53, 26.04, 22.38, 20.16, 15.17, 13.85; MS m/e 255 (M⁺, 22), 199 (20), 198 (69), 92 (9), 91 (100), 65 (11). Compound 2d, yellow oil: IR (neat) 2956 (s), 2929 (s), 2869 (m), 1604 (m), 1521 (m), 1455 (m), 1367 (m), 1206 (m), 757 (m), 694 (w) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & 7.50–7.45 (m, 2H on phenyl ring), 7.32-7.25 (m, 2H on phenyl ring), 7.14-7.07 (m, 1H on phenyl ring), 6.87 (d, J=2.0, 1H, H-5), 6.19 (dt, J=2.0, 1.0, 1H, H-3), 3.79 (t, J=7.3, 2H, NCH₂), 2.53 (td, J=7.8, 1.0, 2H, =CCH₂), 1.78-1.63 (m, 4H, NCH₂CH₂+=CCH₂CH₂), 1.47-1.30 (m, 6H, $NCH_2CH_2CH_2CH_3+CH_2CH_2CH_2CH_3$), 0.95 (t, J=7.3, 3H, CH₃), 0.95–0.89 (m, 3H, CH₃); 13 C NMR (75 MHz, CDCl₃) δ 136.38, 134.35, 128.49, 124.91, 124.81, 123.27, 116.48, 103.60, 46.34, 33.56, 31.80, 28.71, 26.28, 22.58, 20.08, 14.03, 13.75; MS m/e 269 (M⁺, 65), 227 (7), 226 (28), 213 (29), 212 (100), 198 (30), 185 (7), 184 (26), 182 (9), 171 (36), 170 (61), 169 (8), 168 (7), 157 (13), 156 (33), 129 (11), 128 (25), 127 (11), 115 (12). Elemental analyses were satisfactory for all compounds.

Acknowledgements

Financial support from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica is gratefully acknowledged.

References

- 1. Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64, 7687–7692.
- 2. Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351–352.
- For recent reviews on synthesis of aromatic heterocycles, see: Collins, I. J. Chem. Soc., Perkin Trans. 1 2000, 2845–2861; Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1999, 2849–2866; Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 615–628.
- Nussbaumer, P.; Petranyi, G.; Stütz, A. J. Med. Chem. 1991, 34, 65–73.
- 5. Mitsunobu, O. Synthesis 1981, 1-28.
- Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444–2451.
- Trost, B. M.; Keinan, E. J. Org. Chem. 1980, 45, 2741– 2746.
- 8. Comprehensive Heterocyclic Chemistry; Bird, C. W., Ed.; Pergamon Press: Oxford, 1996; Vol. 2.

.