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ABSTRACT

An efficient Brønsted acid-catalyzed asymmetric Friedel–Crafts alkylation of indoles with 

benzothiazole-bearing trifluoromethyl ketone hydrates as electrophiles has been developed. The mild 

organocatalytic reactions proceeded well with low catalyst loading to afford a range of enantioenriched 

α-trifluoromethyl tertiary alcohols containing both benzothiazole and indole rings with excellent yields 

and enantioselectivities.
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INTRODUCTION

Trifluoromethylated compounds, due to their unique properties, including high electronegativity, 

lipophilicity, and metabolic stability, have attracted great attention in the past decades.1,2 Particularly 

intriguing are chiral α-trifluoromethyl tertiary alcohols, which are important building blocks for the 

preparation of pharmaceuticals and agrochemicals (Figure 1).3 The notable examples are efavirenz and 

indole-substituted trifluoromethyl alcohol A,3a,e,f which are HIV-1 reverse transcriptase inhibitors. 

Asymmetric Friedel−Crafts alkylation of indoles with trifluoromethyl ketones (trifluoroacetophenones 

and trifluoropyruvates) is an effective and straightforward access to chiral α-trifluoromethyl tertiary 

alcohols (Scheme 1a).4,5 Although many examples have been reported, most of them suffer high catalyst 

loading, harsh conditions, and/or diarylated byproducts. Thus, addressing these shortcomings of this 

useful transformation is still in demand. To address these issues, previous reports mostly focus on the 

development of new catalytic systems, but rarely start with developing efficient substrates. Herein, we 

use benzothiazole-bearing trifluoromethyl ketone hydrates as electrophiles instead of 

trifluoroacetophenones and trifluoropyruvates (Scheme 1b).
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HO HOHN
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Figure 1. Examples of pharmaceuticals containing chiral α-trifluoromethyl tertiary alcohols.

Benzothiazole is an important heterocyclic skeleton frequently found in numerous natural products, 

pharmaceutical molecules, catalysts, fluorescent probes, and materials.6 The combination of two 

privileged structures, a benzothiazole ring and a trifluoromethyl moiety, for the synthesis of chiral 

organic molecules could be of significant importance, especially for new drugs and materials. However, 

there are just a handful of reports on racemic or achiral synthesis.7 In this paper, we realize the assembly 

of such chiral molecules via an efficient Brønsted acid-catalyzed asymmetric Friedel−Crafts alkylation 

Page 2 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



of indoles with benzothiazole-bearing trifluoromethyl ketone hydrates as electrophiles (Scheme 1b). 

Notably, the introduction of an electon-deficient benzothiazole ring could bring several benefits. First, it 

could significantly enhance the electrophilicity of substrates, solving the problem of low reactivity. 

Second, it could help to stabilize the monoarylated adducts, thereby suppressing the formation of 

diarylated byproducts. Third, it also gives us a good chance to introduce important benzothiazole 

heterocycles into chiral α-trifluoromethyl tertiary alcohols.

Scheme 1. Asymmetric Friedel–Crafts Alkylation of Indole for α-Trifluoromethyl Tertiary 

Alcohols
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RESULTS AND DISCUSSION

Initially, we readily prepared benzothiazole-bearing trifluoromethyl ketone hydrate 1a in one step by a 

slightly modified procedure,8 and directly used it as an electrophile for the catalytic asymmetric 

Friedel−Crafts alkylation of indole 2a. In the presence of 5 mol% of chiral phosphoric acid I, we were 

pleased to find that the reaction proceeded smoothly in toluene at room temperature to provide the 

desired product 3aa with full conversion, albeit with low enantioselectivity (16% ee, Table 1, entry 1). 

The initial success avoided the further synthesis of the corresponding unstable ketone 1a’ as an 

electrophile. Subsequently, a series of BINOL-derived chiral phosphoric acids II−VI with different 

substituents at the 3- and 3’-positions were screened, and the catalyst V was found to be superior, 

providing excellent efficiency and moderate enantioselectivity (Table 1, entries 2−6). The screening 

results showed that more acidic catalysts III and IV resulted in a handful of diarylated byproduct, while 
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less acidic catalyst VI just gave trace conversion. The solvent variation has a dramatic impact on the 

reaction outcome (Table 1, entries 7−13). Dichloromethane was identified as the best solvent providing 

higher enantioselectivity (78% ee), while other common solvents, such as THF, Et2O, EtOAc, and 

MeCN, all resulted in very low conversion. To our delight, we tried SPINOL-derived chiral phosphoric 

acid VII (STRIP), and full conversion and high enantioselectivity (92% ee) were obtained (Table 1, 

entry 14). The use of 5 Å molecular sieves (MS) further increased the enantioselectivity to 98% ee, and 

also fulfilled full conversion in a much shorter time (Table 1, entry 15). The enhanced reactivity should 

be due to MS-accelerated dehydration of trifluoromethyl ketone hydrate 1a. The reduced catalyst 

loading (1 or 2 mol %) resulted in essentially no erosion in efficiency and enantioselectivity, but further 

reducing the loading (0.5 mol %) decreased slightly the enantioselectivity (Table 1, entries 16−18). 

Table 1. Optimization of Reaction Conditionsa

S

N CF3

OHHO

+
N
H

5 mol% I-VII

solvent (0.1 M), rt

1a 2a 3aa

S

N 

CF3HO

NH

VII: Ar = 2,4,6-iPr3C6H2
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Ar

Ar
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Ar

I: Ar = 9-anthryl
II: Ar = 9-phenanthryl
III: Ar = 1-pyrenyl
IV: Ar = 3,5-(CF3)2C6H3
V: Ar = 2,4,6-iPr3C6H2
VI: Ar = SiPh3

Ar

entry catalyst solvent time (h) conv. (%)b ee (%)c

1 I toluene 24 100 16

2 II toluene 24 100 25

3 III toluene 24 80 23

4 IV toluene 24 70 2

5 V toluene 24 95 61

6 VI toluene 24 <10 −d

7 V THF 24 <10 −d

8 V Et2O 24 <10 −d

9 V EtOAc 24 <10 −d

10 V MeCN 24 <10 −d

11 V DCM 24 100 78

12 V CHCl3 24 100 48
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13 V DCE 24 95 62

14 VII DCM 24 100 -92

15e VII DCM 2 100 -98

16e,f VII DCM 4 100 -98

17e,g VII DCM 6 100 -97

18e,h VII DCM 12 100 -93
aReactions were performed with 1a (0.10 mmol), 2a (0.15 mmol), and catalyst (5 mol%) in solvent 
(1.0 mL). bDetermined by 1H NMR analysis. cDetermined by HPLC analysis. dNot determined. eRun 
with 5 Å MS (60 mg). fRun with 2 mol% VII. gRun with 1 mol% VII. hRun with 0.5 mol% VII.

Table 2. Substrate Scope with Different Indolesa

S

N CF3

OHHO

+
N
H

1 mol% VII

DCM (0.1 M)
5 Å MS, rt

S

N
NH

1a 2a-l 3aa-al

CF3HO
R

R

entry R time (h) product yield (%)b ee (%)c

1 H 10 3aa 99 97

2 5-Me 7 3ab 99 92

3 6-Me 8 3ac 95 97

4 7-Me 7 3ad 99 97

5 4-Me 36 3ae 75 >99

6 5-OMe 6 3af 99 97

7 4-OMe 7 3ag 99 99

8 6-F 12 3ah 99 >99

9 5-Cl 16 3ai 99 97

10 5-Br 16 3aj 96 98

11 6-Br 16 3ak 99 95
aReactions were performed with 1a (0.20 mmol), 2 (0.30 mmol), catalyst VII (1 
mol%), and 5 Å MS (120 mg) in DCM (2.0 mL). bIsolated yield. cDetermined by 
chiral HPLC analysis.

Scheme 2. Asymmetric Friedel−Crafts Alkylation with 2-Methylindole and Pyrroles
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Having established the standard reaction conditions, we next examined the substrate scope of the 

catalytic asymmetric Friedel−Crafts reaction. A range of indoles with different substituents at the 4-, 5-, 

6-, or 7- positions proceeded smoothly to afford the corresponding α-trifluoromethyl tertiary alcohols 

3aa−ak with excellent yields and enantioselectivities (Table 2, entries 1−11). Unfortunately, low 

enantioselectivity (37% ee) was observed for 2-methylindole 2l, and no reaction occurred for 3-

substituted indoles (Scheme 2a). Pyrroles 2n−o were also viable substrates, but just 

good enantioselectivities (74−76% ee) were achieved (Scheme 2b). Subsequently, trifluoromethyl 

ketone hydrates 1b−g were tested for this useful transformation (Scheme 3). Hydrates 1b−e with 

different groups on the benzothiazole ring proceeded well, furnishing the desired products 3ba−ea with 

excellent yields and enantioselectivities. The position and electronic property of substituents did not 

affect the process. Hydrate 1f bearing a thiazole ring also gave a comparable result. Benzoxazole-based 

hydrate 1g was also a suitable substrate, and the desired product 3ga was obtained in excellent yield 

albeit with diminished enantioselectivity (87% ee). Unfortunately, trifluoromethyl ketone hydrates with 

other heterocycles, including imidazole, pyridine, and triazole, were infeasible substrates, presumably 

because their basicity affected the acid-catalyzed process. Notably, perfluoroethyl ketone hydrate 1h as 

a viable substrate provided the corresponding product 3ha with 99% yield and 94% ee (Scheme 4). In 

addition, under the standard conditions, we also used trifluoroacetophenone 1i and ethyl 

trifluoropyruvate 1j as electrophiles for Friedel−Crafts alkylation of indole. No reaction was observed 
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for the former, and the later provided the desired product 1ja with 82% yield but just 6% ee (Scheme 5). 

The results show that the introduction of a benzothiazole ring makes a big difference in the reactivity 

and stereoselectivity. The benzothiazole ring as an electon-deficient group improves the eletrophilicity 

of trifluoromethyl ketone hydrates, and it also results in excellent enantioselectivity presumably because 

of the effect of steric hindrance and π–π interaction with indole.

Scheme 3. Substrate Scope with Different Trifluoromethyl Ketone Hydrates
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Scheme 4. Asymmetric Friedel−Crafts Alkylation of Indole with Perfluoroethyl Ketone Hydrate
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Scheme 5. Asymmetric Friedel−Crafts Alkylation of Indole with Trifluoroacetophenone and Ethyl 

Trifluoropyruvate
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To show the synthetic potential of this protocol, we carried out the gram-scale synthesis and product 

transformations (Scheme 6 and 7). Notably, in the presence of 0.2 mol% of VII, a gram-scale catalytic 

reaction was performed well in quantitative yield with 93% ee, and optically pure product 3aa was 

easily obtained by a simple recrystallization from petroleum ether/ethyl acetate. The absolute 

configuration of enantiopure (R)-3aa was unambiguously confirmed by single crystal X-ray analysis. 

Alcohol 3aa was readily transformed into 4 by protection with chlorotrimethylsilane. Alkylation of 4 

with 3-bromoprop-1-yne at the N-position, followed by deprotection in the workup step, provided the 

desired product 5 in high yield and with excellent enantioselectivity maintained. The alkyne moiety of 5 

can be used to link other functional molecules via a click reaction. Moreover, we tried to convert the 

benzothiazole ring into a formyl group by a known procedure.9 When alcohol 3aa and its derivatives 

with different protecting groups (TMS, TBS, and Me) were used for this transformation, we all failed to 

get the corresponding chiral aldehyde. Instead, the simple ketone 6 was formed with good efficiency.

Scheme 6. The Gram-Scale Catalytic Reaction 
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5 Å MS, rt, 19 h

S
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NH
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Scheme 7. Product Transformations
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4 590% yield, >99% ee
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To understand the mechanism, we carried out some control experiments (Scheme 8). When 

trifluoromethyl ketone 1a’ instead of hydrate 1a was subjected to the standard conditions, almost the 

same reaction outcome was achieved (99% yield, 97.5% ee). The result showed that the process firstly 

underwent the acid-promoted dehydration of hydrate 1a to form ketone 1a’. N-Methyl indole 2m was 

also subjected to the standard conditions, but just trace conversion was observed. Under otherwise 

identical conditions, 5 mol% of BINOL-derived phosphoric acid V was employed to evaluate the 

performance of both indole 2a and N-methyl indole 2m, and 2a provided much higher efficiency and 

enantioselectivity than 2m. The results show that the N−H group of indole is the active site of catalyst 

through the hydrogen bonding, and plays an important role in both reactivity and stereocontrol.  

Scheme 8. Control Experiments
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Figure 2. Possible transition state model.

  Based on the observed results of control experiments and the absolute configuration of 3aa, we 

proposed a possible transition state model (Figure 2). First, trifluoromethyl ketone hydrate 1a undergoes 

the acid-promoted dehydration to form trifluoromethyl ketone 1a’. Then, the chiral phosphoric acid 

catalyst VII acts in a bifunctional fashion. The ketone 1a’ is activated by the acid proton moiety through 

the hydrogen bonding. Meanwhile, the phosphoryl oxygen atom as a basic site interacts with indole 

through the hydrogen bonding. Considering the steric effect between the catalyst substituent and the 
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benzothiazole moiety of ketone, and possible π–π interaction, indole 2a favors the Si-face attack of 

ketone to provide the (R)-configured product 3aa.

CONCLUSIONS

In summary, we have developed an efficient Brønsted acid-catalyzed asymmetric Friedel−Crafts 

alkylation of indoles with trifluoromethyl ketone hydrates. With a suitable employment of 

benzothiazole-bearing trifluoromethyl ketone hydrates as electrophiles, chiral phosphoric acid catalyst 

(STRIP), and 5 Å molecular sieve, the present reaction provided a range of enantioenriched α-

trifluoromethyl tertiary alcohols bearing both benzothiazole and indole rings with excellent yields and 

enantioselectivities. This protocol features excellent efficiency and enantioselectivity, mild reaction 

conditions, low catalyst loading, simple operation, and easy gram-scale preparation. This work 

represents a new and rare example of catalytic asymmetric method for chiral molecules bearing a 

benzothiazole ring and a trifluoromethyl moiety located at a stereogenic carbon atom, which should be 

attractive and potential for drug discovery. Further investigation on catalytic asymmetric reactions with 

trifluoromethyl ketone hydrates is underway.

EXPERIMENTAL SECTION

General Information. Column chromatography was performed over silica gel (200-300 mesh) 

purchased from Qindao Puke Co., China. All air or moisture sensitive reactions were conducted in oven-

dried glassware under nitrogen atmosphere using anhydrous solvents. Anhydrous dichloromethane, 

tetrahydrofuran, and acetonitrile were purchased from Energy Chemical and used as received. ACS 

grade 2,2,2-trifluoroacetic anhydride (TFA), Et3N, toluene, and 1,2-dichloroethane were purchased from 

Sinopharm Chemical Reagent Co.,Ltd and used as received. 1H, 13C, and 19F NMR spectra were 

collected on a Varian INOVA-400 or a Bruker AV-400 NMR spectrometer using peaks of deuterated 

solvents as an internal standard (1H NMR: CDCl3 at 7.26 ppm, d6-acetone at 2.05 ppm; 13C NMR: 

CDCl3 at 77.0 ppm, d6-acetone at 206.26 ppm). High resolution mass spectra were collected on a 
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MALDI Micro MX mass spectrometer. Optical rotations were measured on JASCO P-2000 polarimeter 

with [α]D values reported in degrees; concentration (c) is in 10 mg/mL. The enantiomeric excesses were 

determined by chiral HPLC using a Shimadzu Prominence LC-20A instrument with a Daicel Chiralcel 

OD-H column or a Daicel Chiralpak AD-H or AS-H column.

The Synthesis of Ketone Hydrates 1a-h.8 1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoroethane-1,1-diol 

(1a). To a solution of benzothiazole (1.35 g, 10.0 mmol) in toluene (20 mL) at -20 oC was added 

dropwise trifluoroacetic anhydride (2.52 g, 12.0 mmol) over 10 min. The mixture was stirred for 0.5 h, 

and triethylamine (1.21 g, 12.0 mmol) was slowly added. After stirring at -20 oC for overnight, the 

resulting reaction mixture was spontaneously warmed to room temperature and stirred 12 h. The solvent 

was removed in vacuo, and water (5 mL) was added to form white precipitation, which was dissolved in 

ethyl acetate (80 mL). The organic phase was successively washed with 1 M HCl (30 mL), water (30 

mL), and brine (30 mL), dried over anhydrous Na2SO4, and concentrated in vacuo to afford the crude 

product. The pure ketone hydrate 1a was obtained by recrystallization from petroleum ether/ethyl 

acetate (5:1) as a white solid (2.30 g, 92% yield), m.p. 144-146 oC. 1H NMR (400 MHz, d6-acetone) δ 

8.11-8.08 (m, 2H), 7.60 (s, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H) ppm. 13C{1H} NMR 

(100 MHz, d6-acetone) δ 168.8, 153.5, 136.6, 127.1, 126.8, 124.3, 123.4 (q, J = 286.3 Hz), 122.8, 93.2 

(q, J = 33.0 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -83.5 ppm. HRMS (ESI) m/z: [M - H2O]+ 

Calcd for C9H4F3NOS 230.9966; Found 230.9961.

2,2,2-Trifluoro-1-(6-methoxybenzo[d]thiazol-2-yl)ethane-1,1-diol (1b) was prepared from 6-

methoxybenzothiazole (0.83 g, 5.0 mmol) according to the above procedure. White solid, m.p. 126-128 

oC; 1.01 g, 72% yield. 1H NMR (400 MHz, d6-acetone) δ 7.94 (d, J = 8.8 Hz, 1H), 7.61 (s, 1H), 7.51 (br 

s, 2H), 7.14 (d, J = 8.8 Hz, 1H), 3.88 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 165.4, 

158.7, 147.3, 137.7, 124.3, 123.0 (q, J = 286.3 Hz), 116.5, 104.1, 92.6 (q, J = 33.0 Hz), 55.5 ppm. 19F 

NMR (376.5 MHz, d6-acetone) δ -83.6 ppm. HRMS (ESI) m/z: [M]+ Calcd for C10H8F3NO3S 279.0177; 

Found 279.0169.
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1-(6-Bromobenzo[d]thiazol-2-yl)-2,2,2-trifluoroethane-1,1-diol (1c) was prepared from 6-

bromobenzothiazole (1.07 g, 5.0 mmol) according to the above procedure. White solid, m.p. 136-138 oC; 

0.45 g, 28% yield. 1H NMR (400 MHz, d6-acetone) δ 8.32 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 

8.4 Hz, 1H), 7.62 (s, 2H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 169.2, 151.9, 137.8, 129.9, 

125.1, 124.8, 122.6 (q, J = 286.4 Hz), 119.3, 92.5 (q, J = 33.1 Hz) ppm. 19F NMR (376.5 MHz, d6-

acetone) δ -83.4 ppm. HRMS (ESI) Calcd for C9H3BrF3NOS [M - H2O]+: 308.9071, Found: 308.9063.

2,2,2-Trifluoro-1-(6-nitrobenzo[d]thiazol-2-yl)ethane-1,1-diol (1d) was prepared from 6-

nitrobenzothiazole (1.80 g, 10.0 mmol) according to the above procedure. White solid, m.p. 102-103 oC; 

1.24 g, 42% yield. 1H NMR (400 MHz, d6-acetone) δ 9.17 (d, J = 2.4 Hz, 1H), 8.44 (dd, J = 2.4, 9.2 Hz, 

1H), 8.28 (d, J = 8.8 Hz, 1H), 7.80 (s, 2H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 174.9, 156.7, 

145.7, 136.4, 124.4, 122.6 (q, J = 286.5 Hz), 121.7, 119.2, 92.6 (q, J = 33.2 Hz) ppm. 19F NMR (376.5 

MHz, d6-acetone) δ -83.5 ppm. HRMS (ESI) m/z: [M - H2O]+ Calcd for C9H3F3N2O3S 275.9816; Found 

275.9818.

1-(5-Bromobenzo[d]thiazol-2-yl)-2,2,2-trifluoroethane-1,1-diol (1e) was prepared from 5-

bromobenzothiazole (1.61 g, 7.5 mmol) according to the above procedure. White solid, m.p. 120-121 oC; 

1.84 g, 75% yield. 1H NMR (400 MHz, d6-acetone) δ 8.24 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 

12.0 Hz, 1H), 7.61 (s, 2H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 170.8, 154.5, 135.4, 129.5, 

126.6, 124.2, 123.0 (q, J = 286.4 Hz), 119.9, 92.8 (q, J = 33.3 Hz) ppm. 19F NMR (376.5 MHz, d6-

acetone) δ -83.5 ppm. HRMS (ESI) Calcd for C9H5BrF3NO2S [M]+: 326.9176, Found: 326.9171.

2,2,2-Trifluoro-1-(thiazol-2-yl)ethane-1,1-diol (1f) was prepared from thiazole (0.85 g, 10.0 mmol) 

according to the above procedure. White solid, m.p. 93-95 oC; 0.30 g, 15% yield. 1H NMR (400 MHz, 

d6-acetone) δ, 7.83 (s, 1H), 7.74 (s, 1H), 7.40 (br s, 2H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 

166.4, 142.0, 122.05 (q, J = 286.1 Hz), 122.02, 91.7 (q, J = 33.0 Hz) ppm. 19F NMR (376.5 MHz, d6-

acetone) δ -84.0 ppm. HRMS (ESI) m/z: [M - H2O]+ Calcd for C5H2F3NOS 180.9809; Found 180.9814.

1-(Benzo[d]oxazol-2-yl)-2,2,2-trifluoroethane-1,1-diol (1g) was prepared from benzooxazole (1.19 g, 

10.0 mmol) according to the above procedure. White solid, m.p. 120-121 oC; 1.01 g, 43% yield.  1H 
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NMR (400 MHz, d6-acetone) δ 7.81 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.63 (br s, 2H), 7.51-

7.42 (m, 2H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 160.7, 150.8, 140.0, 126.4, 125.0, 122.3 (q, 

J = 285.9 Hz), 120.5, 111.1, 93.2 (q, J = 33.0 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -83.8 ppm. 

HRMS (ESI) m/z: [M]+ Calcd for C9H6F3NO3 233.0300; Found 233.0298.

1-(Benzo[d]thiazol-2-yl)-2,2,3,3,3-pentafluoropropane-1,1-diol (1h) was prepared from benzothiazole 

(1.35 g, 10.0 mmol) and 2,2,3,3,3-pentafluoropropanoic anhydride (3.72 g, 12.0 mmol) according to the 

above procedure. White solid, m.p. 81-82 oC; 1.01 g, 33% yield. 1H NMR (400 MHz, d6-acetone) δ 

8.13 (d, J = 8.0 Hz, 1H), 8.08 (q, J = 8.0 Hz, 1H), 7.59 (s, 2H), 7.57-7.51 (m, 2H) ppm. 13C{1H} NMR 

(100 MHz, d6-acetone) δ 169.0, 153.1, 136.9, 127.1, 126.8, 124.3, 122.8, 119.8 (qt, J1 = 285.2 Hz, J2 = 

43.5 Hz), 112.6 (tq, J1 = 262.1 Hz, J2 = 34.9 Hz), 94.3 (t, J = 25.8 Hz) ppm. 19F NMR (376.5 MHz, d6-

acetone) δ -79.3, -81.9, -118.2, -124.9 ppm. HRMS (ESI) m/z: [M]+ Calcd for C10H6F5NO2S 299.0039; 

Found 298.9996.

.General Procedure for Catalytic Asymmetric Friedel−Crafts Alkylation. To a solution of 

trifluoromethyl ketone hydrate 1 (0.20 mmol), and catalyst VII (1 mol%) in dichloromethane (2.0 mL) 

was added 5 Å MS (120 mg) and indole or pyrrole 2 (0.30 mmol). After stirring at room temperature for 

specified time, the mixture was directly purified by silica gel column chromatography (petroleum 

ether/ethyl acetate = 5:1 to 3:1) to afford the desired product 3.

(R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(1H-indol-3-yl)ethan-1-ol (3aa). White solid, m.p. 

133-134 oC, 69.1 mg, 99% yield. [α]D
10: −53.8 (c = 0.51, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 8.7 min (minor), t2 = 11.1 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.58 (br s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.69 (s, 

1H), 7.63 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 

6.98 (s, 1H), 6.94 (t, J = 7.6 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.3, 154.0, 137.4, 

136.1, 126.8, 126.2, 125.6 (q, J = 285.4 Hz), 125.5, 124.1, 124.0, 122.6, 122.4, 121.3, 120.2, 112.3, 

111.8, 78.0 (q, J = 30.4 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.4 ppm. HRMS (ESI) m/z: 

[M + Na]+ Calcd for C17H11F3N2NaOS 371.0442; Found 371.0485.

(R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(5-methyl-1H-indol-3-yl)ethan-1-ol (3ab). White solid, 

m.p. 182-183 oC, 71.7 mg, 99% yield. [α]D
10: −98.8 (c = 0.51, acetone). The enantioselectivity was 

Page 14 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 7.1 min (minor), t2 = 9.0 min (major), 92% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.45 (br s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.62 (s, 

1H), 7.51 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 

6.90 (d, J = 1.6 Hz, 1H), 2.25 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.5, 154.2, 136.3, 

136.0, 129.1, 127.0, 126.7, 126.4, 125.75, 125.74 (q, J = 285.3 Hz), 124.3, 124.2, 122.7, 121.2, 112.1, 

111.4, 78.2 (q, J = 30.5 Hz), 21.6 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.5 ppm. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C18H13F3N2NaOS 385.0598; Found 385.0608.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(6-methyl-1H-indol-3-yl)ethan-1-ol (3ac). White solid, 

m.p. 145-146 oC, 68.6 mg, 95% yield. [α]D
10: −51.8 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 12.6 min (minor), t2 = 15.1 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.43 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.61 (s, 2H), 

7.52-7.45 (m, 3H), 7.23 (s, 1H ), 6.91 (s, 1H ), 6.80 (d, J = 8.4 Hz, 1H), 2.35 (s, 3H ) ppm. 13C{1H} 

NMR (100 MHz, d6-acetone) δ 172.4, 154.0, 137.9, 136.2, 132.1, 126.8, 126.2, 125.6 (q, J = 285.6 Hz), 

124.9, 124.2, 124.0, 122.6, 122.0, 121.1, 112.1, 111.7, 78.0 (q, J = 30.4 Hz), 21.4 ppm. 19F NMR (376.5 

MHz, d6-acetone) δ -76.4 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C18H13F3N2NaOS 385.0598; 

Found 385.0608.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(7-methyl-1H-indol-3-yl)ethan-1-ol (3ad). White solid, 

m.p. 163-164 oC, 72.0 mg, 99% yield. [α]D
10: −42.1 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 7.7 min (minor), t2 = 14.0 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.55 (br s, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.66 (s, 

1H), 7.50 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 6.96 (s, 1H), 6.89 (d, J = 7.2 Hz, 1H), 6.85 (t, J = 

7.2 Hz, 1H), 2.43 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.3, 153.9, 136.9, 136.1, 

126.8, 126.2, 125.9, 125.5 (q, J = 285.3 Hz), 125.0, 124.0, 123.0, 122.5, 121.5, 120.4, 119.0, 112.2, 78.0 

(q, J = 30.3 Hz), 16.6 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.3 ppm. HRMS (ESI) m/z: [M + 

Na]+ Calcd for C18H13F3N2NaOS 385.0598; Found 385.0595.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(4-methyl-1H-indol-3-yl)ethan-1-ol (3ae). White solid, 

m.p. 207-208 oC, 54.7 mg, 75% yield. [α]D
10: −10.3 (c = 0.52, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 85:15, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 7.7 min (minor), t2 = 11.2 min (major), >99% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.65 (br s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.65 (s, 

1H), 7.49-7.40 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 6.96 (t, J = 8.0 Hz, 1H), 6.68-6.65 (m, 2H), 2.94 (s, 

3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.2, 153.4, 138.3, 137.3, 131.1, 126.9, 126.5, 
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126.0 (q, J = 3.8 Hz), 125.9 (q, J = 286.8 Hz), 125.7, 124.2, 122.90, 122.88, 122.7, 111.7, 110.2, 78.1 (q, 

J = 29.0 Hz), 22.2 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -74.3 ppm. HRMS (ESI) m/z: [M + Na]+ 

Calcd for C18H13F3N2NaOS 385.0598; Found 385.0627.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(5-methoxy-1H-indol-3-yl)ethan-1-ol (3af). White solid, 

m.p. 183.5-184.3 oC, 75.4 mg, 99% yield. [α]D
10: −93.1 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralcel OD-H column, n-hexane/i-propanol = 90:10, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 13.4 min (major), t2 = 15.3 min (minor), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.45 (br s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.63 (s, 

1H), 7.51 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.09 (s, 1H), 6.95 (s, 1H), 

6.73 (d, J = 8.8 Hz, 1H), 3.59 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.5, 154.8, 154.2, 

136.2, 132.7, 127.0, 126.9, 126.4, 126.2, 125.8 (q, J = 285.2 Hz), 124.2, 122.7, 113.0, 112.8, 111.6, 

103.3, 78.1 (q, J = 30.7 Hz), 55.5 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -74.5 ppm. HRMS (ESI) 

m/z: [M + Na]+ Calcd for C18H13F3N2NaO2S 401.0548; Found 401.0546.

(R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(4-methoxy-1H-indol-3-yl)ethan-1-ol (3ag). White 

solid, m.p. 214-215 oC, 74.9 mg, 99% yield. [α]D
10: −243.1 (c = 0.51, acetone). The enantioselectivity 

was determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow 

rate 1.0 mL/min, detection at 254 nm, 35 oC): t1 = 7.5 min (minor), t2 = 9.8 min (major), 99% ee. 1H 

NMR (400 MHz, d6-acetone) δ 10.76 (br s, 1H), 8.12-8.09 (m, 2H), 7.77 (s, 1H), 7.69 (s, 1H), 7.57 (t, J 

= 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.23-7.16 (m, 2H), 6.79 (d, J = 7.2 Hz, 1H), 4.11 (s, 3H) ppm. 
13C{1H} NMR (100 MHz, d6-acetone) δ 172.6, 154.4, 151.6, 139.6, 136.1, 127.0, 126.9, 126.4, 125.6 (q, 

J = 285.4 Hz), 124.2, 123.9, 122.7, 116.1, 111.2, 107.4, 102.1, 77.4 (q, J = 30.0 Hz), 55.7 ppm. 19F 

NMR (376.5 MHz, d6-acetone) δ -72.6 ppm. HRMS (ESI) m/z: [M + H]+ Calcd for C18H14F3N2O2S 

379.0728; Found 379.0735.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(6-fluoro-1H-indol-3-yl)ethan-1-ol (3ah). White solid, 

m.p. 110-112 oC, 72.6mg, 99% yield. [α]D
10: −42.3 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 85:15, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 12.3 min (minor), t2 = 13.3 min (major), >99% ee. 1H 

NMR (400 MHz, d6-acetone) δ 10.66 (br s, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.69 

(s, 1H), 7.63 (dd, J = 8.4, 5.6 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 9.6 

Hz, 1H), 7.09 (br s, 1H), 6.78 (t, J = 9.6 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 172.1, 

160.4 (d, J = 234.8 Hz), 154.1, 137.7, 137.5, 136.2, 127.0, 126.4, 125.6 (q, J = 283.8 Hz), 124.2, 123.1, 

122.7, 122.6, 112.2, 108.9 (d, J = 24.4 Hz), 98.3 (d, J = 25.8 Hz), 78.0 (q, J = 30.5 Hz) ppm. 19F NMR 

(376.5 MHz, d6-acetone) δ -76.6, -122.5 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C17H10F4N2NaOS 

389.0348; Found 389.0359.
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 (R)-1-(Benzo[d]thiazol-2-yl)-1-(5-chloro-1H-indol-3-yl)-2,2,2-trifluoroethan-1-ol (3ai). White solid, 

m.p. 104-105 oC, 76.0 mg, 99% yield. [α]D
10: −75.1 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 90:10, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 17.5 min (minor), t2 = 19.7 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.79 (br s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.79 (s, 

1H), 7.76 (d, J = 2.4 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 8.4 Hz, 2H), 7.18 (d, J = 7.4 Hz, 1H), 

7.10 (t, J = 8.8 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 171.7, 153.8, 135.8, 135.7, 127.2, 

127.1, 126.7, 126.2, 125.4, 125.2 (q, J = 284.7 Hz), 123.8, 122.5, 122.4, 121.0, 120.6, 113.6, 77.7 (q, J 

= 30.8 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.7 ppm. HRMS (ESI) m/z: [M + H]+ Calcd for 

C17H11ClF3N2OS 383.0233; Found 383.0227.

(R)-1-(Benzo[d]thiazol-2-yl)-1-(5-bromo-1H-indol-3-yl)-2,2,2-trifluoroethan-1-ol (3aj). White solid, 

m.p. 172-173 oC, 75.8 mg, 96% yield. [α]D
10: −114.1 (c = 0.51, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 85:15, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 10.5 min (minor), t2 = 11.6 min (major), 98% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.80 (br s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.91 (s, 

1H), 7.77 (s, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 

8.8 Hz, 1H), 7.17 (s, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 171.9, 154.0, 136.2, 136.0, 

128.0, 127.3, 127.0, 125.4 (q, J = 285.0 Hz), 125.3, 124.1, 124.0, 123.9, 122.7, 114.2, 113.2, 111.6, 77.9 

(q, J = 30.6 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.7 ppm. HRMS (ESI) m/z: [M + H]+ 

Calcd for C17H11BrF3N2OS 428.9707; Found 428.9710.

(R)-1-(Benzo[d]thiazol-2-yl)-1-(6-bromo-1H-indol-3-yl)-2,2,2-trifluoroethan-1-ol (3ak). White solid, 

m.p. 118-119 oC, 84.7 mg, 99% yield. [α]D
10: −63.7 (c = 0.52, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AS-H column, n-hexane/i-propanol = 90:10, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 16.6 min (minor), t2 = 21.8 min (major), 95% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.73 (br s, 1H), 8.06 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.73 (s, 

1H), 7.63 (s, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.13 (s, 1H), 

7.10 (d, J = 8.4 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 171.9, 154.0, 138.4, 136.1, 126.9, 

126.7, 126.4, 125.5 (q, J = 285.5 Hz), 125.3, 124.1, 123.4, 123.0, 122.6, 115.7, 115.2, 112.2, 77.9 (q, J 

= 30.6 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.6 ppm. HRMS (ESI) m/z: [M + H]+ Calcd for 

C17H11BrF3N2OS 428.9707; Found 428.9708.

 (R)-1-(Benzo[d]thiazol-2-yl)-1-(2,6-dimethyl-1H-indol-3-yl)-2,2,2-trifluoroethan-1-ol (3al). White 

solid, m.p. 140-142 oC, 70.6 mg, 97% yield. [α]D
10: −28.5 (c = 0.52, acetone). The enantioselectivity 

was determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow 

rate 1.0 mL/min, detection at 254 nm, 35 oC): t1 = 7.9 min (minor), t2 = 10.3 min (major), 37% ee. 1H 

NMR (400 MHz, d6-acetone) δ 10.34 (br s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.55 
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(t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.98 (t, J 

= 7.2 Hz, 1H), 6.89 (s, 1H), 6.83 (t, J = 7.6 Hz, 1H), 2.38 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-

acetone) δ 172.5, 152.6, 136.4, 136.3, 135.7, 128.0, 126.8, 126.5, 126.2 (q, J = 285.3 Hz), 124.3, 122.5, 

121.2, 120.7, 119.8, 111.0, 107.2, 78.8 (q, J = 30.4 Hz), 13.6 ppm. 19F NMR (376.5 MHz, d6-acetone) δ 

-75.9 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C18H13F3N2NaOS 385.0598; Found 385.0656.

 (R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(1H-pyrrol-2-yl)ethan-1-ol (3an). White solid, m.p. 84-

85 oC, 59.2 mg, 99% yield. [α]D
10: -54.2 (c = 0.51, acetone). The enantioselectivity was determined by 

HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 1.0 mL/min, 

detection at 254 nm, 35 oC): t1 = 8.6 min (minor), t2 = 27.1 min (major), 74% ee. 1H NMR (400 MHz, 

d6-acetone) δ 10.50 (br s, 1H), 8.11-8.06 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.30 

(s, 1H), 6.89 (s, 1H), 6.51 (s, 1H), 6.14 (s, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 171.1, 

154.0, 135.8, 127.0, 126.4, 126.0, 124.7 (q, J = 284.6 Hz), 124.1, 122.6, 120.3, 109.3, 108.6, 76.5 (q, J 

= 31.2 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -78.2 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd 

for C13H9F3N2NaOS 321.0285; Found 321.0295.

 (R)-1-(Benzo[d]thiazol-2-yl)-1-(3,5-dimethyl-1H-pyrrol-2-yl)-2,2,2-trifluoroethan-1-ol (3ao). The 

product was prepared according to the general procedure with minor modification (5 mol% VII & -20 

oC). White solid, m.p. 123-125 oC, 58.6 mg, 84% yield. [α]D
10: -81.2 (c = 0.51, acetone). The 

enantioselectivity was determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-

propanol = 90:10, flow rate 1.0 mL/min, detection at 254 nm, 35 oC): t1 = 6.1 min (major), t2 = 6.7 min 

(minor), 76% ee. 1H NMR (400 MHz, d6-acetone) δ 9.88 (br s, 1H), 8.10 (d, J = 8.0 Hz, 2H), 7.58 (t, J 

= 7.2 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.06 (s, 1H), 5.65 (s, 1H), 2.19 (s, 3H) 1.97 (s, 3H) ppm. 

13C{1H} NMR (100 MHz, d6-acetone) δ 172.5, 153.8, 135.9, 128.2, 127.0, 126.5, 125.2 (q, J = 286.6 

Hz), 124.2, 122.6, 120.0, 119.0, 110.8, 76.9 (q, J = 31.9 Hz), 12.6, 12.2 ppm. 19F NMR (376.5 MHz, d6-

acetone) δ -77.2 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C15H13F3N2NaOS 349.0598; Found 

349.0656.

(R)-2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(6-methoxybenzo[d]thiazol-2-yl)ethan-1-ol (3ba). White 

solid, m.p. 155-156 oC, 75.1 mg, 99% yield. [α]D
10: -7.0 (c = 0.51, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 10.5 min (minor), t2 = 13.1 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.56 (br s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.68 (s, 1H), 7.62 (d, J = 8.0 Hz, 
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1H), 7.57 (s, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H), 6.94 (t, J = 7.2 Hz, 2H), 6.89 (s, 1H), 

3.83 (s, 3H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 169.2, 158.7, 148.2, 137.6, 137.4, 126.2, 

125.5 (q, J = 285.2 Hz), 125.4, 124.5, 122.4, 121.3, 120.1, 116.4, 112.2, 111.9, 104.5, 77.4 (q, J = 30.4 

Hz), 55.8 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.7 ppm. HRMS (ESI) m/z: [M + H]+ Calcd for 

C18H14F3N2O2S 379.0728; Found 379.0730.

(R)-1-(6-Bromobenzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(1H-indol-3-yl)ethan-1-ol (3ca). White solid, 

m.p. 203-204 oC, 84.8 mg, 99% yield. [α]D
10: -13.5 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 8.8 min (minor), t2 = 10.8 min (major), 97% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.61 (br s, 1H), 8.32 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.73 (s, 1H), 7.66 (t, J 

= 8.0 Hz, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.08 (s, 1H), 6.98 (t, J = 7.6 Hz, 1H) 

ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 173.4, 153.0, 138.0, 137.5, 130.2, 126.2, 125.6, 125.5 (q, 

J = 285.4 Hz), 125.5, 125.2, 122.6, 121.3, 120.3, 119.4, 112.3, 111.5, 78.0 (q, J = 30.4 Hz) ppm. 19F 

NMR (376.5 MHz, d6-acetone) δ -76.4 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for 

C17H10BrF3N2NaO2S 450.9527; Found 450.9526.

(R)-2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(6-nitrobenzo[d]thiazol-2-yl)ethan-1-ol (3da). Yellow solid, 

m.p. 158-160 oC, 78.0 mg, 99% yield. [α]D
10: -2.9 (c = 0.51, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 11.6 min (minor), t2 = 14.6 min (major), 96% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.62 (br s, 1H), 9.09 (s, 1H), 8.34 (d, J = 9.2 Hz, 1H), 8.15 (d, J = 8.8 Hz, 

1H), 7.72 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.09 (t, J = 7.6 Hz, 1H), 

6.95 (t, J = 7.2 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, d6-acetone) δ 178.9, 157.6, 145.9, 137.4, 136.5, 

126.0, 125.6, 125.3 (q, J = 285.3 Hz), 124.5, 122.6, 122.0, 121.1, 120.3, 119.5, 112.3, 111.0, 78.3 (q, J 

= 30.8 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -76.3 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd 

for C17H10F3N3NaO3S 416.0293; Found 416.0287.
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(R)-1-(5-Bromobenzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(1H-indol-3-yl)ethan-1-ol (3ea). White solid, 

m.p. 166-167 oC, 85.0 mg, 99% yield. [α]D
10: -101.1 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 9.3 min (minor), t2 = 11.9 min (major), 98% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.66 (br s, 1H), 8.24 (s, 1H), 8.09 (d, J = 6.8 Hz, 1H), 7.77 (s, 1H), 7.66 (dd, 

J1 = 8.0 Hz, J2 = 14.4 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.17-7.14 (m, 2H), 7.02 (t, J = 7.6 Hz, 1H) ppm. 

13C{1H} NMR (100 MHz, d6-acetone) δ 174.6, 155.2, 137.4, 135.2, 129.2, 126.6, 126.1, 125.6, 125.4 (q, 

J = 285.4 Hz), 124.2, 122.6, 121.2, 120.3, 119.9, 112.3, 111.5, 78.0 (q, J = 30.6 Hz) ppm. 19F NMR 

(376.5 MHz, d6-acetone) δ -76.4 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C17H10BrF3N2NaO2S 

450.9527; Found 450.9526.

 (R)-2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-(thiazol-2-yl)ethan-1-ol (3fa). White solid, m.p. 108-110 oC, 

59.2 mg, 99% yield. [α]D
10: -6.0 (c = 0.51, acetone). The enantioselectivity was determined by HPLC 

analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 90:10, flow rate 1.0 mL/min, detection 

at 254 nm, 35 oC): t1 = 16.2 min (minor), t2 = 17.3 min (major), 97% ee. 1H NMR (400 MHz, d6-

acetone) δ 10.51 (br s, 1H), 7.81 (d, J = 1.6 Hz, 1H), 7.66 (d, J = 1.6 Hz, 1H), 7.61 (s, 1H), 7.54 (d, J = 

8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.73 (s, 1H) ppm. 

13C{1H} NMR (100 MHz, d6-acetone) δ 171.1, 143.3, 137.4, 126.2, 125.5 (q, J = 285.1 Hz), 125.4, 

121.8, 121.4, 121.2, 120.0, 112.2, 112.1, 77.56 (q, J = 30.5 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) 

δ -76.9 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C13H9F3N2NaOS 321.0285; Found 321.0326.

 (S)-1-(Benzo[d]oxazol-2-yl)-2,2,2-trifluoro-1-(1H-indol-3-yl)ethan-1-ol (3ga). The product was 

prepared according to the general procedure with minor modification (5 mol% VII). White solid, m.p. 

215-216 oC, 65.9 mg, 99% yield. [α]D
10: -43.8 (c = 0.51, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 11.6 min (major), t2 = 14.9 min (minor), 87% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.62 (br s, 1H), 7.82-7.81 (m, 1H), 7.65 (s, 1H), 7.61-7.58 (m, 2H), 7.45 (d, J 

= 8.0 Hz, 1H), 7.42-7.40 (m, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.96 (t, J = 8.0 Hz, 1H), 6.86 (s, 1H) ppm. 
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13C{1H} NMR (100 MHz, d6-acetone) δ 163.1, 151.3, 141.0, 137.4, 126.7, 126.1, 125.7, 125.5, 125.3 (q, 

J = 284.3 Hz), 122.5, 121.1, 120.8, 120.3, 112.3, 111.5, 110.5, 75.6 (q, J = 31.7 Hz) ppm. 19F NMR 

(376.5 MHz, d6-acetone) δ -77.3 ppm. HRMS (ESI) m/z: [M + Na]+ Calcd for C17H11F3N2NaO2 

355.0670; Found 355.0725.

(R)-1-(Benzo[d]thiazol-2-yl)-2,2,3,3,3-pentafluoro-1-(1H-indol-3-yl)propan-1-ol (3ha). White solid, 

m.p. 147-148 oC, 85.0 mg, 99% yield. [α]D
10: -45.1 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLCanalysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 85:15, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 10.9 min (minor), t2 = 11.8 min (major), 94% ee. 1H NMR 

(400 MHz, d6-acetone) δ 10.63 (s, 1H), 8.05 (t, J = 7.6 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.84 (d, J =1.0 

Hz, 1H), 7.52-7.40 (m, 3H), 7.20 (s, 1H), 7.13 (t, J = 9.6 Hz, 1H), 7.03 (t, J = 9.6 Hz, 1H) ppm. 13C{1H} 

NMR (100 MHz, d6-acetone) δ 172.3, 153.6, 137.1, 135.6, 126.4, 126.0, 125.8, 125.7, 123.6, 122.1, 

121.49, 121.46, 119.82, 119.80 (qt, J1 = 286.8 Hz, J2 = 36.1 Hz), 114.5 (tq, J1 = 263.6 Hz, J2 = 34.2 Hz), 

111.9, 111.2, 78.1 (t, J = 25.1 Hz) ppm. 19F NMR (376.5 MHz, d6-acetone) δ -78.0 (s, 3F), -117.5 (d, J 

= 274.5 Hz, 1F), -119.1 (d, J = 274.8 Hz, 1F) ppm. HRMS (ESI) m/z: [M]+ Calcd for C18H11F5N2OS 

398.0512; Found 398.0498.

The Gram-Scale Preparation of 3aa. To a solution of trifluoromethyl ketone hydrate 1 (748 mg, 3.0 

mmol), and catalyst VII (4.3 mg, 0.006 mmol, 0.2 mol%) in dichloromethane (30.0 mL) was added 5 Å 

MS (1.80 g) and indole (527 mg, 0.30 mmol), and the reaction mixture was stirred at room temperature 

for 19 h. Upon completion (monitored by TLC), the mixture was filtered through celite, and washed 

with dichloromethane (3 × 10 mL). The filtrate was concentrated under reduced pressure, and the 

residue was purified by silica gel column chromatography to afford the desired product 3aa as a white 

solid (1.04 g, 99% yield, 93% ee). The pure enantiomer was obtained by a simple recrystallization from 

petroleum ether/ethyl acetate (5:1) as a white solid (846 mg, 81% yield, >99% ee). m.p. 134-135 oC. 

[α]D
10: −56.8 (c = 0.50, acetone). The enantioselectivity was determined by HPLC analysis (Daicel 

Chiralpak AD-H column, n-hexane/i-propanol = 80:20, flow rate 1.0 mL/min, detection at 254 nm, 35 

oC): t = 11.6 min (major), >99% ee.
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(R)-2-(2,2,2-Trifluoro-1-(1H-indol-3-yl)-1-((trimethylsilyl)oxy)ethyl)benzo[d]thiazole (4). Under 

N2, to a stirring suspension of NaH (24.0 mg, 0.60 mmol, 60% wt) in dry THF (4 mL) at 0 oC was added 

dropwise 3aa (104.5 mg, 0.30 mmol, >99% ee) in dry THF (2.0 mL), and the mixture was stirred at 

room temperature for 1 h. Then TMSCl (0.15 mL, 1.20 mmol) was added dropwise, and the mixture 

was stirred for another 3 h. Upon completion, the reaction was quenched with water (1 mL) and 

saturated NH4Cl aqueous solution (5 mL) at 0 oC. The mixture was extracted with EtOAc (15 mL × 2), 

and the combined organic layers were washed with brine (10 mL), dried over anhydrous Na2SO4, and 

concentrated under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether/ethyl acetate = 10:1 to 5:1) to afford the desired product 4 as a white solid, 

m.p. 195-197 oC, 109.5 mg, 87% yield. [α]D
10: +20.2 (c = 0.50, acetone). The enantioselectivity was 

determined by HPLC analysis (Daicel Chiralpak AD-H column, n-hexane/i-propanol = 98:2, flow rate 

1.0 mL/min, detection at 254 nm, 35 oC): t1 = 18.3 min (minor), t2 = 19.9 min (major), >99% ee. 1H 

NMR (400 MHz, CDCl3) δ 9.82 (s, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.46-7.38 (m, 

2H), 6.96 (d, J = 7.6 Hz, 2H), 6.88 (t, J = 7.2 Hz, 1H), 6.83-6.76 (m, 2H), 0.02 (s, 9H) ppm. 13C{1H} 

NMR (100 MHz, CDCl3) δ 174.6, 153.4, 136.4, 135.7, 126.1, 125.5, 125.2, 125.0, 124.1 (q, J = 286.4 

Hz), 123.2, 122.1, 121.8, 119.7, 119.5, 111.7, 109.9, 79.4 (q, J = 30.4 Hz), 0.9 ppm. 19F NMR (376.5 

MHz, CDCl3) δ -74.2 ppm. HRMS (ESI) m/z: [M]+ Calcd for C20H19F3N2OSSi 420.0939; Found 

420.0938.

(R)-1-(Benzo[d]thiazol-2-yl)-2,2,2-trifluoro-1-(1-(prop-2-yn-1-yl)-1H-indol-3-yl)ethanol (5). 

Under N2, to a stirring suspension of NaH (18.0 mg, 0.45 mmol, 60% wt) in dry THF (4 mL) at 0 oC 

was added dropwise 4 (63.0 mg, 0.15 mmol) in dry THF (2 mL), and  the mixture was stirred at room 

temperature for 1 h. Then 3-bromo-1-propyne (53.5 mg, 0.45 mmol) was added dropwise, and the 

resulting reaction mixture was spontaneously warmed to room temperature and stirred for another 3 h. 

Upon completion, the reaction was quenched with water (5 mL) at 0 oC, and stirred for 2 h at room 

temperature. The mixture was extracted with EtOAc (10 mL × 2), and the combined organic layers were 

washed with brine (10 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. 
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The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 

10:1 to 5:1) to afford the desired product 5 as colorless oil, 52.0 mg, 90% yield. [α]D
10: -8.7 (c = 0.50, 

acetone). The enantioselectivity was determined by HPLC analysis (Daicel Chiralpak OD-H column, n-

hexane/i-propanol = 95:5, flow rate 1.0 mL/min, detection at 254 nm, 35 oC): t1 = 19.6 min (minor), t2 = 

24.0 min (major), >99% ee. 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 

1H), 7.61 (s, 1H), 7.59-7.52 (m, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.08 (t, J = 3.6 

Hz, 1H), 5.19 (s, 1H), 4.89 (d, J = 2.4 Hz, 2H), 2.47 (t, J = 2.4 Hz, 1H) ppm. 13C{1H} NMR (100 MHz, 

CDCl3) δ 169.2, 151.6, 136.5, 136.2, 126.7 (q, J = 2.7 Hz), 126.4, 126.2, 125.9, 124.1 (q, J = 285.1 Hz), 

123.7, 122.8, 121.8, 120.9, 120.8, 110.5, 109.8, 77.0 (q, J = 31.1 Hz), 76.9, 74.3, 36.1 ppm. 19F NMR 

(376.5 MHz, CDCl3) δ -76.3 ppm. HRMS (ESI) m/z: [M]+ Calcd for C20H13F3N2OS 386.0701; Found 

386.0697. 

2,2,2-Trifluoro-1-(1H-indol-3-yl)ethanone (6). The mixture of 4 (168.2 mg, 0.40 mmol), 4 Å MS 

(750 mg), and anhydrous dichloromethane (5.0 mL) was stirred at room temperature for 10 min, and 

then Me3OBF4 (184.9 mg, 1.25 mmol) was added. After stirred for 2 h, another batch of Me3OBF4 

(184.9 mg, 1.25 mmol) was added. Upon completion (monitored by TLC), the reaction was 

concentrated without filtering off the molecular sieves to give the crude benzothiazolium salt. It was 

redissolved in MeOH (5.0 mL), and cooled to 0 °C. Then NaBH4 (1.25 mmol) was added in portions. 

Upon completion (monitored by TLC), the mixture was diluted with acetone (5 mL), filtered through a 

pad of Celite, and concentrated to give the crude benzothiazoline. To a vigorously stirred solution of the 

crude benzothiazoline in CH2Cl2 (1.5 mL) and CH3CN (7.5 mL) were added H2O (0.90 mL) and AgNO3 

(254.8 mg, 1.5 mmol). Upon completion (monitored by TLC), and the reaction was quenched with 1 M 

phosphate buffer (0.5 mL, pH = 7). After stirred for 15 min, the reaction mixture was diluted with 1 M 

phosphate buffer (12.5 mL, pH 7) and partially concentrated to remove CH3CN. The suspension was 

extracted with EtOAc (15 mL × 2), and the combined organic layers were dried over Na2SO4, filtered 

through a pad of Celite, and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1 to 5:1) to afford the  desired 
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product 6 as a yellow solid, m.p. 210-211 oC, 70.0 mg, 76% yield. 1H NMR (400 MHz, d6-acetone) δ 

11.68 (s, 1H), 8.42 (s, 1H), 8.32 (d, J = 7.2 Hz, 1H), 7.63 (t, J = 5.6 Hz, 1H), 7.36 (t, J = 2.8 Hz, 2H) 

ppm. 13C{1H} NMR (100 MHz, Acetone) δ 175.3 (q, J = 34.1 Hz), 137.6, 137.2 (q, J = 5.0 Hz), 127.0, 

125.2, 124.2, 122.4, 118.0 (q, J = 289.2 Hz), 113.4, 110.6 ppm. 19F NMR (376.5 MHz, d6-acetone) δ -

72.9 ppm. 
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