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Abstract: Diarylamines and arylalkylamines were synthesized in
high yields from 2-chlorophenols and amines, activated by chloro-
acetyl chloride under microwave irradiation (20–60 min) or con-
ventional thermal conditions (3–6 h). The key transformation is
believed to proceed via Smiles rearrangement by initial O-alkyla-
tion and subsequent cyclization.
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Conventional C–N bond-forming reactions are usually
performed via the cross-linking of heteroaryl halides with
amines, assisted by metal catalysts, and have importance
both in industry and academia.1 Advances have been
made in the development of palladium catalysts, such as
1–5, which have been shown to be efficient ligands for C–
N cross-linking reactions (Figure 1).2–22 Recently, a C–N
bond-forming reaction specifically for the synthesis of N-
arylanilines was developed, proceeding by a two-step se-
quence of iridium-catalyzed borylation and copper-cata-
lyzed coupling with amines.23 Amination of aryltriflate
(ArOTf) was also achieved via the C–N cross-linking re-
action using a palladium catalyst.24 Processes using other
metal catalysts have been developed but notable limita-
tions remain. For example, catalysts are expensive and
difficult to prepare and the N-arylation reaction of nitro-
gen heterocycles is limited in scope with respect to both
coupling partners.

Besides the palladium and copper processes, Smiles rear-
rangement is a valuable alternative method for C–N bond
forming to prepare N-arylamines. TDA-1 [tris(3,6-dioxa-

heptylamine)] is used as an efficient solid–liquid phase-
transfer catalyst, which activated N-alkylation of chlori-
nated phenoxyacetamides in the presence of KOH via
Smiles rearrangement, while the substrates were limited
in trichlorophenol.25 Smiles rearrangement of substituted
aryloxyacetamides in which oxygen and nitrogen are sep-
arated by COCH2 group to N-alkyl- and N-arylamines has
been successful at EtONa/EtOH or NaH/DMF conditions,
but only for aryloxy ring which carries weak or no elec-
tron-withdrawing group.26 Based on this method, Acemo-
glu found that K2CO3/i-PrOH followed by MeONa/
MeOH treatment avoided the major side reactions to form
N-arylamines.27 Similarly, the Smiles rearrangement was
involved in the preparation of alkylarylamines containing
a nitro group28 and N-arylamines with a nitro moiety.29

In spite of these, C–N bond formation still remains a syn-
thetic challenge, specifically considering the diversity of
diarylamines and arylalkylamines. Herein, we report a di-
rect and facile approach that shows excellent reactivity
and stability for C–N formation reactions and overcomes
many restrictions compared with conventional, metal-cat-
alyzed cross-coupling reactions. The method enables am-
ination of commercially available phenols via a one-pot
reaction through Smiles rearrangement. Herein, we
present preliminary results of the protocol.

First, we explored the coupling of 2-chlorophenol and 4-
methoxyaniline. Various base and solvent systems were
investigated for the reaction. The results showed that
K2CO3/MeCN and K2CO3/DMF failed to produce the tar-
get transformation. During the course of our optimization
studies we found that treatment of amines, chloroacetyl
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chloride, and phenols in Cs2CO3/DMF at 120 °C under
conventional heating for 4 hours led to the exclusive for-
mation of 2-chloro-N-(4-methoxyphenyl)aniline at 90%
yield (Table 1, entry 5). This system was also suitable for
the amination of phenol at 150 °C, obtaining the same
yield but requiring a shorter time for completion.

To expand the scope of this methodology, we then exam-
ined the coupling of a variety of phenols, 2-chlorophenol,
4-methyl-2-chlorophenol, 5-methyl-2-chlorophenol, and
4-fluoro-2-chlorophenol, and a set of amines, which in-
cluded various alkyl- and aryl-amines containing either
methyl or methoxy groups (Table 1). Generally, the major

products formed in these reactions are diarylamines 8, ex-
cept when alkylamines are used as reaction substrates.
According to our previous study,30 when PhCH2NH2 (7a)
and PhCH2CH2NH2 (7b), which contain the -(CH2)n- moi-
ety, were used as reactants, the reaction produced to give
the corresponding substituted arylalkylamines as minor
products (38–48%), while 4-benzyl-2H-benzo[b][1,4]ox-
azin-3(4H)-one (9a), 4-phenethyl-2H-benzo[b][1,4]ox-
azin-3(4H)-one (9b),36 and 7-methyl-4-phenethyl-2H-
benzo[b][1,4]oxazin-3(4H)-one (9f) were the major prod-
ucts (entries 1, 2, and 6 in Table 1), which were isolated
and identified by their spectral properties.

Table 1 One-Pot Synthesis of Diarylamine and Arylalkylamine Derivatives

Entry Phenol Amine Product Yield (%)a

1 6a 7a 8a 38

2 6a 7b 8b 48

3 6a 7c 8c 92

4 6a 7d 8d 94

5 6a 7e 8e 90

6 6b 7b 8f 45

7 6b 7c 8g 92

8 6b 7d 8h 90

9 6b 7e 8i 88
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All the reactions proceeded smoothly with substituted 2-
chlorophenol 6, chloroacetyl chloride and aryl/arylalkyl-
amine 7 at a ratio of 1.1:1.2:1 in the presence of Cs2CO3

in dry DMF. This mixture underwent a fast 1:1:1 addition
reaction at 120 °C under microwave irradiation for 20–60
minutes or conventional thermal conditions for 3–6 hours
to produce the corresponding diarylamines or arylalkyl-
amines 8.32 The results were excellent in terms of yield for
diarylamine formation (83–94%) and reasonable (38–
48%) for arylalkylamines (8a, 8b, and 8f). The spectral
and physical data (mp, IR, 1H NMR, 13C NMR, MS) of 8
were in agreement with the predicted structures. To inves-
tigate the effect of the electron-withdrawing group like ni-
tro group, experiments were conducted on 4-nitroaniline
with 4-methyl-2-chlorophenol and 5-methyl-2-chlorophe-
nol, respectively. Results showed that the reactions gave
very complex products.

A proposed explanation for the results is given in
Scheme 1. The O-alkylated product 11 was easily formed
by nucleophilic attack of compound 6b on amide 10.34

The latter was simply obtained by mixing amine with
chloroacetyl chloride. The next step was the conversion of
aryloxyacetamide 1135 to intermediate 12 via Smiles rear-

rangement, replacing the oxygen atom on the benzene
ring with a nitrogen atom. Finally, hydrolysis of com-
pound 13 led to formation of product 8l33 under basic con-
ditions.

For alkylamines as substrates, there were other competi-
tion reactions. One was that the intermediate 16 under-
went intramolecular proton shift to give N-(2-
chlorophenyl)-2-hydroxy-N-phenethylacetamide (17),
which subsequently gave 2-chloro-N-phenethylaniline
(8b) as the product. The other reaction was that the alkox-
ide anion attacked the carbon that was bonded to chlorine
atom to form a cyclization product as benzo[b][1,4]ox-
azin-3(4H)-one 9b (Scheme 2). In the case of 7a and 7b,
formation of benzo[b][1,4]oxazin-3(4H)-ones was more
favorable. As is seen in Table 1, the yields of 8a, 8b, and
8f were lower. To the best of our knowledge, this is the
first example describing the synthesis of substituted diaryl-
amines or benzylalkylamines by one-pot reaction of
amine, chloroacetyl chloride, and phenols in the absence
of any transient metal catalyst via Smiles rearrangement,
even though Smiles rearrangement was developed more
than 69 years ago.31

10 6c 7c 8j 93

11 6c 7d 8k 86

12 6c 7e 8l 93

13 6d 7c 8m 94

14 6d 7d 8n 90

15 6d 7e 8o 90

a Yield of isolated product. Reaction conditions: phenols (1.1 mmol), amines (1.0 mmol), chloroacetyl chloride (1.2 mmol), Cs2CO3 (3.2 mmol), 
DMF (25 mL), 120 °C, under microwave irradiation.
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In summary, we have reported an operationally simple
and economical approach to the synthesis of diarylamines
from phenols and amines via Smiles rearrangement. Fur-
ther studies are under way to examine more thoroughly
the effect of chlorine atom on benzene ring and expand the
scope of diverse substitutions for this reaction system.
Our new method holds great promise for industrial pro-
cesses because of its operational simplicity and lower
cost, and because it avoids the use of palladium or iridium.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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