A Facile Method for the Stereoselective Preparation of (1*Z*,3*E*)-Dienyl Ethers via 1,4-Elimination of 1,4-Dialkoxy-(2*Z*)-alkenes with *n*-Butyllithium

Eiji Tayama,* Sayaka Sugai

Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan Fax +81(25)2627741; E-mail: tayama@gs.niigata-u.ac.jp Received 26 December 2005

Abstract: Treatment of 1-alkoxy-4-methoxy-(2*Z*)-alkenes or 1-siloxy-4-methoxy-(2*Z*)-alkenes with *n*-butyllithium in diethyl ether is shown to afford the corresponding (1Z,3E)-dienyl, alkyl or silyl ethers, respectively, in high stereoselectivity via a facile 1,4-elimination. The scope and the regio- and stereochemical features of the synthetic method are described.

Key words: 1,4-eliminations, dienyl ethers, dienyl acetals, stereo-selective synthesis, precoordinations

In the course of studies on the Wittig¹ and retro-Brook^{1a} rearrangement of allylic ether systems, it occurred to us that when 4-methoxy-(2Z)-butenyl *tert*-butyldimethyl-silyl ether (**1a**) was treated with *n*-butyllithium (1.5 equiv) in diethyl ether, the (1Z,3)-butadienyl silyl ether (**2a**) was formed in 70% yield as a single stereoisomer without any concomitant formation of possible by-products such as the other dienyl ether **2a**', the [1,2] retro-Brook product **3a**, and the [1,2] Wittig product **4a** (Scheme 1).

Prompted by this rather unexpected observation, we decided to investigate the scope and limitation of this type of 1,3-dienyl ether forming reaction in view of the synthetic potentiality of 1,3-dienyl ethers, e.g., as dienolate equivalents for aldol-type² and Ferrier-type reactions³ or as diene components for the Diels–Alder reactions.⁴ While several 1,3-dienyl ethers have been prepared via O-silylation or O-alkylation of the dienolates derived from α,β -unsaturated carbonyl compounds, the stereoselectivities of this conventional method are generally unsatisfactory and its scope remains limited in terms of the kind of introducible *O*-alkyl substituents.^{5–7} Described herein are a facile and stereoselective synthetic method for various types of (1*Z*,3*E*)-dienyl ethers via 1,4-elimination⁸ of 1-siloxy-4-

SYNLETT 2006, No. 6, pp 0849–0852 Advanced online publication: 14.03.2006 DOI: 10.1055/s-2006-939053; Art ID: U32105ST © Georg Thieme Verlag Stuttgart · New York methoxy- and 1,4-dialkoxy-(2Z)-alkenes with *n*-butyllithium and the scope and stereochemical feature thereof (Scheme 2).

Scheme 2

As already mentioned, we found that silvl ether **1a** was treated with *n*-BuLi in diethyl ether at -20 °C for two hours gave the (1Z,3)-dienyl silyl ether 2a as a single stereoisomer in 70% yield (Table 1, entry 1). The Z-geometry was assigned by ¹H NMR assay ($J_{1H,2H} = 5.9$ Hz). Apparently, this reaction can be considered as a 1.4- (or vinylogous 1,2-) elimination process. Of special interest is that the initial deprotonation occurs on the siloxy-bearing methylene in preference to the methoxy-bearing methylene to liberate methanol. To examine the stereoselectivity on the olefinic bond formed at the 3-position, 4-butyl-substituted substrate $(\mathbf{1b}, \mathbf{R} = n - \mathbf{Bu})^9$ was reacted with *n*-BuLi under the same conditions. Interestingly enough, the dienyl silyl ether 2b was obtained almost exclusively as the 1Z,3E isomer in 88% yield (entry 2).¹⁰ The stereochemistry was determined by ¹H NMR assay ($J_{1H,2H} = 5.9$ Hz and $J_{3H,4H} = 15.6$ Hz). Equally high stereoselectivities were observed in similar reactions of 4-methoxy-substituted substrate (1c, entry 3). To further expand the scope of the present 1,3-dienvl ether forming reaction, we prepared a series of O-protected ethers $1d-h^{11}$ and carried out their reactions with *n*-butyllithium under the same conditions (entries 4–8). Significantly, the reaction of the EE-protected substrate 1d gave the (1Z, 3E)-dienyl ether 2d in a high stereoselectivity, while the reactions of other O-protected substrates also showed a high 1Z-stereoselectivity. Thus, these O-protected 1,3-dienyl ethers might find unique synthetic applications, since easy deprotection after synthetic transformations should impart a hydroxyl functionality to the products. Interestingly, this reaction is applicable to the preparation of the 1,3,5-trienyl ether. For instance, a similar reaction of **1i** afforded the (1Z, 3E, 5)trienyl ether 2i in 53% yield as depicted in Scheme 3.

One remarkable feature of the present dienyl ether forming reaction is that various types of (1Z,3)- and (1Z,3E)dienyl ethers can be obtained in high stereoselectivities.

The Reactions of Ether 1 with n-BuLi¹² Table 1

Entry	Substrate ^a	Temp (°C)	Time (h)	Product	Yield (%) ^b	(1Z, 3E)/other isomers ^c
1	$1a (P = SiMe_2 t - Bu, R = H)$	-20	2	2a	70 ^d	>98:2
2	1b (P = SiMe ₂ <i>t</i> -Bu, R = n -Bu)	-20	4	2b	88	>98:2
3	$\mathbf{1c} (P = SiMe_2 t - Bu, R = OCH_3)$	-40	2	2c	96 ^d	>98:2
4	1d (P = EE, R = n-Bu)	-20	2.5	2d	89	93:7
5	1e (P = MOM, R = <i>n</i> -Bu)	0	3.5	2e	66	94:6
6	1f (P = BOM, R = n -Bu)	-20	3	2f	74	97:3
7	$\mathbf{1g} (P = MIP, R = n-Bu)$	0	3	2g	83	>98:2
8	1h (P = THP, R = n -Bu)	0	4	2h	73	90:10

^a EE = 1-ethoxyethyl; MOM = methoxymethyl; BOM = benzyloxymethyl; MIP = methoxyisopropyl; THP = 2-tetrahydropyranyl. ^b Isolated yield of the stereoisomeric mixture.

^c Determined by ¹H NMR analysis.

^d Determined by ¹H NMR assay using mesitylene as an internal standard.

The high stereoselectivity, though its exact origin is unclear at present, might be rationalized as a result of the precoordination of the *n*-butyllithium to the both ether oxygens to form complex A which should be sterically favored over complex **B**. The complex **A** leads to the 1Z,3E isomer and the complex **B** leads to the 1Z,3E or 1Z,3Z isomers (Figure 1).¹³

Figure 1

In fact, when a similar reaction of 1d was carried out in THF which might suppress the aforementioned precoordination, the dienyl ether was obtained as a 1:1 mixture of the 1E,3E and 1E,3Z isomer, together with 4% of 1Z,3E isomer in 81% combined yield, respectively (Scheme 4). The observed 1Z-to-1E changeover is surprising, while its mechanistic origin is presently unclear.¹⁴ More interestingly, a similar reaction of the 2E counterpart of 1d in diethyl ether, wherein the aforementioned bidentate precoordination is impossible, was found to give a 1.5:1 mixture of the 1Z,3E and 1Z,3Z isomer, along with 3% of other isomers in 60% combined yield (Scheme 5). In this *E*-substrate case, switch of the solvent to THF provided nearly identical stereoisomeric ratios.15

In summary, we have demonstrated that simple treatment of 1-siloxy-4-methoxy- and 1-alkoxy-4-methoxy-(2Z)alkenes with *n*-butyllithium in diethyl ether affords the corresponding 1,3-dienyl ethers as the 1Z,3E-form in high stereoselectivity. Furthermore, the interesting regio- and stereochemical features of the dienvl ether forming 1,4elimination reaction are revealed. The synthetic application of the conjugated dienyl ethers thus obtained is underway in our laboratory.

References and Notes

(1) For reviews, see: (a) Tomooka, K. In The Chemistry of Organolithium Compounds, Vol. 2; Rappoport, Z.; Marek, I., Eds.; John Wiley and Sons Ltd.: Chichester, 2004, 749-828. (b) Clayden, J. In Organolithiums: Selectivity for Synthesis; Baldwin, J. E.; Williams, R. M., Eds.; Pergamon: Manchester, 2002, Chap. 8. (c) Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann./Recl. 1997, 1275. (d) Nakai, T.; Mikami, K. Org. React. 1994, 46, 105. (e) Brückner, R. In Comprehensive Organic Synthesis, Vol. 6; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991, Chap. 4.6.

- (2) (a) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. *Chem. Rev.* 2000, 100, 1929. (b) Ishida, A.; Mukaiyama, T. *Bull. Chem. Soc. Jpn.* 1977, 50, 1161.
- (3) (a) Inui, M.; Hosokawa, S.; Nakazaki, A.; Kobayashi, S. *Tetrahedron Lett.* 2005, 46, 3245. (b) Suzuki, T.; Inui, M.; Hosokawa, S.; Kobayashi, S. *Tetrahedron Lett.* 2003, 44, 3713.
- (4) Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807.
- (5) For a review of 1,3-dienyl silyl ethers (silyl dienol ethers), see: Brownbridge, P. *Synthesis* **1983**, 85.
- Previous preparation of 1,3-dienyl silyl ethers: (a) Choi, J.; (6)Imai, E.; Mihara, M.; Oderaotoshi, Y.; Minakata, S.; Komatsu, M. J. Org. Chem. 2003, 68, 6164. (b) Janey, J. M.; Iwama, T.; Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 2000, 65, 9059. (c) Moreno, M. J. S. M.; Martins, R. M. L. M.; Melo, M. L. S.; Neves, A. S. C. Chem. Lett. 1997, 529. (d) Tominaga, Y.; Kamio, C.; Hosomi, A. Chem. Lett. 1989, 1761. (e) Iqbal, J.; Khan, M. A. Synth. Commun. 1989, 19, 515. (f) Cazeau, P.; Duboudin, F.; Moulines, F.; Babot, O.; Dunogues, J. Tetrahedron 1987, 43, 2089. (g) Colvin, E. W.; Thom, I. G. Tetrahedron 1986, 42, 3137. (h) Casey, C. P.; Jones, C. R.; Tukada, H. J. Org. Chem. 1981, 46, 2089. (i) Hirai, K.; Suzuki, H.; Morooka, Y.; Ikawa, T. Tetrahedron Lett. 1980, 21, 3413. (j) Miller, R. D.; McKean, D. R. Synthesis 1979, 730. (k) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1969, 34.2324.
- (7) Previous preparation of alkyl 1,3-dienyl ethers: (a) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1983, 48, 448.
 (b) Hiranuma, H.; Miller, S. I. J. Org. Chem. 1982, 47, 5083. (c) Dowd, P.; Weber, W. J. Org. Chem. 1982, 47, 4774. (d) Kluge, A. F.; Cloudsdale, I. S. J. Org. Chem. 1979, 44, 4847. (e) Earnshaw, C.; Wallis, C. J.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1979, 3099.
- (8) A similar type of 1,4-elimination reaction has been reported using alkenyl acetals: Canepa, C.; Prandi, C.; Sacchi, L.; Venturello, P. J. Chem. Soc., Perkin Trans. 1 1993, 1875.
- (9) Prepared in three steps: (i) *t*-BuMe₂SiOCH₂C≡CH, *n*-BuLi, THF, -78 °C then *n*-BuCHO, -78 °C to r.t.; (ii) NaH, MeI, THF, 0 °C to r.t.; (iii) H₂ (1 atm), 5% Lindlar cat., quinoline, MeOH, r.t.
- (10) All stereoisomers were identified by ¹H NMR comparisons of the authentic samples prepared from $(EtO)_2P(O)CH_2OP$ via the literature procedure (ref. 7d).
- (11) Prepared from POCH₂C≡CH according to the same threestep procedure as described for **1b** (ref. 9).
- (12) Typical Procedure for the Preparation of 1,3-Dienyl Ethers 2

To a solution of 1 (1.0 equiv, 0.25 M) in Et₂O was added a 1.6 M *n*-BuLi solution in *n*-hexane (1.5 equiv) at -40 °C to 0 °C and the mixture was stirred for 2–4 h at the same temperature. The resulting mixture was quenched with H₂O and extracted with Et₂O. The combined extract was washed with brine, dried over NaSO₄ and concentrated. The residue was purified by chromatography on silica gel to afford the corresponding 1,3-dienyl ether **2**.

Selected Spectroscopic Data

(2Z)-1-(*tert*-Butyldimethylsilyloxy)-4-methoxy-2-butene (1a)

Colorless oil. ¹H NMR (270 MHz, CDCl₃): $\delta = 5.70$ (1 H, dtt, J = 11.1, 5.9, 1.4 Hz, 2- or 3-H), 5.57 (1 H, dtt, J = 11.1, 5.9, 1.4 Hz, 2- or 3-H), 4.24 (1 H, dd, J = 5.9, 1.4 Hz, 1-H), 3.99 (1 H, dd, J = 5.9, 1.4 Hz, 4-H), 3.33 (3 H, s, OCH₃), 0.90 [9 H, s, SiC(CH₃)₃], 0.07 [6 H, s, Si(CH₃)₂]. ¹³C NMR (68 MHz, CDCl₃): $\delta = 132.6$, 126.7, 68.3, 59.5, 58.0, 26.0, 18.4, -5.0. IR (film): 3020, 2948, 2924, 2884, 2852, 1475,

1470, 1406, 1362, 1334, 1254, 1190, 1092, 1006, 956, 912, 838, 776 cm⁻¹. Anal. Calcd for $C_{11}H_{24}O_2Si: C, 61.05; H,$ 11.18. Found: C, 61.17; H, 11.48.

(2Z)-1-(Benzyloxymethoxy)-4-methoxy-2-octene (1f) Colorless oil. ¹H NMR (270 MHz, CDCl₃): δ = 7.40–7.27 (5 H, m, Ph), 5.82–5.72 (1 H, m, 2-H), 5.49–5.39 (1 H, m, 3-H), 4.78 (2 H, s, OCH₂O), 4.62 (2 H, s, OCH₂Ph), 4.27 (1 H, ddd, J = 12.4, 7.3, 1.4 Hz, 1-CH₂), 4.15 (1 H, ddd, J = 12.4, 6.1, 1.4 Hz, 1-CH₂), 3.94–3.85 (1 H, m, 4-H), 3.25 (3 H, s, OCH₃), 1.68–1.52 (1 H, m, 5-CH₂), 1.47–1.18 (5 H, m, 5-, 6-, and 7-CH₂), 0.88 (3 H, t, J = 6.8 Hz, 8-CH₃). ¹³C NMR (68 MHz, CDCl₃): δ = 137.6, 134.2, 128.7, 128.3, 127.7, 127.6, 93.8, 76.6, 69.3, 63.2, 56.1, 35.2, 27.4, 22.7, 14.1. IR (film): 3060, 3024, 2928, 2872, 2816, 1496, 1454, 1402, 1380, 1206, 1190, 1168, 1102, 1048, 962, 958, 736, 698 cm⁻¹. Anal. Calcd for C₁₇H₂₆O₃: C, 73.34; H, 9.41. Found: C, 73.42; H, 9.63.

(1Z)-1-(*tert*-Butyldimethylsilyloxy)-1,3-butadiene (2a)¹⁶ Colorless oil; purified by chromatography on silica gel (hexane–Et₂O = 100:1 to 20:1 as eluent). ¹H NMR (270 MHz, CDCl₃): $\delta = 6.76$ (1 H, ddd, J = 17.3, 10.7, 10.3, 1.1 Hz, 3-H), 6.19 (1 H, ddd, J = 5.9, 1.1, 1.1 Hz, 1-H), 5.20 (1 H, dd, J = 10.7, 5.9 Hz, 2-H), 5.07 (1 H, m, J = 17.3, 2.0 Hz, 4_{cis} -H), 4.89 (1 H, ddd, J = 10.3, 2.0, 1.1 Hz, 4_{trans} -H), 0.94 [9 H, s, SiC(CH₃)₃], 0.16 [6 H, s, Si(CH₃)₂]. ¹³C NMR (68 MHz, CDCl₃): $\delta = 140.4$, 129.8, 112.9, 111.1, 25.7, 18.4, -5.3. IR (film): 3080, 2952, 2928, 2884, 2856, 1642, 1594, 1472, 1438, 1392, 1362, 1254, 1174, 1080, 998, 928, 890, 840, 784 cm⁻¹.

(1*Z*,3*E*)-1-(*tert*-Butyldimethylsilyloxy)-1,3-octadiene (2b) Colorless oil; purified by chromatography on silica gel (hexane–EtOAc = 100:1 as eluent). ¹H NMR (270 MHz, CDCl₃): $\delta = 6.40$ (1 H, ddd, J = 15.6, 10.8, 1.1 Hz, 3-H), 6.09 (1 H, d, J = 5.9 Hz, 1-H), 5.55 (1 H, dt, J = 15.6, 6.8 Hz, 4-H), 5.13 (1 H, dd, J = 10.8, 5.9 Hz, 2-H), 2.14–2.02 (2 H, dt, J = 6.8, 6.8 Hz, 5-CH₂), 1.44–1.24 (4 H, m, 6-CH₂ and 7-CH₂), 0.94 [9 H, s, SiC(CH₃)₃], 0.89 (3 H, t, J = 7.0 Hz, 8-CH₃), 0.15 [6 H, s, Si(CH₃)₂]. ¹³C NMR (68 MHz, CDCl₃): $\delta = 138.2$, 130.9, 122.8, 110.8, 32.7, 31.8, 25.7, 22.4, 18.4, 14.1, –5.2. IR (film): 3028, 2952, 2924, 2852, 1654, 1612, 1470, 1410, 1362, 1254, 1156, 1112, 1050, 1006, 972, 838, 780 cm⁻¹. Anal. Calcd for C₁₄H₂₈OSi: C, 69.93; H, 11.74. Found: C, 69.70; H, 12.03.

(1*Z*,3*E*)-1-(*tert*-Butyldimethylsilyloxy)-4-methoxy-1,3butadiene (2c)

Pale yellow oil; purified by chromatography on silica gel (hexane– $Et_2O = 30:1$ as eluent). ¹H NMR (270 MHz, $CDCl_3$): $\delta = 6.55 (1 \text{ H}, \text{ d}, J = 13.0 \text{ Hz}, 4\text{-H}), 6.06 (1 \text{ H}, \text{ d}, J = 13.0 \text{ Hz}, 4\text{-H})$ *J* = 5.9 Hz, 1-H), 5.84 (1 H, dd, *J* = 13.0, 10.8 Hz, 3-H), 5.05 (1 H, dd, J = 10.8, 5.9 Hz, 2-H), 3.59 (3 H, s, OCH₃), 0.94 [9 H, s, SiC(CH₃)₃], 0.15 [6 H, s, Si(CH₃)₂]. ¹³C NMR (68 MHz, CDCl₃): $\delta = 148.2, 136.6, 106.5, 98.9, 56.2, 25.7,$ 18.4, -5.2. IR (film): 2948, 2928, 2892, 2852, 1656, 1608, 1470, 1406, 1362, 1332, 1256, 1208, 1166, 1136, 1124, 1064, 938, 838, 780 cm⁻¹. Anal. Calcd for $C_{11}H_{22}O_2Si: C$, 61.63; H, 10.34. Found: C, 61.58; H, 10.61. (1Z,3E)-1-(1-Ethoxyethoxy)-1,3-octadiene (2d) Pale yellow oil; purified by chromatography on silica gel (hexane-EtOAc = 70:1 to 40:1 as eluent). ¹H NMR (270 MHz, CDCl₃): $\delta = 6.39$ (1 H, ddd, J = 15.4, 10.8, 1.4 Hz, 3-H), 6.12 (1 H, d, J = 5.9 Hz, 1-H), 5.57 (1 H, dt, J = 15.4, 7.0 Hz, 4-H), 5.12 (1 H, dd, J = 10.8, 5.9 Hz, 2-H), 4.94 (1 H, q, *J* = 5.4 Hz, OCHO), 3.74 (1 H, dq, *J* = 9.5, 7.2 Hz, OCH₂CH₃), 3.49 (1 H, dq, J = 9.5, 7.2 Hz, OCH₂CH₃), 2.12-2.04 (2 H, dt, J = 7.0, 6.8 Hz, 5-CH₂), 1.43–1.25 (4 H, m, 6-CH₂ and 7-CH₂), 1.39 [3 H, d, *J* = 5.4 Hz, OCH(CH₃)O], 1.21 (3 H, t, J = 7.2 Hz, OCH₂CH₃), 0.89 (3 H, t, J = 7.0 Hz,

 $\begin{array}{l} \text{8-CH}_3\text{).} \ ^{13}\text{C} \ \text{NMR} \ (68 \ \text{MHz}, \ \text{CDCl}_3\text{):} \ \delta = 138.9, \ 131.5, \\ 122.8, \ 108.1, \ 100.9, \ 62.5, \ 32.7, \ 31.8, \ 22.4, \ 20.6, \ 15.2, \ 14.0. \\ \text{IR} \ (\text{film}\text{):} \ 3036, \ 2956, \ 2924, \ 2872, \ 1656, \ 1618, \ 1444, \ 1382, \\ 1342, \ 1276, \ 1226, \ 1150, \ 1134, \ 1112, \ 1080, \ 1052, \ 974, \ 880, \\ 830, \ 748 \ \text{cm}^{-1}. \ \text{Anal. Calcd for} \ C_{12}H_{22}O_2\text{: C}, \ 72.68; \ \text{H}, \ 11.18. \\ \text{Found: C}, \ 72.52; \ \text{H}, \ 11.47. \end{array}$

(1Z,3*E*)-1-(Methoxymethoxy)-1,3-octadiene (2e) Colorless oil; purified by chromatography on silica gel (hexane–EtOAc = 70:1 to 40:1 as eluent). ¹H NMR (270 MHz, CDCl₃): $\delta = 6.39$ (1 H, ddd, J = 15.5, 10.9, 1.1 Hz, 3-H), 6.03 (1 H, d, J = 6.2 Hz, 1-H), 5.60 (1 H, dt, J = 15.5, 7.0 Hz, 4-H), 5.17 (1 H, dd, J = 10.9, 6.2 Hz, 2-H), 4.83 (2 H, s, OCH₂O), 3.42 (3 H, s, OCH₃), 2.16–2.02 (2 H, dt, J = 7.0, 6.8 Hz, 5-CH₂), 1.45–1.23 (4 H, m, 6-CH₂ and 7-CH₂), 0.90 (3 H, t, J = 7.0 Hz, 8-CH₃). ¹³C NMR (68 MHz, CDCl₃): $\delta =$ 141.2, 132.2, 122.4, 108.9, 96.4, 55.8, 32.7, 31.7, 22.4, 14.1. IR (film): 3036, 2952, 2920, 1658, 1618, 1464, 1386, 1306, 1242, 1160, 1114, 1042, 974, 924, 830, 750 cm⁻¹. Anal. Calcd for C₁₀H₁₈O₂: C, 70.55; H, 10.66. Found: C, 70.38; H, 10.75.

(1Z,3*E*)-1-(Benzyloxymethoxy)-1,3-octadiene (2f) Colorless oil; purified by chromatography on silica gel (hexane–EtOAc = 80:1 to 50:1 as eluent). ¹H NMR (270 MHz, CDCl₃): δ = 7.37–7.27 (5 H, m, Ph), 6.40 (1 H, ddd, *J* = 15.4, 10.8, 1.1 Hz, 3-H), 6.10 (1 H, d, *J* = 6.2 Hz, 1-H), 5.61 (1 H, dt, *J* = 15.4, 7.0 Hz, 4-H), 5.19 (1 H, dd, *J* = 10.8, 6.2 Hz, 2-H), 4.95 (2 H, s, OCH₂O), 4.65 (2 H, s, OCH₂Ph), 2.16–2.06 (2 H, dt, *J* = 7.0, 6.8 Hz, 5-CH₂), 1.45–1.25 (4 H, m, 6-CH₂ and 7-CH₂), 0.90 (3 H, t, *J* = 7.0 Hz, 8-CH₃). ¹³C NMR (68 MHz, CDCl₃): δ = 141.2, 137.0, 132.2, 128.3, 128.0, 127.8, 122.4, 109.0, 94.3, 69.8, 32.7, 31.7, 22.4, 14.1. IR (film): 3032, 2952, 2924, 2868, 1658, 1618, 1496, 1454, 1380, 1300, 1226, 1172, 1116, 1042, 974, 904, 832, 744, 696 cm⁻¹. Anal. Calcd for C₁₆H₂₂O₂: C, 78.01; H, 9.00. Found: C, 78.16; H, 9.21.

(1Z,3E)-1-(1-Methoxy-1-methylethoxy)-1,3-octadiene (2g)

Pale yellow oil; purified by chromatography on silica gel (hexane–EtOAc = 80:1 to 60:1 as eluent). ¹H NMR (270 MHz, C_6D_6): $\delta = 6.83$ (1 H, ddd, J = 15.5, 10.7, 1.1 Hz, 3-H), 6.32 (1 H, d, J = 6.2 Hz, 1-H), 5.61 (1 H, dt, J = 15.5, 7.0 Hz, 4-H), 5.30 (1 H, dd, J = 10.7, 6.2 Hz, 2-H), 3.01 (3 H, s, OCH₃), 2.13–2.01 (2 H, dt, J = 7.0, 6.5 Hz, 5-CH₂), 1.38–1.15 [10 H, m, OC(CH₃)₂O and 6, 7-CH₂], 0.81 (3 H, t, J = 7.0 Hz, 8-CH₃). ¹³C NMR (68 MHz, C_6D_6): $\delta = 137.0$, 131.0, 124.2, 108.9, 101.9, 48.9, 33.2, 32.3, 25.0, 22.8, 14.3.

IR (film): 3032, 2988, 2952, 2924, 2852, 1656, 1616, 1464, 1402, 1374, 1264, 1218, 1184, 1138, 1106, 1072, 1032, 974, 868, 782, 750 cm⁻¹. Anal. Calcd for $C_{12}H_{22}O_2$: C, 72.68; H, 11.18. Found: C, 72.55; H, 11.44.

(1Z,3E)-1-(2-Tetrahydropyranyloxy)-1,3-octadiene (2h) Pale yellow oil; purified by chromatography on silica gel (hexane-EtOAc = 70:1 to 40:1 as eluent). ¹H NMR (270 MHz, CDCl₃): $\delta = 6.42$ (1 H, ddd, J = 15.5, 10.9, 0.8 Hz, 3-H), 6.10 (1 H, d, J = 5.9 Hz, 1-H), 5.59 (1 H, dt, J = 15.5, 7.3 Hz, 4-H), 5.16 (1 H, dd, J = 10.9, 5.9 Hz, 2-H), 4.94 (1 H, t, *J* = 3.1 Hz, OCHO), 3.85 (1 H, ddd, *J* = 11.2, 9.5, 3.5 Hz, THP-6-CH₂), 3.62-3.52 (1 H, m, THP-6-CH₂), 2.16-2.04 (2 H, dt, J = 7.3, 6.8 Hz, 5-CH₂), 1.99–1.11 (10 H, m, THP- $3,4,5-CH_2$ and $6,7-CH_2$), $0.90(3 H, t, J = 7.3 Hz, 8-CH_3)$. ¹³C NMR (68 MHz, CDCl₃): $\delta = 140.8, 131.8, 122.6, 108.4,$ 98.5, 61.9, 32.7, 31.8, 29.7, 25.2, 22.4, 18.7, 14.1. IR (film): 3032, 2946, 2924, 2868, 1658, 1618, 1454, 1356, 1242, 1202, 1124, 1028, 970, 904, 872, 816, 750 cm⁻¹. Anal. Calcd for C₁₃H₂₂O₂: C, 74.24; H, 10.54. Found: C, 74.25; H, 10.78. (1Z,3E)-1-(tert-Butyldimethylsilyloxy)-6-methyl-1,3,5heptatriene (2i)

Colorless oil; purified by chromatography on silica gel (hexane–Et₂O = 50:1 to 20:1 as eluent). ¹H NMR (270 MHz, CDCl₃): δ = 6.48 (1 H, dd, *J* = 15.1, 10.5 Hz, 3-H), 6.30 (1 H, dd, *J* = 15.1, 10.8 Hz, 4-H), 6.17 (1 H, d, *J* = 5.7 Hz, 1-H), 5.93–5.86 (1 H, m, 5-H), 5.24 (1 H, dd, *J* = 10.5, 5.7 Hz, 2-H), 1.79 [3 H, s, C(CH₃)₂], 1.76 [3 H, s, C(CH₃)₂], 0.94 [9 H, s, SiC(CH₃)₃], 0.16 [6 H, s, Si(CH₃)₂]. ¹³C NMR (68 MHz, CDCl₃): δ = 139.5, 134.0, 125.9, 125.6, 123.2, 111.3, 26.2, 25.7, 18.4, –5.2. IR (film): 3028, 2952, 2924, 2856, 1646, 1628, 1584, 1470, 1408, 1274, 1256, 1236, 1140, 1066, 1032, 1006, 986, 964, 838, 780 cm⁻¹. Anal. Calcd for C₁₄H₂₆OSi: C, 70.52; H, 10.99. Found: C, 70.78; H, 11.23.

- (13) Use of s-BuLi or t-BuLi in Et₂O instead of n-BuLi gave the same results, which suggests that the aggregation states of n-BuLi under our reaction conditions are monomer or dimer, since t-BuLi becomes dimeric in Et₂O without substrates.
- (14) The complete 1*Z*-to-1*E* changeover was observed in the case of **1d**. The reaction of silyl derivative **1b** in THF under the same conditions gave a mixture of stereoisomers without any detectable retro-Brook rearrangement product: (1Z,3E)/(1Z,3Z)/(1E,3E)/(1E,3Z) = 42:1:16:21 (yield, %).
- (15) Use of TMEDA–Et₂O instead of THF gave almost the same results.
- (16) Hartung, J.; Kneuer, R. Eur. J. Org. Chem. 2000, 1677.