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Abstract 

Bis-carborane-substituted benzo[1,2-b:4,5-b']dithiophenes DCB-R (R = H, tBu) were 

synthesized and characterized. Their 3-dimensional conformations were tuned by 

introducing the tert-butyl substituent at the para-positions of the phenyl rings. Both 

molecules showed emission enhancement behaviors especially in the solid state. The 

emission quantum efficiencies were over 0.90 in the crystalline state. Moreover, it was 

shown that the efficiency of DCB-tBu was over 0.70 in the amorphous state. From 

structural analyses and mechanistic investigation, it was proposed that the tert-butyl 

substituents should play a critical role in formation of the trans-conformation followed 

by suppression of aggregation-caused quenching because of the o-carborane units located 

at each plane of the benzodithiophene ring.  
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Introduction 

Most of luminescent organic dyes suffer from critical decrease in emission efficiency 

by the aggregation (aggregation-caused quenching, ACQ). Even though intense 

luminescence can be observed in the solution state, optical properties were often spoiled 

via ACQ by intermolecular interaction in the solid state. One of promising platforms to 

overcome the ACQ problem is a class of aggregation-induced emission (AIE)-active 

boron complexes which show significant emission not in the diluted state but in the 

aggregation.[1−3] Intense solid-state luminescent properties originating from AIE were 

found and applied for developing the conjugated materials including polymers.[4] 

Additionally, based on environment-responsive intensity changes of the AIE-active 

materials, various types of film-type luminescent materials and sensors can be 

fabricated.[5−7] 

 

It has been reported that some of the o-carborane[8−13] derivatives presented AIE[14−21] 

and can be applied as a solid-state luminescent material.[22−34] We have also focused on 

the aryl-modified o-carboranes as a scaffold for constructing luminescent “element-

block”,[35,36] which is defined as a minimum functional unit composed of 

heteroatoms.[37−40] o-Carborane cluster is a boron cluster composed of three-center two-

electron bonds, and acts as a strong electron-withdrawing when bonding through the 

carbon atoms.[41−51] Thereby, bright emission from the intramolecular charge transfer 

(ICT) state can be generated by the combination with o-carborane and electron-rich aryl 

substituents.[52−55] Especially, even in the crystalline state, the CT emission can be often 

preserved by inhibiting ACQ because of the steric sphere shape of the o-carborane units. 

Thus, a variety of highly-emissive crystalline materials composed of aryl-connected o-
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carborane structures have been obtained.[56−58] Moreover, it is known that electronic 

structures were drastically changed by rotation at the o-carborane unit.[59,60] Furthermore, 

it was found that these materials showed stimuli-responsive luminescent chromism 

toward external mechanical forces and environmental factors such as temperature.[61] 

However, in these materials, emission quenching often caused particularly in the 

amorphous state although solid-state emission via the AIE mechanism was maintained 

with some extent. Intermolecular interaction could severely occur at the aryl moiety in 

the random distribution. These unexpected emission quenching is crucially the limitation 

in the application of AIE-active materials to stimuli-responsive solid-state luminescent 

sensors by burying significant color changes. Thus, our next goal is to demonstrate 

preservation of the solid-state emission of AIE-active molecules from the conformation 

changes. 

 

Herein, we designed bis-carborane-substituted benzo[1,2-b:4,5-b']dithiophenes DCB-

R (R = H, tBu). The benzodithiophene moiety in DCB-R would be isolated by the phenyl 

rings located at the adjacent position in the o-carborane units from intermolecular 

interaction in the condensed state. From the structural analyses, it was found that DCB-

H and DCB-tBu formed the cis- and trans-conformations because of degree of steric 

hindrance at the para-positions of the phenyl rings, respectively. Both molecules showed 

emission enhancement behaviors in the solid state especially such in the crystalline state. 

Furthermore, it was observed that these emission intensities were maintained even in the 

amorphous state.   
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Results and Discussion 

  Scheme 1 shows the synthesis of DCB-R (R = H, tBu). Initially, benzo[1,2-b:4,5-

b']dithiophene-4,8-dione was added to the THF solution of the lithiated ethnylbenzene 

derivatives 1-R. Then, the quinone form of benzodithiophene was reduced by SnCl2 in 

the HCl aq. solution, and the diethynyl derivatives 2-R were obtained via the coupling 

reaction. The decaborane(14) insertion reaction was carried out to obtain the DCB-R. All 

compounds were characterized by 1H, 11B and 13C NMR spectroscopies, elemental 

analyses and HRMS measurements. The products showed good stability and solubility in 

common organic solvents such as CHCl3, CH2Cl2, tetrahydrofuran (THF) and benzene. 

Thus, we concluded that the products should have the designed structures and enough 

stability for performing the series of measurements.  

 

Scheme 1 

 

From the 1H NMR spectrum of DCB-H in CD2Cl2 at 30 °C, broad signal peaks were 

observed, while at −30 °C, remarkable peaks were detected (Figure 1). Moreover, these 

spectrum changes reversibly proceeded by varying detection temperature. These data 

proposed that DCB-H can form the two types of structural isomers. These peaks were 

assigned by 1H−1H COSY (Figure S1). At −30 °C, the peaks at 8.4, 7.7, 7.1 and 6.8 ppm 

were assigned to the signals from the conformation A. The peaks at 7.8, 7.4, 7.2 and 7.0 

ppm were attributable to those from the conformation B. Especially, the peaks at 8.4 ppm 

in the spectrum of the conformation A showed upfield shift to 7.8 ppm in the 

conformation B. The shielding effect to the benzo[1,2-b:4,5-b']dithiophene unit could be 

induced by the benzene rings. Additionally, the existing ratio of the conformation A was 
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twice larger than that of conformation B at −30 °C, and this ratio was also changed by 

temperature alteration. To estimate the height of energy barrier of the isomerization, the 

logarithm of the existing ratio in DCB-H against inverse temperature was prepared 

(Figure S2). From this plot, thermodynamic parameters were calculated, and it was found 

that the conformation A was by 4.02 kJ/mol more stable than the conformation B. Because 

of such small energy gap, DCB-H formed the both conformations and showed broad 

peaks in the NMR spectrum in the solution at room temperature. On the other hand, DCB-

tBu showed sharp peaks at 7.8, 7.4, 7.2, 7.0 ppm in CD2Cl2 at room temperature. These 

peaks were almost identical to the conformation B of DCB-H. In particular, there were 

no peaks around 8.5 ppm which were the specific peaks from the conformation A. These 

data indicate that DCB-tBu hardly form the conformation A-like structure. It was 

proposed that the steric effect of the tert-butyl groups could play a critical role in 

suppression of conformation changes. 

 

Figure 1 

 

To support the above speculation on the structures of these isomers, the X-ray single 

crystal analyses were executed. The single crystals were obtained by the recrystallization 

from benzene for DCB-H and benzene/EtOH mix solvents for DCB-tBu. Figures S3a−c 

show the ORTEP diagrams of DCB-H. Although probability levels were low due to 

thermal motions, it was observed that the benzene rings which were connected to the next 

carbon position in the o-carborane moiety were distributed to the same direction. In 

addition, highly symmetric structures were observed. DCB-H formed the cis-

conformation in the crystal state, whereas it was clearly indicated that DCB-tBu had the 
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trans-conformation (Figures S3d−f). These facts suggest that the conformations A and B 

should be the cis- and trans-conformations, respectively. The structure of DCB-tBu 

should be immobilized at the trans-conformation because of steric hindrances of the tert-

butyl groups. In contrast, DCB-H possessed the cis-conformation, and at −30 °C, the 

trans-conformation of DCB-H appeared. The carbon−carbon bond in the o-carborane unit 

in DCB-H was 1.817 Å. This bond length was much longer than that in DCB-tBu (1.795 

Å). From the packing structure, the benzo[1,2-b:4,5-b']dithiophene moiety showed less 

interaction with other benzo[1,2-b:4,5-b']dithiophene units than the reported anthracene 

derivative.[61] It was implied that a smaller size of benzo[1,2-b:4,5-b']dithiophene than 

that of anthracene might be responsible for suppression of intermolecular interaction in 

the crystal packing. 

 

The electronic properties in the cis- and trans- conformations were calculated by using 

density functional theory (DFT) at the B3LYP/6-31G(d) level (Figure 2). 

Correspondingly, it was revealed that the cis-DCB-H had the smaller energy than trans-

DCB-H, whereas the energy of trans-DCB-tBu was smaller than that of the cis-one. 

These differences should be caused by the steric effect of the tert-butyl groups at the para-

position of phenyl rings. In addition, the optimized structure of trans-DCB-H seemed to 

involve much strain. It is implied that the π−π interaction between the one phenyl ring 

and benzo[1,2-b:4,5-b']dithiophene group could be formed. 

 

Figure 2 

 

The UV‒vis absorption spectra of DCB-R in THF (1.0  10‒5 M) were measured 
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(Figure S4, Table S1). All samples showed the identical absorption spectra (Table 1). The 

absorption bands in longer wavelength region had the peaks around 400 nm. These data 

suggest that the substituent group at the para position of the phenyl ring should slightly 

influence on the electronic structure in the ground state. Figure 3 shows the emission 

properties of DCB-R in THF solutions and water suspensions (THF / water = 1 / 99). In 

the clear solution, both molecules showed the broad emission bands around 700 nm (PL 

= 0.12). The em of DCB-H presented emission band with the peak at 682 nm. This value 

was shorter than that of DCB-tBu (em = 698 nm). In contrast, the em of DCB-H in the 

water suspension was longer than that of DCB-tBu (638 nm for DCB-H and 615 nm for 

DCB-tBu). Additionally, the PLs of DCB-H and DCB-tBu were 0.23 and 0.72, 

respectively. Hence, both molecules had aggregation-induced emission enhancement 

(AIEE) behaviors where emission efficiency is enhanced by solidification. By changing 

solvent polarity in the optical measurements, peak positions both in UV−vis absorption 

and emission spectra were monitored (Figure S5 and Table S2). Similarly to the ICT 

emission, typical peak shifts to the longer-wavelength region were observed only in the 

emission spectra by increasing solvent polarity, while peak shifts were hardly detected in 

the absorption spectra. In the plots between Stokes shifts to solvent polarity, significant 

slopes were found in the fitting lines from both compounds (Figure S6). These results 

clearly indicate that the emission bands from DCB-R should be originated from the ICT 

state. According to the previous reports, electron-accepting nature of the o-carborane unit 

play a critical role in formation of the ICT state with the electron-donating 

benzodithiophene moieties.[61] 

 

Figure 3 and Table 1 
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Next, solid-state emission was evaluated in the crystal state. The powder samples were 

prepared via recrystallization from CHCl3/MeOH. From the 1H NMR and TGA 

measurements (Figure S7), the crystal of DCB-tBu involved CHCl3 as a crystal solvent. 

CHCl3 was removed by heating at 200 °C for 1 h before optical measurements. It was 

confirmed that any degradation and isomerization hardly proceeded in this temperature 

range (Figure S7). Table 1 shows the emission properties of DCB-H and DCB-tBu in the 

crystal in the absence of solvent molecules, aggregation and THF solutions (Figure 3). 

The emission spectra of DCB-H and DCB-tBu in the crystal state showed blue-shifted 

emission bands from those in the THF solution and water suspension (617 nm for DCB-

H and 591 nm for DCB-tBu). These blue shifts could be caused by decrease of re-

orientation energy.[62] The ΦPL values of DCB-H and DCB-tBu were 0.90 and 0.94, 

respectively, and these were higher than those in the water suspension. These data clearly 

indicate that these molecules should have the crystallization-induced emission 

enhancement (CIEE) properties.[4,56−58] In the crystal packing, extension at the C−C bond 

in the o-carborane unit after excitation, which causes emission quenching in the diluted 

solution, should be highly restricted. Thus, it is likely that increase in emission efficiency 

by crystallization was induced. 

 

In the THF solution, DCB-H showed emission in the shorter wavelength region than 

DCB-tBu, while solid-state emission of DCB-H in the water suspension and crystal was 

observed in the longer wavelength region. To obtain deeper insight on these behaviors, 

computer calculations of excited states was performed by using time-dependent density 

functional theory (TD-DFT) at the B3LYP/6-31G(d) level. It was confirmed that the cis-
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conformation of DCB-H was also more stable than the trans-one in the excited state. 

Figure 4 presents the molecular orbitals of cis-DCB-H and trans-DCB-tBu in the excited 

state. Both molecules showed the σ*−π* conjugations at the C−C bond in the o-carborane 

unit. According to the previous studies, it was illustrated that the conjugated system 

involving the C−C bonds are the origin of the AIEE properties.[37−40] Thus, both molecules 

showed bright solid-state emission properties. The calculated transfer energies 

(corresponded transitions, wavelengths) of cis-DCB-H and trans-DCB-tBu for the 

emission were 1.90 eV (MO-162: LUMO → MO-161: HOMO, 653 nm) and 1.81 eV 

(MO-194: LUMO → MO-193: HOMO, 684 nm), respectively. These values showed 

good agreement with the emission spectra in the THF solution. On the other hand, in the 

crystalline state, the width of band gap of trans-DCB-tBu seemed to be larger than that 

of cis-DCB-H. In the crystal packing of DCB-tBu, the critical intramolecular twist was 

found (Figure S6). This conformational distortion is more likely to increase band gap 

energy. Thus, the emission band of DCB-tBu in the crystalline state could be detected in 

the shorter wavelength region although the calculation results indicated the narrower band 

gap from trans-DCB-tBu than cis-DCB-H. 

 

Figure 4 

 

Finally, emission properties in the amorphous state were evaluated. Initially, thermal 

decomposition and melting temperatures were determined with TGA and DSC, 

respectively (Figure S7). Based on these data, the amorphous state was realized by rapid 

cooling with the melted sample according to the powder X-ray diffraction data (Figure 

S8). From the 1H NMR spectra, it was confirmed that less significant degradation or 
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isomerization were detected (Figure S7). It was found that emission from DCB-H was 

under the detectable level, meanwhile DCB-tBu demonstrated the almost identical 

spectrum to that in the water suspension around 618 nm (Table 1). It was longer than that 

in the crystal state. It should be emphasized that the significant high ΦPL value (0.72) was 

obtained in the amorphous state. These data represent that DCB-tBu is a highly-efficient 

luminogen in the amorphous state. 

 

The plausible scenario for explaining large ΦPL values of DCB-tBu in the water 

suspension and amorphous state is illustrated in Figure 5. Luminescence from both 

molecules was obtained from the transition from the intramolecular charge transfer state 

in the conjugation system involving the benzodithiophene moiety as a donor and o-

carboranes as an acceptor via the σ*−π* conjugation.[37−40] According to the 1H NMR 

spectra, DFT-calculation and single crystal structural data, DCB-tBu should form the 

trans-conformation. This conformation is favorable for protecting the benzodithiophene 

moiety from intermolecular interaction such as π−π stacking even in the condensed state. 

On the other hand, since the benzodithiophene moiety was exposure in DCB-H, 

intermolecular interaction should be formed, followed by ACQ. Therefore, only DCB-

tBu maintained high luminescence ability in the disordered solids such as amorphous. 

 

Figure 5 
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Conclusion 

Synthesis, structures and optical properties of dual-o-carborane substituted 

benzodithiophenes are described. The preferred structures of DCBs were tuned by the 

substituents at the para-positions of the phenyl rings attached to the adjacent carbon atom 

in the o-carborane units. From the synthesized molecules, AIEE and CIEE properties 

were demonstrated. Moreover, both molecules showed intense emission bands in the 

crystal state with ΦPL > 0.90 around 600 nm. In particular, DCB-tBu also showed high 

emission properties in the water suspension and amorphous state with ΦPL > 0.70 caused 

by the isolation from intermolecular interaction in the trans-conformation. The 

improvement of emission efficiencies in the amorphous state would be of importance in 

the practical usages as printed devices and bioprobes. Because of these unique optical 

properties in the solid state, it is suggested that both molecules could be promising 

“element blocks” for constructing advanced stimuli-responsive solid materials as well as 

for receiving AIE-active materials according to preprogrammed designs. 

 

Experimental Section 

General. All reagents such as ethynylbenzene, 4-tert-butylethynylbenzene, n-BuLi (1.6 M, 

hexane solution), SnCl2, HCl (1.0 M, water solution), decaborane, AgNO3, anhydrous toluene and 

acetonitrile (MeCN) were obtained from commercial sources and used without further 

purification. Tetrahydrofuran (THF) was purchased and purified using a two-column solid-state 

purification system (Glass Contour Solvent System, Joerg Meyer, Irvine, CA). 1H, 13C and 11B 

NMR spectra were recorded on a JEOL JNM-EX400 instrument at 400, 100, and 128 MHz, 

respectively. Variable temperature 1H NMR and 1H-1H COSY NMR spectra were recorded on a 

JEOL-ECS400 instrument at 400 MHz. The 1H chemical shift values were expressed relative to 
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Me4Si in CDCl3 or CH2Cl2 in CD2Cl2 as an internal standard. The 13C shift values were expressed 

relative to CHCl3 in CDCl3 or CH2Cl2 in CD2Cl2 as an internal standard. The 11B chemical shift 

values were expressed relative to BF3·Et2O as an external standard. High-resolution mass spectra 

(HRMS) were obtained on a Thermo Fisher Scientific EXACTIVE spectrometer for atmospheric 

pressure chemical ionization (APCI). Analytical thin-layer chromatography (TLC) was 

performed with silica gel 60 Merck F254 plates. Column chromatography was performed with 

Wakogel C-300 silica gel. UV−vis absorption spectra were obtained on a SHIMADZU UV3600 

spectrophotometer. Photoluminescence (PL) spectra were obtained on a Horiba FluoroMax-4 

luminescence spectrometer; absolute PL quantum efficiencies (ΦPL) were determined using a 

Horiba FL-3018 Integrating Sphere. X-ray crystal structure analyses were performed with Rigaku 

R-AXIS RAPID imaging plate area detector with graphite monochromated Mo K radiation ( = 

0.71069 Å) at –180 °C. The structures were solved and refined by SHELXT. X-Ray diffraction 

(XRD) data were obtained on a Rigaku MiniFlex diffractometer using CuKα radiation in a range 

of 2° ≤ 2θ ≤ 50° at intervals of 0.01° at a scanning rate of 0.25° min–1. 

 

Synthesis 

General procedure for preparing 4,8-di(arylethnyl)-benzo[1,2-b:4,5-b']dithiophenes (2-R). 

4-Ethynylaryl (3 eq.) was dissolved in THF under Ar atmosphere. Then, 1.6 M hexane solution 

of n-BuLi (3 eq.) was added to the solution at −78 °C and stirred. After 1 h, benzo[1,2-b,4,5-

b']dithiophene-4,8-dione (1 eq.) was added in one portion and stirred for 6 h at room temperature. 

Finally, after adding HCl solution of SnCl2, colored solid was precipitated. The solid was filtered 

and washed with MeOH, corresponded 2-R was obtained. 

 

2-H: Yellow solid (41%). 1H NMR (CDCl3, 400 MHz)  (ppm) 7.71 (d, 2H, J = 5.4 Hz), 7.70–
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7.67 (m, 4H), 7.59 (d, 2H, J = 5.6 Hz), 7.42–7.37 (m, 6H). 13C NMR (CDCl3, 100 MHz)  (ppm) 

140.4, 138.3, 131.8, 128.5, 123.2, 112.0, 99.2, 85.7. HRMS (APCI) calcd. For C26H14S2 [M+H]+: 

391.0610, found 391.0603. 391.0603.  

 

2-tBu: Yellow solid (82%). 1H NMR (CDCl3, 400 MHz)  (ppm) 7.71 (dd, 2H, J = 5.5, 1.4 Hz), 

7.62 (dd, 4H, J = 8.4, 1.5 Hz), 7.57 (dd, 2H, J = 5.6, 1.4 Hz), 7.44 (dd, 4H, J = 8.3, 1.2 Hz), 1.36 

(s, 18H). 13C NMR (CDCl3, 100 MHz)  (ppm) 152.3, 140.3, 138.2, 131.6, 128.0, 125.5, 123.3, 

119.9, 112.1, 99.4, 85.1, 34.9, 31.2. HRMS (APCI) calcd. For C34H30S2 [M+H]+: 503.1862, found 

503.1854.  

 

General procedure for preparing 4,8-di(2-arylcarborane-1-yl)-benzo[1,2-b:4,5-

b']dithiophenes (DCB-R). 

Decaborane was dissolved in MeCN under Ar atmosphere and heated at 50 °C for 1 h. After 

the solution turned yellow, toluene was added. Then AgNO3 and 1-R were added in one portion, 

and the solution was refluxed over 3 d. The black (or dark red) residue was filtered off and solution 

was evaporated. The crude residue was purified by silica gel column chromatography. After 

recrystallization by CHCl3 and MeOH, 2-R was obtained as colored crystal.  

 

DCB-H: Orange crystal (10%).1H NMR (CD2Cl2, 400 MHz)  (ppm) 7.58 (s, 2H), 7.15(d, 11H), 

6.87 (s,7H), 3.4–1.6 (br, 20H) 13C NMR (CDCl3, 100 MHz)  (ppm) 144.2, 140.9, 131.3, 131.2, 

129.9, 129.7, 128.6, 127.4, 124.1, 90.9, 64.2. 11B NMR (CD2Cl2, 128 MHz)  (ppm) –0.5, –0.4, –

3.0, –4.2, –8.6, –9.6. HRMS (APCI) calcd. For C26H34B20S2 [M+H]+: 631.4106, found 631.4105. 

Anal. calcd. for C26H34B20S2: C 49.82; H 5.47 found: C 46.64; H 5.35. 
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DCB-tBu: Orange crystal, CHCl3 was contained as crystal solvent. CHCl3 was removed by 

heating at 150 °C for 1 h, and yellow crystal was obtained. (14%). 1H NMR (CD2Cl2, 400 MHz) 

 (ppm) 7.81 (d, 2H, J = 6.4 Hz), 7.39 (d, 2H, J = 6.1 Hz), 7.18 (d, 4H, J = 8.6 Hz), 7.02 (d, 4H, 

J = 8.6 Hz), 3.90–1.60 (br, 20H), 1.11 (s, 18H). 13C NMR (CD2Cl2, 100 MHz)  (ppm) 154.5, 

143.8, 141.0, 129.6, 128.4, 126.7, 126.0, 123.3, 87.1, 77.9, 34.9, 31.0. 11B NMR (CD2Cl2, 128 

MHz)  (ppm) –1.3, –4.2, –9.0. HRMS (APCI) calcd. For C34H51B20S2 [M+H]+: 743.5358, found 

743.5330. Anal. calcd. for C34H50S2B20: C 55.25 ; H 6.82, found: C 55.18; H 6.70. 
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Figures and Tables 

Scheme 1. Synthesis of DCB-R 
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Figure 1. (a) Characterization of the 1H NMR spectrum of DCB-H and (b) variable-

temperature 1H NMR spectra in CD2Cl2. 
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Figure 2. Optimized structures of (a) cis-DCB-H, (b) trans-DCB-H, (c) cis-DCB-tBu 

and (d) trans-DCB-tBu calculated at the B3LYP/6-31G(d) level. 
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Figure 3. PL spectra of a) DCB-H and b) DCB-tBu in THF solution (solid line), 

aggregation (dashed line) and crystalline (dotted line) states. 
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Figure 4. Calculated molecular orbitals of DCB-R. 
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Figure 5. Schematic proposed models of intermolecular interactions in the solid samples 

of (a) DCB-H and (b) DCB-tBu. 
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Table 1. Summary of emission properties of DCB-R 

R 

THFa  Water  Crystal  Amorphous 

em 

(nm) 
PL

b  
em 

(nm) 
PL

b  
em 

(nm) 
PL

b  
em 

(nm) 
PL

b 

H 682 0.12  638 0.23  617 0.90  n.d.c n.d.c 

tBu 698 0.12  615 0.72  591 0.94  618 0.71 

a1.0 × 10−5 M. 

bMeasured with the integrated sphere method. 

cNot detectable due to pyrolysis. 
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Graphical Abstract 

 

 

a Key Topic: Luminescent carborane 

 

Bis-carborane-substituted benzodithiophenes with or without tert-butyl substituents 

were synthesized. It was found that their 3-dimensional conformations were tuned by 

introducing the tert-butyl substituent. Both molecules showed emission enhancement 

behaviors especially in the solid state.  
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