Tetrahedron 71 (2015) 6840-6845

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

In(OTf)₃-mediated synthesis of substituted pyridazines

Meng-Yang Chang*, Yi-Ju Lu, Yu-Chieh Cheng

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan

ARTICLE INFO

ABSTRACT

Article history: Received 9 June 2015 Received in revised form 6 July 2015 Accepted 8 July 2015 Available online 15 July 2015

Keywords: Pyridazines Cyclocondensation β-Ketosulfones Hydrazine

1. Introduction

For transformation from terminal alkynes to methyl ketones, mercuric salts mediating the hydration of alkynes is a classic method used in the presence of acids via Markovnikov regioselectivity.^{1,2} However, new catalysts to the synthetic routes of methyl ketones from non-activated alkynes still represent continuing needs in the organic field. Among these protocols, transition-metal complexes (Au,³ Ag,⁴ Ag/Au,⁵ Ru,⁶ Rh,⁷ Pt,⁸ Os,⁹ Ir,¹⁰ Pd,¹¹ Fe,¹² Hg,¹³ Cu,¹⁴ or In^{15}) promoting hydration of alkynes is the major pathway. Notably, few examples have been performed for metal triflatespromoted reactions. Nishizawa et al. reported the traditional synthesis of 2-methylfurans via the Hg(OTf)₂-catalyzed cyclization of 1-alkyn-5-ones.¹³ Jha et al. reported a microwave-assisted hydration of arylacetylene with Cu(OTf)₂.^{14a} AgOTf-mediated hydration of alkynes has been developed by Chakraborty and co-workers.^{4a} There are only two In(III)-mediated examples of synthesis of substituted furans via the hydration of nonactivated alkynes by Tan^{15a} and Nakamura.^{15b} To the best of our knowledge, no examples for $In(OTf)_3$ -mediated one-pot (4+2) annulation of γ -alkynone with N₂H_{4(aq)} have been reported. In continuation of our investigation on the applications of β -ketosulfones **1** (e.g., 2arylpyrroles, vinylcyclopropanes, 2,6-diaryltetrahydropyrans, 2arylfurans and substituted benzenes),^{16,17} a facile one-pot synthesis of 2-arylpyridazines 5 is developed, including (1) α -propargylation of 1 with propargylic bromides 2, and (2) $In(OTf)_3$ promoted cyclocondensation of the resulting γ -alkynones **3** with

 $N_2H_{4(aq)}$ (see Scheme 1). Pyridazine is a versatile building block in the synthesis of natural products and a useful synthetic intermediate.¹⁸ A number of articles have highlighted fascinating developments based on two C–N bond formations.¹⁹ 2-Arylpyridazines are also known to exhibit versatile biological activities, such as antibacterial activity, antibiotic or anti-depressant activity.²⁰ After further comparing literature reports on the preparation of substituted pyridazines, herein, we describe one-pot route on the cyclocondensation of the γ -alkynones with N₂H_{4(aq)}.

2. Results and discussion

According to previous literature on metal triflate-mediated hydration of alkynes,^{16d} catalytic amounts (2 mol %) of AgOTf (**4a**), Hg(OTf)₂ (**4b**), In(OTf)₃ (**4c**) or Cu(OTf)₂ (**4d**) were first examined for the transformation of model substrate **3a** (R=Tol, Ar=Ph, Y=H) from γ -alkynone to a skeleton of 2-arylpyridazine **5a** in dioxane at 25 °C for 4 h. As shown in Table 1 and entries 1–4, **4c** provided a better yield (80%) than **4a** (72%), **4b** (69%) and **4d** (25%) for generating **5a**. On the basis of a higher yield and activity, low toxicity and relatively low price, **4c** was chosen as the appropriate catalyst for synthesizing **5** via one-pot mild (4+2) cyclocondensation of **3a**

© 2015 Elsevier Ltd. All rights reserved.

In(OTf)₃ (4c)-mediated one-pot (4+2) cyclocondensation of γ -alkynones 3 with N₂H_{4(aq)} in dioxane

affords substituted pyridazines 5 in good yields via a sequential desulfonative or dehydrogenative aro-

matization. The facile transformation proceeds by a facile synthetic sequence starting with an α -prop-

argylation of β -ketosulfones 1 and a cyclocondensation of γ -alkynones 3 with $N_2H_{4(aq)}$. The method

provides a mild and efficient condition. Moreover, this route can be enlarged to multigram scale.

^{*} Corresponding author. Tel.: +886 7 3121101x2220; e-mail address: mychang@kmu.edu.tw (M.-Y. Chang).

Table 1 One-pot conditions^a

	$\begin{array}{c c} & & \\ & & \\ Ph & \\ & \\ O=S=0 \\ & Tol \end{array} \begin{array}{c} catalysts \textbf{4}, conditions \\ & \\ & \\ N_2H_{4(aq)} \end{array} \begin{array}{c} & \\ & \\ Ph \end{array} \begin{array}{c} & \\ & \\ Ph \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
Entry	Catalyst 4 (mol %), solvent (mL), temp (°C)	Yield (%) ^b
1	AgOTf 4a (2), dioxane (5), 25	72
2	Hg(OTf) ₂ 4b (2), dioxane (5), 25	69
3	In(OTf) ₃ 4c (2), dioxane (5), 25	80
4	Cu(OTf) ₂ 4d (2), dioxane (5), 25	25 [°]
5	InCl ₃ 4e (5), dioxane (5), 25	60
6	InBr ₃ 4f (2), dioxane (5), 25	68
7	In ₂ O ₃ 4g (2), dioxane (5), 25	12 ^d (20) ^e
8	In(OTf) ₃ 4c (0), dioxane (5), 25	f
9	In(OTf) ₃ 4c (5), dioxane (5), 25	79
10	In(OTf) ₃ 4c (10), dioxane (5), 25	77
11	In(OTf) ₃ 4c (2), dioxane (10), 25	75
12	In(OTf) ₃ 4c (2), dioxane (5), 50	70
13	In(OTf) ₃ 4c (2), dioxane (5), 100	63
14	In(OTf) ₃ 4c (2), MeNO ₂ (5), 25	75
15	In(OTf) ₃ 4c (2), (CH ₂ Cl) ₂ (5), 25	63
16	In(OTf) ₃ 4c (2), benzene (5), 25	51
17	In(OTf) ₃ 4c (2), EtOH (5), 25	58

 a Reactions were run on a 1.0 mmol scale with **3a**, $N_{2}H_{4(aq)}$ (80%, 1 mL), 4 h. b Isolated yields.

^c 46% of a hydrazone mixture was isolated.

^d 48% of a hydrazone mixture was isolated.

^e 40 h and 40% of a hydrazone mixture was isolated.

^f 88% of a hydrazone mixture was isolated.

in the presence of $N_2H_{4(aq)}$. Then, the use of other In(III) salts was examined (see entries 5-7). In comparison with these In(III) complexes, such as InCl₃ (4e), InBr₃ (4f) and In₂O₃ (4g), 4c was still a better catalyst for the generation of 5a. 4e-f produced 5a in 60% and 68% yields, respectively. For 4g, only 12% of 5a was isolated along with 48% of a hydrazone mixture. To elongate the reaction time $(4 \rightarrow 40 h)$, similar results were observed. Furthermore, controlling **4c** as the catalyst, catalyst equivalents, reaction solvents and temperature were further studied. Without the addition of **4c**, no 5a was yielded (entry 8). When using 5 or 10 mol% of 4c, the isolated yield was similar to 2 mol% (entries 9-10). By adjusting reaction concentrations (entries 11) or temperature (entries 12–13), poorer yield occurred. To change the reaction solvents from dioxane to MeNO₂, dichloroethane, benzene and EtOH, dioxane provided a better yield of 5a due to good solubility with water (entries 14-17). Based on the above results, we envisioned that 2 mol % of In(OTf)₃/dioxane/N₂H_{4(aq)} should be an optimal combination for forming 5a via one-pot reaction of 3a.

Based on the results, a possible reaction mechanism is shown in Scheme 2. How is **5a** produced? The mechanism should be initiated to form **A** by complexation of an alkynyl motif of a hydrazone skeleton (in situ generated from condensation of **3a** with N_2H_4) with **4c**, and participation of an amino group of hydrazone could lead to an ammonium ion **B** via intramolecular 6-*exo-dig*

With optimized conditions in hand (Table 1, entry 3), we further explored the substrate scope of the reaction, and the results are shown in Table 2. For adjusting the Ar and Y substituents of α sulfonyl γ -alkynones **3a**–j, arylpyridazines **5a**–j (Ar=Ph, 4-FC₆H₄, 4-MeOC₆H₄, 4-MeC₆H₄, 4-CF₃C₆H₄, 4-PhC₆H₄, 2-naphthalene, 2thiophene; Y=H, Me, Et) were provided in 72-85% yields (entries 1–10). To demonstrate the utilization of the route, α -aryl γ -arylalkynones **3j**-**ab** were prepared from α -propargylation of substituted deoxybenzoins with propargyl bromide. By this combination of $In(OTf)_3/dioxane/N_2H_{4(aq)}$, diarylpyridazines **5j–ab** (Ar=Ph, 4-MeOC₆H₄, 3,4-(MeO)_2C₆H₃, 2,3,4-(MeO)_3C₆H₂; Ar¹=Ph, 4-MeC₆H₄, 4-MeOC₆H₄, 4-FC₆H₄, 4-CF₃C₆H₄, 3,5-F₂C₆H₃, 4-PhC₆H₄, 2-naphthalene, 4,7-(MeO)₂-1-naphthalene, Y=H) were isolated in 75-85% yields under the above conditions (entries 11-28). Changing a sulfonyl group to an aryl group, no obvious yield changes were observed for the generation of **5**. For the Ar and Ar¹ groups of **3**, the phenyl ring, with both electron-withdrawing and electron-donating substituents, was well tolerated, providing the desired product **5** in moderate to good yields. The structures of **5h**, 5n, 5p, 5u, 5w, 5z and 5aa were determined by single-crystal X-ray crystallography.²¹ However, treatment of **3ac** (Ar= $Ar^1=Y=Ph$) with the α -phenylacetylene group (an internal alkyne) afforded the

Table 2

Synthesis of 5			
Ar O=S= tc	$ \begin{array}{c} \begin{array}{c} & & \\ & \\ \end{array} \\ = 0 \\ & \\ \end{array} \\ \begin{array}{c} Ar \\ aa-j \end{array} \\ \begin{array}{c} Ar \\ Ar^{-1} \end{array} \\ \begin{array}{c} \\ \hline \\ Ar^{-1} \end{array} \\ \begin{array}{c} In(OTf)_3 (\textbf{4c}), N_2H_{4(aq)} \\ \hline \\ dioxane, rt, 4 \\ h \end{array} \\ \begin{array}{c} N \\ Ar \end{array} \\ \begin{array}{c} N \\ Ar \end{array} \\ \begin{array}{c} Ar \\ Ar \end{array} \\ \begin{array}{c} \\ Ar \end{array} \\ \end{array} \\ \begin{array}{c} \\ Ar \end{array} \\ \begin{array}{c} \\ Ar \end{array} \\ \begin{array}{c} \\ Ar \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	N Ar ¹ 5k-ac	
Entry	3 , Ar=, Ar ¹ =, Y=,	5 , yield% ^b	
1	3a , Ph, —, H	5a , 80	
2	3b , 4-FC ₆ H ₄ , —, H	5b , 82	
3	3с , 4-МеОС ₆ Н ₄ , —, Н	5c , 85	
4	3d , 4-MeC ₆ H ₄ , —, H	5d , 83	
5	3e , 4-CF ₃ C ₆ H ₄ , —, H	5e , 82	
6	3f , 4-PhC ₆ H ₄ , —, H	5f , 81	
7	3g , 2-naphthalene, —, H	5g , 75	
8	3h , 2-thiophene, —, H	5h , 72	
9	3i , Ph, —, Me	5i , 73	
10	3j , Ph, —, Et	5j , 72	
11	3k , Ph, Ph, H	5k , 85	
12	31 , 4-MeOC ₆ H ₄ , Ph, H	51 , 83	
13	3m , 4-MeOC ₆ H ₄ , 4-MeC ₆ H ₄ , H	5m , 83	
14	3n , 4-MeOC ₆ H ₄ , 4-MeOC ₆ H ₄ , H	5n , 80	
15	30 , 4-MeOC ₆ H ₄ , 4-FC ₆ H ₄ , H	50 , 78	
16	3p , 4-MeOC ₆ H ₄ , 4-CF ₃ C ₆ H ₄ , H	5p , 75	
17	3q , 4-MeOC ₆ H ₄ , 3,5-F ₂ C ₆ H ₃ , H	5q , 82	
18	3r , 4-MeOC ₆ H ₄ , 4-PhC ₆ H ₄ , H	5r , 83	
19	3s , 4-MeOC ₆ H ₄ , 2-naphthalene, H	5s , 84	
20	3t , 3,4-(MeO) ₂ C ₆ H ₃ , Ph, H	5t , 85	
21	3u , 3,4-(MeO) ₂ C ₆ H ₃ , 4-MeC ₆ H ₄ , H	5u , 80	
22	3v , 3,4-(MeO) ₂ C ₆ H ₃ , 4-MeOC ₆ H ₄ , H	5v , 82	
23	3w , 3,4-(MeO) ₂ C ₆ H ₃ , 4-FC ₆ H ₄ , H	5w , 81	
24	3x , 3,4-(MeO) ₂ C ₆ H ₃ , 4-PhC ₆ H ₄ , H	5x , 82	
25	3y , 3,4-(MeO) ₂ C ₆ H ₃ , 3,5-F ₂ C ₆ H ₃ , H	5y , 75	
26	3z , 2,3,4-(MeO) ₃ C ₆ H ₂ , Ph, H	5z , 80	
27	3aa , 2,3,4-(MeO) ₃ C ₆ H ₂ , 4-FC ₆ H ₄ , H	5aa , 82	
28	3ab , 4,7-(MeO) ₂ -naphthalene, 2,3-CH ₂ O ₂ C ₆ H ₃ , H	5ab , 75	
29	3ac , Ph, Ph, Ph	5ac, — ^c	

 a The pyridazine synthesis was run on a 1.0 mmol scale with **3**, In(OTf)₃ (**4c**) (2 mol %), dioxane (5 mL), N₂H_{4(aq)} (80%, 1 mL), 4 h at 25 $^\circ$ C. b Isolated yield.

^c Complex mixture was observed.

complex mixture. No desired **5ac** was isolated (entry 29). Moreover, when 5.0 g of **3a** (16.0 mmol) was treated with the combination at 25 °C, 2.04 g of **5a** was isolated in a 75% yield. This route can be enlarged to multigram scale for producing **5a**.

Changing the α -substituent from sulfonyl and aryl groups to ethyl ester, benzyl amide and benzoyl groups (see Scheme 3), **5ad** and **5a** were isolated in 31% and 45% yields, respectively, by the treatment of **3ad** and **3af** with the one-pot protocol. For β -ketoamide group of **3ae**, trace **5ae** was observed. For the generation of **5a**, the major reason should be that N₂H₄ promoted a retro-aldol debenzoylation of **3af** with a β -diketone motif followed by the dehydrogenative aromatization process. Additionally, one-pot (4+2) cyclocondensation of cyclic α -sulfonyl γ -alkynone **3ag** was examined. By the above conditions, tetrahydrocinnoline **5af** was isolated in 72% yield. Furthermore, attempts to apply the electrocyclization of **5k** failed to afford a tetracyclic cinnoline **6**²² under Scholl annulation conditions.²³

Scheme 3. Reactions of 3ad-ag and 5k.

3. Conclusion

In summary, we have developed a mild, facile and one-pot synthesis of substituted pyridazines **5** in good yields via an $In(OTf)_3/$ dioxane/N₂H_{4(aq)}-mediated (4+2) cyclocondensation of γ -alkynones **3** under a desulfonative or dehydrogenative aromatization process. The plausible mechanism has been discussed and proposed. The structures of the key products were confirmed by X-ray crystallography. Further investigation regarding synthetic applications of β -ketosulfones will be conducted and published in due course.

4. Experimental section

4.1. General

All other reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/ Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

4.2. A representative synthetic procedure of 5a-ab, 5ad and 5af is as follows

 $ln(OTf)_3$ (11 mg, 0.02 mmol) was added to a solution of **3a-ag** (1.0 mmol) in dioxane (5 mL) at rt. The reaction mixture was stirred at rt for 10 min. N₂H_{4(aq)} (80%, 1 mL) was added to mixture at 25 °C.

The reaction mixture was stirred at rt for 4 h. The reaction mixture was concentrated and extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc= $10/1 \sim 4/1$) afforded **5a**–**ab**, **5ad** and **5af**.

4.2.1. 3-Methyl-6-phenylpyridazine (**5a**).¹⁹¹ Yield=80% (136 mg); Colorless solid; mp=105–108 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₁H₁₁N₂ 171.0922, found 171.0925; ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.04 (m, 2H), 7.79 (d, *J*=8.8 Hz, 1H), 7.54–7.46 (m, 3H), 7.42 (d, *J*=8.4 Hz, 1H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.44, 157.32, 136.22, 129.86, 128.97 (2×), 127.59, 126.91 (2×), 124.27, 21.86.

4.2.2. 3-(4-Fluorophenyl)-6-methylpyridazine (**5b**).^{19h} Yield=82% (154 mg); Colorless solid; mp=138–140 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₁H₁₀FN₂ 189.0828, found 189.0832; ¹H NMR (400 MHz, CDCl₃): δ 8.08–8.03 (m, 2H), 7.52 (d, *J*=8.8 Hz, 1H), 7.41 (d, *J*=8.8 Hz, 1H), 7.22–7.16 (m, 2H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.02 (d, *J*=248.6 Hz), 158.43, 156.31, 134.77 (d, *J*=3.8 Hz), 128.78 (d, *J*=8.4 Hz, 2×), 127.56, 123.84, 115.99 (d, *J*=22.0 Hz, 2×), 21.87.

4.2.3. 3-(4-Methoxyphenyl)-6-methylpyridazine (**5c**). ¹⁹¹ Yield=85% (170 mg); Colorless solid; mp=136–139 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₂H₁₃N₂O 201.1028, found 201.1033; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J*=8.8 Hz, 2H), 7.68 (d, *J*=8.8 Hz, 1H), 7.32 (d, *J*=8.8 Hz, 1H), 7.00 (d, *J*=8.8 Hz, 2H), 3.85 (s, 3H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.99, 157.78, 156.69, 128.76, 128.11 (2×), 127.24, 123.29, 114.27 (2×), 55.30, 21.85.

4.2.4. 3-Methyl-6-(4-methylphenyl)pyridazine (5d).¹⁹¹ Yield=83% (153 mg); Colorless solid; mp=116–118 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for $C_{12}H_{13}N_2$ 185.1079, found 185.1088; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J*=8.0 Hz, 2H), 7.67 (d, *J*=8.8 Hz, 1H), 7.30 (d, *J*=8.8 Hz, 1H), 7.26 (d, *J*=8.0 Hz, 2H), 2.68 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.05, 156.93, 139.70, 133.39, 129.49 (2×), 127.14, 126.54 (2×), 123.54, 21.80, 21.15.

4.2.5. 3-Methyl-6-(4-trifluoromethylphenyl)pyridazine (**5e**).¹⁹¹ Yield=82% (195 mg); Colorless solid; mp=184–186 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₂H₁₀F₃N₂ 239.0796, found 239.0801; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J=8.4 Hz, 2H), 7.80 (d, J=8.4 Hz, 1H), 7.77 (d, J=8.8 Hz, 2H), 7.44 (d, J=8.8 Hz, 1H), 2.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.30, 155.95, 139.72, 131.60 (q, J=31.9 Hz), 127.49, 127.18 (2×), 125.98 (2×), 125.94 (q, J=3.7 Hz), 124.10, 22.06.

4.2.6. 3-(4-Biphenyl)-6-methylpyridazine (**5f**). Yield=81% (199 mg); Colorless solid; mp=188–190 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₇H₁₅N₂ 247.1235, found 247.1232; ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J*=8.4 Hz, 2H), 7.77 (d, *J*=8.8 Hz, 1H), 7.73 (d, *J*=8.8 Hz, 2H), 7.66–7.63 (m, 2H), 7.49–7.44 (m, 2H), 7.40–7.36 (m, 2H), 2.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.43, 156.74, 142.42, 140.20, 135.15, 128.81 (2×), 127.65, 127.55 (2×), 127.26, 127.18 (2×), 127.02 (2×), 123.73, 21.97.

4.2.7. 3-Methyl-6-(naphthalen-2-yl)pyridazine (**5**g).¹⁹¹ Yield=75% (165 mg); Colorless solid; mp=180–183 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₅H₁₃N₂ 221.1079, found 221.1082; ¹H NMR (400 MHz, CDCl₃): δ 8.50 (d,

J=1.2 Hz, 1H), 8.22 (dd, *J*=1.6, 8.4 Hz, 1H), 7.98–7.87 (m, 4H), 7.55–7.50 (m, 2H), 7.42 (d, *J*=8.8 Hz, 1H), 2.78 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 158.45, 157.13, 133.93, 133.50, 133.29, 128.74, 128.71, 127.70, 127.55, 126.98, 126.55, 126.52, 124.33, 124.10, 21.91.

4.2.8. 3-Methyl-6-(thiophen-2-yl)pyridazine (**5h**).¹⁹ⁿ Yield=72% (127 mg): Colorless solid: mp=138-140 °C (recrystallized from hexanes and EtOAc): HRMS (ESI, M^++1) calcd for C₉H₉N₂S 177.0487, found 177.0488; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J*=8.8 Hz, 1H), 7.63 (dd, *J*=1.2, 3.6 Hz, 1H), 7.46 (dd, *J*=1.2, 5.2 Hz, 1H), 7.33 (d, *J*=8.8 Hz, 1H), 7.14 (dd, *J*=3.6, 5.2 Hz, 1H), 2.72 (s, 3H); ^{13}C NMR (100 MHz, CDCl₃): δ 158.30, 153.08, 140.68, 128.78, 127.94, 127.39, 125.83, 122.61, 21.93; Anal. Calcd for C9H8N2S: C, 61.33; H, 4.58. Found: C, 61.54; H, 4.75. Single-crystal X-ray diagram: crystal of compound **5h** was grown by slow diffusion of EtOAc into a solution of compound **5h** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a=6.1629(2) Å, b=7.9773(3) Å, c=16.7489(7) Å, V=821.82(5) Å³, Z=4, $d_{calcd}=1.424$ mg/cm³, F(000)=368, 2θ range 2.437~26.397°, *R* indices (all data) R1=0.0307, wR2=0.0778.

4.2.9. 3-*Ethyl*-6-*phenylpyridazine* (**5***i*). Yield=73% (134 mg); Colorless solid; mp=45–48 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₂H₁₃N₂ 185.1079, found 185.1075; ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.06 (m, 2H), 7.81 (d, *J*=8.8 Hz, 1H), 7.54–7.46 (m, 3H), 7.43 (d, *J*=8.8 Hz, 1H), 3.08 (q, *J*=7.6 Hz, 2H), 1.42 (t, *J*=7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.14, 157.42, 136.23, 129.84, 128.96 (2×), 126.89 (2×), 126.55, 124.40, 28.96, 13.56.

4.2.10. 3-Phenyl-6-n-propylpyridazine (**5***j*). Yield=72% (143 mg); Colorless solid; mp=48–50 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for $C_{13}H_{15}N_2$ 199.1235, found 199.1238; ¹H NMR (400 MHz, CDCl₃): δ 8.09–8.07 (m, 2H), 7.82 (d, *J*=8.8 Hz, 1H), 7.54–7.46 (m, 3H), 7.42 (d, *J*=8.8 Hz, 1H), 3.03 (t, *J*=7.6 Hz, 2H), 1.91–1.82 (m, 2H), 1.03 (t, *J*=7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.05, 157.39, 136.18, 129.87, 128.97 (2×), 127.10, 126.89 (2×), 124.34, 37.62, 22.80, 13.77.

4.2.11. 6-*Methyl*-3,4-*diphenylpyridazine* (**5***k*). ¹⁹¹ Yield=85% (209 mg); Colorless solid; mp=117–120 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₇H₁₅N₂ 247.1235, found 247.1233; ¹H NMR (400 MHz, CDCl₃): δ 7.42–7.40 (m, 2H), 7.39 (s, 1H), 7.36–7.26 (m, 6H), 7.21–7.18 (m, 2H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.40, 157.96, 139.78, 136.66, 136.49, 129.95 (2×), 129.02 (2×), 128.76, 128.70, 128.67 (2×), 128.27, 128.12 (2×), 21.65.

4.2.12. 3-(4-Methoxyphenyl)-6-methyl-4-phenylpyridazine(**5l**). Yield=83% (229 mg); Colorless gum; HRMS (ESI, M⁺+1) calcd for C₁₈H₁₇N₂O 277.1341, found 277.1345; ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.29 (m, 5H), 7.28 (s, 1H), 7.21–7.17 (m, 2H), 6.80 (d, *J*=8.8 Hz, 2H), 3.78 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.86, 158.07, 157.25, 138.67, 137.21, 131.25 (2×), 129.18, 128.90 (2×), 128.59 (2×), 128.43, 127.72, 113.50 (2×), 55.15, 21.82; Anal. Calcd for C₁₈H₁₆N₂O: C, 78.24; H, 5.84. Found: C, 78.41; H, 5.89.

4.2.13. 3-(4-Methoxyphenyl)-4-(4-methylphenyl)-6methylpyridazine (**5m**). Yield=83% (241 mg); Colorless solid; mp=110-113 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₉H₁₉N₂O 291.1497, found 291.1502; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J*=8.4 Hz, 2H), 7.28 (s, 1H), 7.13 (d, *J*=8.4 Hz, 2H), 7.08 (d, *J*=8.0 Hz, 2H), 6.82 (d, *J*=8.8 Hz, 2H), 3.80 (s, 3H), 2.77 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.89, 158.02, 157.41, 138.95, 138.57, 134.16, 131.27 (2×), 129.37 (2×), 129.31, 128.84 (2×), 127.83, 113.54 (2×), 55.21, 21.78, 21.22; Anal. Calcd for $C_{19}H_{18}N_2O$: C, 78.59; H, 6.25. Found: C, 78.68; H, 6.43.

4.2.14. 6-Methyl-3,4-di(4-methoxyphenyl)pyridazine (5n). Yield=80% (245 mg); Colorless solid; mp=112-113 °C (recrystallized from hexanes and EtOAc): HRMS (ESI, M^++1) calcd for C₁₉H₁₉N₂O₂ 307.1447, found 307.1450; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *I*=8.8 Hz, 2H), 7.27 (s, 1H), 7.12 (d, *I*=8.8 Hz, 2H), 6.83 (d, J=8.8 Hz, 2H), 6.82 (d, J=8.8 Hz, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 2.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.86, 159.84, 158.02, 157.38, 138.51, 131.22 (2×), 130.30 (2×), 129.43, 129.21, 127.55, 114.10 (2×), 113.56 (2×), 55.24, 55.19, 21.78; Anal. Calcd for C19H18N2O2: C, 74.49; H, 5.92. Found: C, 74.53; H, 6.08. Singlecrystal X-ray diagram: crystal of compound **5n** was grown by slow diffusion of EtOAc into a solution of compound **5n** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the triclinic crystal system, space group P −1, *a*=9.7886(6) Å, *b*=11.7178(7) Å, c=14.1885(8) Å, V=1590.23(16) Å³, Z=2, $d_{calcd}=1.280$ mg/cm³, F(000) = 648, 2θ range $1.456 \sim 26.432^{\circ}$, *R* indices (all data) *R*1=0.1110, w*R*2=0.1918.

4.2.15. 4 - (4 - Fluorophenyl) - 3 - (4 - methoxyphenyl) - 6 - methylpyridazine (**50** $). Yield=78% (229 mg); Colorless solid; mp=130-133 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₈H₁₆FN₂O 295.1247, found 295.1248; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ 7.34 (d, *J*=8.8 Hz, 2H), 7.28 (s, 1H), 7.20-7.14 (m, 2H), 7.05-6.99 (m, 2H), 6.82 (d, *J*=8.8 Hz, 2H), 3.80 (s, 3H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.84 (d, *J*=247.8 Hz), 160.02, 158.15, 157.32, 137.87, 133.15 (d, *J*=3.0 Hz), 131.27 (2×), 130.81 (d, *J*=8.3 Hz, 2×), 128.90, 127.72, 115.84 (d, *J*=22.0 Hz, 2×), 113.67 (2×), 55.22, 21.79.

4.2.16. 3-(4-Methoxyphenyl)-6-methyl-4-(4-trifluoromethylphenyl) *pyridazine* (**5***p*). Yield=75% (258 mg); Colorless solid: mp=138-140 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M^++1) calcd for $C_{19}H_{16}F_3N_2O$ 345.1215, found 345.1212; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J=8.4 Hz, 2H), 7.34–7.32 (m, 4H), 7.32 (s, 1H), 6.83 (d, J=8.8 Hz, 2H), 3.81 (s, 3H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.21, 158.21, 157.12, 140.91, 137.55, 131.34 (2×), 129.37 (2×), 128.36, 127.89, 125.71 (d, J=3.0 Hz, 2×), 125.64 (d, J=3.8 Hz, 2×), 113.80 (2×), 55.24, 21.76; Anal. Calcd for C19H15F3N2O: C, 66.27; H, 4.39. Found: C, 66.38; H, 4.58. Singlecrystal X-ray diagram: crystal of compound **5p** was grown by slow diffusion of EtOAc into a solution of compound **5p** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, *a*=6.1166(11) Å, *b*=10.929(2) Å, c=24.165(5) Å, V=1610.2(5) Å³, Z=4, $d_{calcd}=1.420$ mg/cm³, F(000)=712, 2θ range 1.691~26.452°, *R* indices (all data) *R*1=0.0527, wR2=0.1147.

4.2.17. 4-(3,5-Difluorophenyl)-3-(4-methoxyphenyl)-6methylpyridazine (**5q**). Yield=82% (256 mg); Colorless solid; mp=117–119 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₈H₁₅F₂N₂O 313.1153, found 313.1155; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J*=8.8 Hz, 2H), 7.27 (s, 1H), 6.85 (d, *J*=8.8 Hz, 2H), 6.80 (t, *J*=2.4 Hz, 1H), 6.76–6.71 (m, 2H), 3.82 (s, 3H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.99 (d, *J*=248.7 Hz), 162.86 (d, *J*=248.7 Hz), 160.27, 158.24, 156.88, 140.51, 136.57, 131.18 (2×), 128.21, 127.51, 113.84 (2×), 112.12 (d, *J*=26.6 Hz), 112.12 (d, *J*=11.4 Hz), 104.10 (t, *J*=25.0 Hz), 55.25, 21.80; Anal. Calcd for C₁₈H₁₄F₂N₂O: C, 69.22; H, 4.52. Found: C, 69.35; H, 4.63.

4.2.18. 4-(4-Biphenyl)-3-(4-methoxyphenyl)-6-methylpyridazine (**5r**). Yield=83% (292 mg); Yellowish gum; HRMS (ESI, M⁺+1) calcd for C₂₄H₂₁N₂O 353.1654, found 353.1655; ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.57 (m, 4H), 7.48–4.35 (m, 6H), 7.29 (d, J=8.8 Hz,

2H), 6.84 (d, *J*=8.8 Hz, 2H), 3.81 (s, 3H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.15, 157.92, 157.50, 141.50, 139.89, 135.73, 131.38 (2×), 129.43 (2×), 128.90 (2×), 128.71, 128.36 (2×), 127.83, 127.33 (2×), 127.00 (2×), 113.70 (2×), 55.24, 21.53; Anal. Calcd for C₂₄H₂₀N₂O: C, 81.79; H, 5.72. Found: C, 81.92; H, 5.69.

4.2.19. 3-(4-Methoxyphenyl)-6-methyl-4-(naphthalen-2-yl)pyridazine (**5s**). Yield=84% (274 mg); Yellowish gum; HRMS (ESI, M⁺+1) calcd for C₂₂H₁₉N₂O 327.1497, found 327.1499; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J*=8.0 Hz, 1H), 7.89 (d, *J*=8.4 Hz, 1H), 7.51–7.37 (m, 5H), 7.31 (d, *J*=8.8 Hz, 2H), 7.25 (dd, *J*=0.8, 8.4 Hz, 1H), 6.62 (d, *J*=9.2 Hz, 2H), 3.69 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.18, 158.45, 157.32, 139.04, 134.42, 133.54, 130.73 (2×), 130.64, 130.52, 129.31, 128.59, 128.29, 127.49, 126.99, 126.40, 125.27, 124.77, 113.52 (2×), 55.12, 21.25.

4.2.20. 3-(3,4-Dimethoxyphenyl)-6-methyl-4-phenylpyridazine(**5t**). Yield=85% (260 mg); Colorless solid; mp=117-119 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₉H₁₉N₂O₂ 307.1447, found 307.1450; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.32 (m, 3H), 7.30 (s, 1H), 7.22-7.19 (m, 2H), 7.01 (d, *J*=8.4 Hz, 1H), 6.96 (d, *J*=2.0 Hz, 1H), 6.77 (d, *J*=8.0 Hz, 1H), 3.86 (s, 3H), 3.63 (s, 3H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.13, 157.17, 149.38, 148.34, 138.90, 137.36, 129.10, 128.89 (2×), 128.67 (2×), 128.46, 127.86, 122.90, 113.11, 110.60, 55.78, 55.56, 21.80.

4.2.21. 3-(3,4-Dimethoxyphenyl)-6-methyl-4-(4-methylphenyl)pyridazine (5u). Yield=80% (256 mg); Colorless solid; mp=125-127 °C (recrystallized from hexanes and EtOAc): HRMS (ESI, M^++1) calcd for C₂₀H₂₁N₂O₂ 321.1603, found 321.1610; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (s, 1H), 7.14 (d, *J*=8.4 Hz, 2H), 7.09 (d, *J*=8.0 Hz, 2H), 7.00 (dd, *J*=2.0, 8.4 Hz, 1H), 6.98 (d, *J*=2.0 Hz, 1H), 6.77 (d, *J*=8.4 Hz, 1H), 3.87 (s, 3H), 3.66 (s, 3H), 2.78 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.10, 157.30, 149.36, 148.36, 139.04, 138.53, 134.32, 129.36 $(2\times)$, 129.33, 128.81 $(2\times)$, 127.83, 122.86, 113.12, 110.61, 55.80, 55.57, 21.78, 21.18. Single-crystal X-ray diagram: crystal of compound **5u** was grown by slow diffusion of EtOAc into a solution of compound **5u** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/n, a=7.8618(3) Å, b=10.9341(4) Å, c=19.6250(7) Å, $V = 1678.08(11) \text{ Å}^3$, Z = 4, $d_{calcd} = 1.268 \text{ mg/cm}^3$, F(000) = 680, 2θ range 2.135~26.359°, *R* indices (all data) *R*1=0.0583, w*R*2=0.1234.

4.2.22. 3-(3,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-6methylpyridazine (**5***v*). Yield=82% (276 mg); Yellowish gum; HRMS (ESI, M⁺+1) calcd for C₂₀H₂₁N₂O₃ 337.1552, found 337.1552; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (s, 1H), 7.13 (d, J=8.8 Hz, 2H), 7.03 (d, J=2.0 Hz, 1H), 6.97 (dd, J=2.0, 8.0 Hz, 1H), 6.85 (d, J=8.8 Hz, 2H), 6.77 (d, J=8.4 Hz, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.70 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.90, 158.07, 157.32, 149.34, 148.45, 138.71, 130.27 (2×), 129.42, 129.30, 127.66, 122.84, 114.13 (2×), 113.05, 110.63, 55.80, 55.65, 55.30, 21.76; Anal. Calcd for C₂₀H₂₀N₂O₃: C, 71.41; H, 5.99. Found: C, 71.62; H, 6.12.

4.2.23. 4-(4-Fluorohenyl)-3-(3,4-dimethoxyphenyl)-6methylpyridazine (**5***w*). Yield=81% (262 mg); Colorless solid; mp=144–146 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₁₉H₁₈FN₂O₂ 325.1352, found 325.1351; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 1H), 7.20–7.15 (m, 2H), 7.05–6.99 (m, 3H), 6.91 (dd, *J*=2.0, 8.4 Hz, 1H), 6.76 (d, *J*=8.4 Hz, 1H), 3.86 (s, 3H), 3.70 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.76 (d, *J*=247.9 Hz), 158.21, 157.14, 149.45, 148.53, 137.76, 133.29 (d, *J*=3.0 Hz), 130.74 (d, *J*=8.3 Hz, 2×), 128.99, 127.61, 122.88, 115.78 (d, *J*=22.0 Hz, 2×), 112.99, 110.62, 55.78, 55.64, 21.80. Single-crystal Xray diagram: crystal of compound **5w** was grown by slow diffusion of EtOAc into a solution of compound **5w** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, a=15.8783(8) Å, b=9.1753(5) Å, c=11.1547(6) Å, V=1614.43(15) Å³, Z=4, $d_{calcd}=1.334$ mg/cm³, F(000)=680, 2θ range $1.291 \sim 26.416^{\circ}$, R indices (all data) R1=0.0589, wR2=0.1236.

4.2.24. 4-(4-Biphenyl)-3-(3,4-dimethoxyphenyl)-6-methylpyridazine (**5**x). Yield=82% (313 mg); Yellowish gum; HRMS (ESI, M⁺+1) calcd for C₂₅H₂₃N₂O₂ 383.1760, found 383.1766; ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.58 (m, 4H), 7.48–7.44 (m, 2H), 7.40 (s, 1H), 7.40–7.36 (m, 1H), 7.30 (d, *J*=8.4 Hz, 2H), 7.05 (dd, *J*=2.0, 8.0 Hz, 1H), 7.04 (br s, 1H), 6.79 (d, *J*=8.4 Hz, 1H), 3.88 (s, 3H), 3.67 (s, 3H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.01, 157.37, 155.78, 149.65, 148.51, 141.57, 139.90, 139.21, 135.93, 129.42 (2×), 128.95 (2×), 128.32, 127.88, 127.36 (2×), 126.99 (2×), 123.08, 113.12, 110.70, 55.83, 55.64, 21.57.

4.2.25. 4-(3,5-Difluorohenyl)-3-(3,4-dimethoxyphenyl)-6methylpyridazine (**5**y). Yield=75% (257 mg); Colorless gum; HRMS (ESI, M⁺+1) calcd for C₂₉H₁₇F₂N₂O₂ 343.1258, found 357.1608; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (s, 1H), 7.06 (d, *J*=2.0 Hz, 1H), 6.90 (dd, *J*=2.0, 8.4 Hz, 1H), 6.84–6.72 (m, 4H), 3.88 (s, 3H), 3.76 (s, 3H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.02 (d, *J*=248.7 Hz), 162.89 (d, *J*=248.6 Hz), 158.35, 156.79, 149.82, 148.79, 140.66 (t, *J*=9.9 Hz), 136.62, 128.32, 127.50, 122.92, 112.82, 112.08 (d, *J*=26.5 Hz), 112.08 (d, *J*=11.3 Hz), 110.75, 104.04 (t, *J*=25.1 Hz), 55.84, 55.78, 21.82.

4.2.26. 3-(2,3,4-Trimethoxyphenyl)-6-methyl-4-phenylpyridazine (**5***z*). Yield=80% (269 mg); Colorless solid; mp=156–158 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₂₀H₂₁N₂O₃ 337.1552, found 337.1553; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (s, 1H), 7.28–7.25 (m, 3H), 7.20–7.16 (m, 3H), 6.74 (d, *J*=8.8 Hz, 1H), 3.88 (s, 3H), 3.63 (s, 3H), 3.35 (s, 3H), 2.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.75, 156.23, 154.62, 151.11, 141.70, 140.38, 137.18, 128.41, 128.37 (2×), 128.27 (2×), 126.63, 125.73, 124.29, 107.13, 60.64, 60.51, 55.99, 21.97. Single-crystal X-ray diagram: crystal of compound **5***z* was grown by slow diffusion of EtOAc into a solution of compound **5***z* in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, *a*=13.0301(7) Å, *b*=17.7043(10) Å, *c*=7.4858(4) Å, *V*=1722.63(16) Å³, *Z*=4, *d*_{calcd}=1.297 mg/cm³, *F*(000)=712, 2 θ range 1.567 ~26.407°, *R* indices (all data) *R*1=0.0547, wR2=0.1192.

4.2.27. 4-(4-Fluorophenyl)-3-(2,3,4-Trimethoxyphenyl)-6methylpyridazine (5aa). Yield=82% (290 mg); Colorless solid; mp=173-174 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for C₂₀H₂₀FN₂O₃ 355.1458, found 355.1455; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (s, 1H), 7.18–7.13 (m, 3H), 6.99–6.93 (m, 2H), 6.74 (d, J=8.8 Hz, 1H), 3.88 (s, 3H), 3.65 (s, 3H), 3.40 (s, 3H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.77 (d, J=247.1 Hz), 158.79, 156.13, 154.68, 151.04, 141.78, 139.43, 133.22, 133.17 (d, J=8.4 Hz, 2×), 126.47, 125.61, 124.11, 115.36 (d, J=22.0 Hz, 2×), 107.28, 60.71, 60.68, 55.99, 21.97; Anal. Calcd for C₂₀H₁₉FN₂O₃: C, 67.79; H, 5.40. Found: C, 67.92; H, 5.62. Single-crystal X-ray diagram: crystal of compound 5aa was grown by slow diffusion of EtOAc into a solution of compound **5aa** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group P 21/c, *a*=8.5581(9) Å, *b*=17.768(2) Å, *c*=12.2073(13) Å, V=1788.4(3) Å³, Z=4, $d_{calcd}=1.316$ mg/cm³, F(000)=744, 2θ range 2.077 ~ 26.373°, *R* indices (all data) *R*1=0.0732, w*R*2=0.1042.

4.2.28. 4-(3,4-Methylenedioxyphenyl)-3-(4,7-dimethoxynaphthalen-1-yl)-6-methylpyridazine (**5ab**). Yield=75% (300 mg); Colorless solid; mp=175–177 °C (recrystallized from hexanes and EtOAc); HRMS (ESI, M⁺+1) calcd for $C_{24}H_{21}N_2O_4$ 401.1501, found 401.1503;

¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J*=9.2 Hz, 1H), 7.41 (s, 1H), 7.28 (d, J=8.0 Hz, 1H), 7.05 (dd, J=2.4, 9.2 Hz, 1H), 6.76 (d, J=2.4 Hz, 1H), 6.68 (d, J=8.0 Hz, 1H), 6.63 (dd, J=1.6, 8.0 Hz, 1H), 6.58 (s, 1H), 6.56 (d, J=1.6 Hz, 1H), 5.85 (s, 2H), 3.99 (s, 3H), 3.69 (s, 3H), 2.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.68, 158.33, 158.10, 156.25, 147.99, 147.66, 140.24, 133.76, 130.47, 129.96, 127.08, 125.96, 123.89, 122.75, 120.72, 117.37, 108.67, 108.38, 103.79, 101.73, 101.24, 55.48, 55.09, 21.98.

4.2.29. 4-Ethoxycarbonyl-6-methyl-3-phenylpyridazine (5ad). Yield=31% (75 mg); Colorless oil; HRMS (ESI, M⁺+1) calcd for C14H15N2O2 243.1134, found 243.1138; ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.58 (m, 2H), 7.60 (s, 1H), 7.48–7.45 (m, 3H), 4.19 (q, J=7.2 Hz, 2H), 2.83 (s, 3H), 1.08 (t, J=7.2 Hz, 3H); ¹³C NMR (100 MHz, $CDCl_3$): δ 166.56, 158.91, 156.61, 136.71, 129.98, 129.21, 128.77 (2×), 128.28 (2×), 126.09, 62.22, 21.90, 13.57.

4.2.30. 3-Methyl-5,6,7,8-tetrahydrocinnoline (5af). Yield=72% (107 mg); Colorless oil; HRMS (ESI, M^++1) calcd for C₉H₁₃N₂ 149.1079, found 149.1082; ¹H NMR (400 MHz, CDCl₃): δ 6.99 (s, 1H), 3.07 (t, J=6.4 Hz, 2H), 2.73 (t, J=6.4 Hz, 2H), 2.59 (s, 3H), 1.93–1.87 (m, 2H), 1.82–1.76 (m, 2H); ^{13}C NMR (100 MHz, CDCl₃): δ 158.26, 157.20, 137.38, 126.78, 29.51, 27.87, 22.44, 21.79, 21.57.

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of the Republic of China for its financial support (MOST 104-2113-M-037-012).

Supplementary data

Supplementary data (Experimental procedure and scanned photocopies of NMR (CDCl₃) spectral data were supported) associated with this article can be found in the online version, at http:// dx.doi.org/10.1016/j.tet.2015.07.025.

References and notes

- 1. (a) Larock, R. C.; Leong, W. W. In Comprehensive Organic Synthesis; Pergamon; Trost, B. M., Fleming, I., Semmelhack, M. F., Eds.; Oxford: UK, 1991; Vol. 4, p 269; (b) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 76.
- 2. For review articles of hydration of alkynes, see: (a) Hintermann, L.; Labonne, A. Synthesis 2007, 1121; (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079; (c) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657
- 3. For Au, see: (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729; (b) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415; (c) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563; (d) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925; (e) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol. Catal. A: Chem. **2004**, 212, 35; (f) Vasudevan, A.; Verzal, M. K. Synlett **2004**, 631; (g) Marion, N.; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. **2009**, 131, 448; (h) Hashmi, A. S. K.; Hengst, T.; Lothschutz, C.; Rominger, F. Adv. Synth. Catal. 2010, 352 1315
- 4. For Ag, see: (a) Das, R.; Chakraboty, D. Appl. Organomet. Chem. 2012, 26, 722; (b) Kataoka, Y.; Matsumoto, O.; Tani, K. Chem. Lett. 1996, 727.
- 5. For Ag/Au, see: (a) Arcadi, A.; Alfonsi, M.; Chiarini, M.; Marinelli, F. J. Organomet. Chem. **2009**, 694, 576; (b) Belting, V.; Krause, N. Org. Biomol. Chem. **2009**, 7, 1221; (c) Wang, T.; Zhang, J. Dalton Trans. **2010**, 39, 4270.
- 6. For Ru, see: (a) Taqui Khan, M. M.; Halligudi, S. B.; Shukla, S. J. Mol. Catal. 1990, 58, 299; (b) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37, 2867; (c) Grotjahn, D. B.; Incarnito, C. D.; Rheingold, A. L. Angew. Chem., Int. Ed. 2001, 40, 3884; (d) Chevallier, F.; Breit, B. *Angew. Chem., Int. Ed.* **2006**, 45, 1599; (e) Labonne, A.; Kribber, T.; Hintermann, L. *Org. Lett.* **2006**, 8, 5853; (f) Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917.
- 7
- For Rh, see: Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal. **1992**, 75, 153. For Pt, see: (a) Hartman, J.; Hiscox, W. C.; Jennings, P. W. J. Org. Chem. **1993**, 58, 8. 7613; (b) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669; (c) Lucey, D. W.; Atwoood, J. D. Organometallics 2002, 21, 2481; (d) Hiscox, W.; Jennings, P. W. Organometallics 1990, 9, 1997; (e) Kataoka, Y.; Matsumoto, O.; Ohashi, M.; Yamagata, T.; Tani, K. Chem. Lett. 1994, 1283.

- 9. For Os. see: Harman, W. D.: Dobson, J. C.: Taube, H. J. Am. Chem. Soc. 1989. 111. 3062
- 10 For Ir, see: (a) Kanemitsu, H.; Uehara, K.; Fukuzumi, S.; Ogo, S. J. Am. Chem. Soc. 2008, 130, 17141; (b) Ogo, S.; Uehara, K.; Abura, T.; Watanabe, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126, 16520; (c) Hirabayashi, T.; Okimoto, Y.; Saito, A.; Morita, M.; Sakaguchi, S.; Ishii, Y. Tetrahedron 2006, 62, 2231.
- 11. For Pd, see: (a) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127; (b) Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764; (c) Arcadi, A.; Cacchi, S.; Fabrizi, G.: Marinelli, F.: Parisi, L. M. Tetrahedron 2003, 59, 4661: (d) Picquet, M.: Bruneau, C.; Dixneuf, P. H. Tetrahedron 1999, 55, 3937; (e) Cacchi, S.; Fabrizi, G.; Moro, L. J. Org. Chem. 1997, 62, 5327; (f) Li, Y.; Yu, Z. J. Org. Chem. 2009, 74, 8904; (g) Arcadi, A.; Rossi, E. Tetrahedron Lett. 1996, 37, 6811; (h) Saito, A.; Enomoto, Y.; Hanzawa, Y. Tetrahedron Lett. 2011, 52, 4299.
- 12. For Fe, see: (a) Damiano, J. P.; Pastel, M. J. Organomet. Chem. 1996, 522, 303; (b) Wu, X.-F.; Bezier, D.; Darcel, C. Adv. Synth. Catal. 2009, 351, 367; (c) Cabrero-Antonio, J. R.; Leyva-Perez, A.; Corma, A. Chem.-Eur. J. 2012, 18, 11107; (d) Park, J.; Yeon, J.; Lee, P. H.; Lee, K. *Tetrahedron Lett.* **2013**, *54*, 4414. **13.** For Hg, see: Imagawa, H.; Kurisaki, T.; Nishizawa, M. Org. Lett. **2004**, 6, 3679.
- **2014**, *55*, 4815; (b) Hassam, M.; Li, W.-S. *Tetrahedron* **2015**, *71*, 2719. 14
- 15. In-mediated synthesis of furans. For InCl3, see: (a) Feng, X.; Tan, Z.; Chen, D.; Shen, Y.; Guo, C.-C.; Xiang, J.; Zhu, C. Tetrahedron Lett. 2008, 49, 4110 For In(OTf)₃, see: (b) Tsuji, H.; Yamagata, K.-i.; Ueda, Y.; Nakamura, E. Synlett **2010**, 1015.
- (a) Chang, M.-Y.; Chen, Y.-C.; Chan, C.-K. Tetrahedron 2014, 70, 8908; (b) Chang, 16 W.-Y.; Cheng, Y.-J.; Lu, Y.-J. Org. Lett. 2014, 16, 6252; (c) Chang, M.-Y.; Lu, Y.-J.; Cheng, Y.-C. Tetrahedron 2015, 71, 1192; (d) Chang, M.-Y.; Cheng, Y.-J.; Lu, Y.-J. Org. Lett. 2015, 17, 1264; (e) Chang, M.-Y.; Cheng, Y.-J.; Lu, Y.-J. Org. Lett. 2015, 17, 3142.
- 17. For recent synthesis of β-ketosulfones, see: (a) Pospisil, J.; Sato, H. J. Org. Chem. **2011**, 76, 2269; (b) Sreedhar, B.; Rawat, V. S. Synlett **2012**, 413; (c) Kumar, A.; Muthyala, M. K. *Tetrahedron Lett.* **2011**, 52, 5368; (d) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, W. *J. Am. Chem. Soc.* **2013**, 135, 11481; (e) Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208; (f) Zhou, G.; Ting, P. T.; Aslanian, R. G. Tetrahedron Lett. 2010, 51, 939; (g) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. *Angew. Chem., Int. Ed.* **2014**, 53, 4205; (h) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Eur. J. Org. Chem. 2014, 10, 2032; (i) Singh, A. K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742; (j) Shi, X.; Ren, X.; Ren, Z.; Li, J.; Wang, Y.; Yang, S.; Gu, J.; Gao, Q.; Huang, G. Eur. J. Org. Chem. 2014, 10, 5083; (k) Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem.-Eur. J. 2014, 20, 3045.
- 18. For reviews on synthesis of pyridazines, see: (a) Boger, D. L. Chem. Rev. 1986, 86, 781; (b) Boger, D. L.; Patel, M. Prog. Heterocycl. Chem. 1989, 1, 30; (c) Bourguignon, J. J.; Oumouch, S.; Schmitt, M. Curr. Org. Chem. 2006, 10, 277; (d) Elnagdi, M. H.; Al-Awadi, N. A.; Abdelhamid, I. A. Adv. Heterocycl. Chem. 2009, 97, 1; (e) Haider, N.; Holzer, W. Sci. Syn. 2004, 16, 125; (f) Kolar, P.; Tisler, M. Adv. Heterocycl. Chem. 1999, 75, 167.
- 19. For representative examples on the synthesis of pyridazines, see: (a) Draper, T. L.; Bailey, T. R. J. Org. Chem. 1995, 60, 748; (b) South, M. S.; Jakuboski, T. L.; Westmeyer, M. D.; Daniel, D. R. J. Org. Chem. 1996, 61, 8921; (c) Helm, M. D.; Moore, J. E.; Plant, A.; Harrity, J. P. A. Angew. Chem., Int. Ed. 2005, 44, 3889; (d) Yang, X.; Knochel, P. Org. Lett. 2006, 9, 1941; (e) Hamasaki, A.; Ducray, R.; Boger, D. L. J. Org. Chem. 2006, 71, 185; (f) Aliyama, T.; Moita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070; (g) Xie, H.; Zu, L.; Oueis, H. R.; Li, H.; Wang, J.; Wang, W. Org. Lett. 2008, 10, 1923; (h) Sengmany, S.; Leonel, E.; Polissaint, F.; Nedelec, J.-Y.; Pipelier, M.; Thobie-Gautier, C.; Dubreuil, D. J. Org. Chem. 2007, 72, 5631; (i) Gao, Q.; Zhu, Y.; Lian, M.; Liu, M.; Yuan, J.; Wu, A.; Yin, G. J. Org. Chem. 2012, 77, 9865; (j) Attanasi, O. A.; Favi, G.; Fillippone, P.; Perrulli, F. R.; Santeusanio, S. Org. Lett. 2009, 11, 309; (k) Petiot, P.; Gagnon, A. Eur. J. Org. Chem. 2013, 24, 5282; (1) Mboyi, C. D.; Duhayon, C.; Canac, Y.; Chauvin, R. Tetrahedron 2014, 70, 4957; (m) Lin, S.; Liu, Z.; Hu, Y. J. Comb. Chem. 2007, 9, 742; (n) Aldous, D. J.; Bower, S.; Moorcroft, N.; Todd, M. Synlett 2001, 150.
- 20. For the potential biological activities of pyridazines, see: (a) Benson, S. C.; Palabrica, C. A.; Snyder, J. K. J. Org. Chem. 1987, 52, 4610; (b) Rohet, F.; Rubat, C.; Coudert, P.; Couquelet, J. Bioorg. Med. Chem. 1997, 5, 655; (c) Tucker, J. A.; Allwine, D. A.; Grega, K. C.; Barbachyn, M. R.; Klock, J. L.; Adamski, J. L.; Brickner, S. J.; Hutchinson, D. K.; Ford, C. W.; Zurenko, G. E.; Conradi, R. A.; Burton, P. S.; Jensen, R. M. J. Med. Chem. 1998, 41, 3723; (d) Gyoten, M.; Nagaya, H.; Fukuda, S.; Ashida, Y.; Kawano, Y. Chem. Pharm. Bull. 2003, 51, 122; (e) Tamayo, N.; Liao, L.; Goldberg, M.; Powers, D.; Tudor, Y. Y.; Yu, V.; Wong, L. M.; Henkle, B.; Middleton, S.; Syed, R.; Harvey, T.; Jang, G.; Hungate, R.; Dominguez, C. Bioorg. Med. Chem. Lett. 2005, 15, 2409; (f) Emmerich, J.; Hu, Q.; Hanke, N.; Hartmann, R. W. J. Med. Chem. 2013, 56, 6022.
- 21.. CCDC 1057388 (5h), 1053820 (5n), 1053819 (5p), 106140 (5u), 106141 (5w), 1062652 (5z) and 1053821 (5aa) contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam. ac.uk/conts/retrieving.html(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).
- 22. Young, B. S.; Kohler, F.; Herges, R.; Haley, M. M. J. Org. Chem. 2011, 76, 8483. (a) Boden, N.; Bushby, R. J.; Headdock, G.; Lozman, O. R.; Wood, A. Liq. Cryst. 2001, 28, 139; (b) King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279; (c) Simpson, C. D.; Mattersteig, G.; Martin, K.; Gherghel, L.; Bauer, R. E.; Rader, H. J.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 3139; (d) Churruca, F.; SanMartin, R.; Carril, M.; Urtiaga, M. K.; Solans, X.; Tellitu, I.; Dominguez, E. J. Org. Chem. 2005, 70, 3178; (e) Navale, T. S.; Thakur, K.; Rathore, R. Org. Lett. **2011**, 13, 1634; (f) Zhang, X.; Jiang, X.; Zhang, K.; Mao, L.; Luo, J.; Chi, C.; Chan, H. S. O.; Wu, J. J. Org. Chem. 2010, 75, 8069.