

Journal of Organometallic Chemistry 541 (1997) 127-141

Cyclopentadienyl– und Pentamethylcyclopentadienyl–Rutheniumkomplexe mit Carboxylat-, Vinylester- und Carben-Liganden¹

H. Werner *, T. Braun, T. Daniel, O. Gevert, M. Schulz

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Eingegangen 5 November 1996

Abstract

Monomeric carboxylatoruthenium(II) complexes $[C_5R_5Ru(\eta^2-O_2CR')(PPh_3)]$ (R = H, Me; R' = Me, ¹Bu, CF₃) were prepared by ligand displacement from $[(C_5R_5)Ru(\eta^3-2-MeC_3H_4)(PPh_3)]$ and $R'CO_2H$. From a similar route, the tosylato and pentachlorphenolato derivatives $[C_5H_5Ru\{O_2SO(p-C_6H_4Me)\}(PPh_3)]_n$ and $[C_5H_5Ru(\eta^2-O_2C_6C_1)(PPh_3)]$ were obtained. On treatment with PhNH₂, CO, PPh₃ and O₂, they reacted to give the complexes $[C_5H_5Ru\{O_2SO(p-C_6H_4Me)\}(L)(PPh_3)]$ and $[C_5H_5Ru(OC_6C_1)(CO)(PPh_3)]$ respectively. The reaction of $[C_5R_5Ru(\eta^2-O_2CR')(PPh_3)]$ (R' = Me, ¹Bu) with terminal alkynes $HC \equiv CR$ (R = CO_2Me , Ph) yielded the vinylesterruthenium(II) compounds $[C_5H_5Ru\{\kappa^2(C,O)-C(=CHR)OC(R')=O\}(PPh_3)]$ for which a resonance structure involving a carboxylato(vinylidene) species is postulated. The carbene half-sandwich type complexes $[C_5H_5RuCI(=CRR')(PPh_3)]$ (R and R' = C_6H_4X) were prepared in two steps from $[C_5H_5Ru(\eta^2-O_2CMe)(PPh_3)]$, N₂CRR' and either Al₂O₃/Cl⁻ or Et₃NHCl. The molecular structure of $[C_5Me_5Ru(\eta^2-O_2C^tBu)(PPh_3)]$ and $[C_5H_5RuCI(=CPh_2)(PPh_3)]$ have been determined by X-ray single-crystal structural investigations.

Zusammenfassung

Monomere Carboxylatoruthenium(II)-Komplexe $[C_5R_5Ru(\eta^2-O_2CR')(PPh_3)]$ (R = H, Me; R' = Me, ^tBu, CF₃) werden durch Ligandverdrängung aus $[(C_5R_5)Ru(\eta^3-2-MeC_3H_4)(PPh_3)]$ und $R'CO_2H$ synthetisiert. Auf ähnliche Weise sind die Tosylato- und Pentachlorphenolato-Derivate $[C_5H_5Ru\{O_2SO(p-C_6H_4Me)\}(PPh_3)]_n$ und $[C_5H_5Ru(\eta^2-OC_6C_5)(PPh_3)]$ erhältlich. Bei Einwirkung von PhNH₂, CO, PPh₃ und O₂ reagieren diese zu den Komplexen $[C_5H_5Ru\{O_2SO(p-C_6H_4Me)\}(L)(PPh_3)]$ bzw. $[C_5H_5Ru(OC_6C_5)(CO)(PPh_3)]$. Die Reaktion von $[C_5R_5Ru(\eta^2-O_2CR')(PPh_3)]$ (R' = Me, ^tBu) mit terminalen Alkinen führt zu den Vinylesterruthenium(II)-Verbindungen $[C_5H_5Ru\{\kappa^2(C,O)-C(=CHR)OC(R')=O\}(PPh_3)]$, für welche eine Resonanzstruktur unter Berücksichtigung einer Carboxylato(vinyliden)-Grenzform postuliert wird. Die Carbenkomplexe vom Halbsandwichtyp $[C_5H_5RuCI(=CRR')(PPh_3)]$ (R und $R' = C_6H_4X$) werden in zwei Schritten aus $[C_5H_5Ru(\eta^2-O_2CMe)(PPh_3)]$, N₂CRR' und entweder Al₂O₃/Cl⁻ oder Et₃NHCl hergestellt. Die Molekülstrukturen von $[C_5Me_5Ru(\eta^2-O_2C'Bu)(PPh_3)]$ und $[C_5H_5RuCI(=CPh_2)(PPh_3)]$ wurden durch Einkristall-Röntgenstrukturanalysen bestimmt. © 1997 Elsevier Science S.A.

Keywords: Ruthenium; Carboxylathoruthenium(II) complexes; Carbene ligands

1. Einleitung

Nach der Isolierung und strukturellen Charakterisierung der monomeren Carboxylato-Komplexe $[Rh(\eta^2-O_2CR)(P^iPr_3)_2][1]$ haben wir kürzlich auch über einen Weg zur Synthese der Acetatoruthenium-Verbin-

^{*} Corresponding author.

¹ Herrn Professor Gottfried Huttner mit den besten Wünschen zum

^{60.} Geburtstag gewidmet.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. *PII* \$0022-328X(97)00045-4

dung [CpRu(η^2 -O₂CCH₃)(PPh₃)] (3) ² berichtet [2]. Im Rahmen von Reaktivitätsstudien fanden wir, daß sich 3 hervorragend als Ausgangssubstanz zur Darstellung von Carben-Komplexen des Typs [CpRuCl(=CR₂)(PPh₃)] eignet [3]. Entsprechende Vinyliden-Verbindungen [CpRuX(=C=CHR)(PPh₃)] [4] konnten wir durch Umsetzung von 3 mit terminalen Alkinen jedoch nicht erhalten. Vielmehr reagiert 3 mit HC=CCO₂Me unter Bildung des cyclischen Vinylester-Komplexes [CpRu{ $\kappa^2(C,O)$ -C(=CHCO₂Me)OC(CH₃)=O}(PPh₃)] (4) [2].

Auf der Suche nach weiteren reaktiven Halbsandwichkomplexen des Rutheniums gelang es uns jetzt, mit 3 vergleichbare Verbindungen mit chelatartig gebundenen anionischen Liganden darzustellen und deren Reaktivität zu untersuchen. Wie wir nachfolgend zeigen, sind ausgehend von [CpRu(η^3 -2-MeC₃H₄)(PPh₃)] (1) oder [Cp * Ru(η^3 -2-MeC₃H₄)(PPh₃)] (2) sowohl eine Tosylato- und Pentachlorphenolato-Verbindung als auch analoge Carboxylato-Komplexe erhältlich. Letztere eignen sich als Vorläufer zur Synthese von Carbonyl-, Vinylester- und Carbenruthenium-Verbindungen.

2. Darstellung und Reaktionen von Komplexen mit chelatisierenden Carboxylatoliganden

Der Methylallyl-Komplex 1 [5], der sich bereits für die Darstellung von 3 als geeignetes Ausgangsmaterial erwiesen hatte, reagiert mit Trifluoressigsäure oder Pivalinsäure unter Bildung der Verbindungen 5 und 6 (Schema 1). Die äußerst luftempfindlichen, orangefarbenen Feststoffe werden in Ausbeuten von ca. 80% isoliert. Eine Übertragung dieser Syntheseroute auf das Cp^{*}-System gelingt im Falle von Pivalinsäure. Durch Protonierung von 2 (die Darstellung von 2 erfolgt in Anlehnung an die Synthesevorschrift für 1 [5]) [6] entsteht praktisch quantitativ der Komplex 7. Das zu 3 strukturanaloge Cp^{*}-Derivat 9 ist ausgehend von dem nur in Lösung stabilen Olefin-Komplex 8 erhältlich, den man wiederum durch Einwirkung von Essigsäure auf 1 in Gegenwart von Ethen erhält. Eine Überführung von 8 in 9 gelingt durch Entfernen des Olefinliganden im Vakuum.

Der in Schema 1 gezeigte Strukturvorschlag für die Verbindungen 5-7 und 9 stützt sich in erster Linie auf die IR-spektroskopischen Daten sowie eine osmometrische Molmassebestimmung von 9, welche für das Vorliegen einer monomeren Spezies spricht. Der geringe Unterschied zwischen der asymmetrischen und symmetrischen OCO-Valenzschwingung in den IR-Spektren weist jeweils auf eine dihapto-Koordination des Chelatliganden hin [7]. Eine ähnliche Struktur wie 7 oder 9 besitzen auch die von Liu et al. und Chaudret et al. beschriebenen Verbindungen $[Cp^*Ru(\eta^2 O_2CH)(PCy_3)$ [8] bzw. $[Cp^*Ru(\eta^2-O_2CCF_3)(PCy_3)]$ [9]. Aufgrund des ¹H-NMR-Spektrums von 8 besteht kein Zweifel, daß es sich um einen Ethen-Komplex handelt, in dem der Acetatoligand einzähnig gebunden ist. Die beiden Multipletts bei 3.32 und 2.62 ppm belegen dabei die Anwesenheit von koordiniertem Ethen [10].

Der hemilabile Charakter der Chelatliganden in 3, 5–7 und 9 zeigt sich in spontanen Reaktionen mit PPh₃ oder CO, was jeweils an der Farbänderung der Reaktionslösung von Rot nach Gelb zu erkennen ist. Die gelben, kaum oxidationsempfindlichen Feststoffe 10–15

² Verwendete Abkürzungen: $Cp = C_5H_5$, $Cp^* = C_5Me_5$.

sind in fester Form unter Argon über Wochen haltbar und in den meisten organischen Lösungsmitteln, mit Ausnahme von Pentan und Hexan, gut löslich. Als Beleg für die in Schema 2 gemachten Strukturvorschläge dienen vor allem die IR-Daten, die auf einzähnig gebundene Carboxylatoliganden hinweisen. Zusätzlich beobachtet man bei den Carbonyl-Komplexen **12–15** jeweils eine intensive ν (CO)-Bande zwischen 1910 und 1950 cm⁻¹.

3. Synthese und Reaktivität von $[CpRu\{O_2SO(p-C_6H_4Me)\}(PPh_3)]_n$ und $[CpRu\{\kappa^2(O,Cl)-OC_6Cl_5\}(PPh_3)]$

Das beschriebene Verhalten der Allyl-Verbindung 1 gegenüber Carbonsäuren gab den Anlass, auch Reaktionen von 1 mit anderen Brønsted-Säuren durchzuführen. Dabei war es für die Stabilisierung der Produkte wichtig, daß der anionische Ligand ein weiteres zur Metallkoordination befähigtes Donoratom trägt.

Bei Einwirkung von *p*-Toluolsulfonsäure auf 1 bildet sich spontan eine dunkelrote Lösung, aus der ein orangefarbener Feststoff der elementaranalytisch gesicherten Zusammensetzung [CpRu{O₂SO(p- C_6H_4Me)}(PPh₃)]_n (16) ausfällt (Schema 3). Die dabei vermutlich primär entstandene Verbindung [CpRu{ η^2 - $O_2 SO(p - C_6 H_4 Me))(PPh_3)$] läßt sich nicht isolieren, jedoch mit Anilin oder CO abfangen. Die spektroskopischen Daten von 18 und des nur in Lösung stabilen Komplexes 17 zeigen, daß es sich um die entsprechenden Additionsprodukte handelt. Die wahrscheinlich oligomere Verbindung 16 ist in allen gängigen organischen Lösungsmitteln unlöslich, reagiert jedoch glatt mit Acetonitril. Nach Abziehen des Solvens isoliert man mit 90% Ausbeute einen gelben Feststoff 19, dessen analytische Zusammensetzung auf das Vorliegen eines 1:1-Adduktes hindeutet. Die Labilität des Acetonitrilliganden in 19 zeigt sich in Umsetzungen mit CO, PPh₃ oder O2. Die gebildeten Komplexe 18, 20 und 21 wurden IR-, ¹H-NMR- und ³¹P-NMR-spektroskopisch charakterisiert. Typisch im IR-Spektrum von 21 ist vor allem die Bande der O_2 -Streckschwingung bei 840 cm⁻¹ [11].

Bei der Umsetzung von 1 mit Pentachlorphenol entsteht die Phenolatoruthenium-Verbindung 22 (Schema 4), die in Lösung nur über Minuten stabil ist. Der gemachte Strukturvorschlag stützt sich daher in erster Linie auf die Reaktion mit CO, die zur Bildung von 23 führt. Besonders aussagekräftig im Hinblick auf die Charakterisierung von 23 ist die chemische Verschiebung des ¹³C-NMR-Signals für das *ipso*-Kohlenstoffatom des Pentachlorphenolatoliganden (δ 167.1) sowie die starke Absorptionsbande der C≡O-Valenzschwingung im IR-Spektrum bei 1940 cm $^{-1}$. Eine Reihe von Verbindungen, die einen vergleichbar chelatartig koordinierten Liganden besitzen, wurden bereits von Crabtree et al. beschrieben [12]. Im Falle von $[OsH{\kappa^2(O,Cl)-OC_6Cl_5}(CO)(P^iPr_3)_2]$ gelang auch im eigenen Arbeitskreis bereits die Synthese eines Osmium-Komplexes mit k²-koordiniertem Pentachlorphenolatoliganden [13].

4. Reaktionen von $[CpRu(\eta^2 - O_2CR)(PPh_3)]$ (R = CH₃, ^tBu) mit 1-Alkinen

Die Labilität des Acetatoliganden in 3 und 6 zeigt sich nicht nur in den Reaktionen mit CO oder PPh₃, sondern auch im Verhalten gegenüber Propiolsäuremethylester und Phenylacetylen. Bei Umsetzung von 6 mit Propiolsäuremethylester oder von 3mit Phenylacetylen entstehen die Vinylester-Komplexe 24 und 25 (Schema 5).

Die Zusammensetzung der als orangefarbene Feststoffe anfallenden Verbindungen wird durch korrekte Elementaranalysen und die spektroskopischen Daten belegt. Für die chelatartige Koordination der Vinylestergruppierung spricht jeweils das Signal für das metallgebundene Kohlenstoffatom im ¹³C-NMR-Spektrum bei 228.1 (Hauptisomer, 24), 221.7 (Nebenisomer, 24) bzw. 196.5 ppm (25), das bei höherem Feld als die entsprechende Resonanz für [CpRuCl(=C=CHCO₂Me)(PPh₃)] [4] auftritt. Dennoch

Schema 4.

sind die gefundenen Signale für das α-Kohlenstoffatom in 24 stärker als erwartet zu tiefem Feld verschoben, so daß ähnlich wie im Falle von 4 ein Doppelbindungscharakter für die Ru-C-Bindung diskutiert werden muß [2]. Am besten erklären läßt sich diese Situation durch die Formulierung einer mesomeren Vinyliden-Grenzstruktur 24' (Schema 5). Während von 25 in Lösung nur ein Isomer vorliegt, läßt sich für 24 NMR-spektroskopisch ein Gleichgewicht zwischen zwei Isomeren beobachten. Wir vermuten, daß es sich bei dem dynamischen Prozess um eine E/Z-Isomerisierung an der exocyclischen Doppelbindung handelt, welche sich sehr gut durch die Formulierung eines Acetato(vinvliden)-Komplexes als Zwischenstufe erklären läßt. Temperaturabhängige ³¹P-NMRspektroskopische Messungen ergeben bei einer Koaleszenztemperatur von 293 K (36.2 MHz) eine freie Aktivierungsenthalpie ΔG^{\neq} von 58.8 kJ mol⁻¹ [14]. Wir nehmen an, daß wie im Fall von 3 das Hauptisomer in der Z-Form, in der das olefinische Proton eine trans-Stellung zum Metall einnimmt, vorliegt. Mechanistisch verläuft die Bildung von 24 und 25 wahrscheinlich ebenfalls über eine Acetato(vinyliden)-Zwischenstufe, die unter nucleophilem Angriff des freien Acetato-Sauerstoffatoms am C_{α} -Atom der Ru=C=CHCO₂Me-Einheit zu dem Chelat-Fünfring reagiert. Ein ähnlicher Reaktionsverlauf wurde bereits bei der Bildung von $[\operatorname{Ru}\{\kappa^{2}(C,O)-C(=\operatorname{CHPh})\operatorname{OC}(\operatorname{CH}_{3})=O\}(\operatorname{CO})\{\eta^{1} OC(CH_3)_2$ (PⁱPr₃)₂ BF₄ postuliert [15].

5. Reaktionen von $[CpRu(\eta^2-O_2CCH_3)(PPh_3)]$ mit Diazoalkanen

In Fortführung der bisher vorgestellten Untersuchungen sowie der Arbeiten mit Carbenrhodium-Komplexen [16] haben wir den Acetato-Komplex 3 auch mit Diazoalkanen umgesetzt. Im Fall von N2CPh2 gelingt die Isolierung eines gelbgrünen Feststoffes, dessen ¹³C-NMR-Spektrum ein breites Signal bei 156.4 ppm erkennen läßt, das möglicherweise den ipso-Kohlenstoffatomen der Phenylgruppen eines Carbenliganden zuzuordnen ist [17]. Wahrscheinlich handelt es sich dabei um eine Verbindung der Struktur [CpRu- $(\eta^{1}$ - O_2CCH_3 (=CPh₂)(PPh₃)] (26) (Schema 6). Eine bei tiefem Feld zu erwartende Resonanz für ein Carbenkohlenstoffatom ist allerdings nicht zu erkennen. Deshalb kann die Beteiligung einer metallacyclischen Grenzstruktur 26' an der Bindungssituation in 26, $[C p R u \{ \kappa^{2} (C, O) \}$ w ie in ähnlich $C(=CHCO_2Me)OC(R)=O(PPh_3)$] (4: $R = CH_3$, 24: R = Bu [2] oder in dem von Roper und Mitarbeitern beschriebenen Chelatkomplex *trans*-[RuPh{ $\kappa^2(C,O)$ - $CH_2OC(CH_3)=O(CO)(PPh_3)_2$ [18], nicht ausgeschlossen werden.

Die Vermutung, daß es sich bei 26 um eine Carben-Verbindung handelt, wird durch Reaktionen mit Methylisonitril und vor allem mit Et₃NHCl bestätigt. Bei der Umsetzung von 26 mit CNMe erhält man unter Substitution des Carbenliganden den Komplex 27. Als organisches Nebenprodukt entsteht dabei $Ph_2C=CPh_2$, was durch das Auftreten von zweikernigen Intermediaten erklärbar ist [19]. Verbindung 27 läßt sich auf einfachere Art auch durch Umsetzung von 3 mit Methylisonitril darstellen. Durch Chromatographie an neutralem Al_2O_3/Cl^- ist es auch problemlos möglich, 27 in das Chloro-Derivat 28 zu überführen. Die Isonitril-Komplexe 27 und 28 sind gelbe kristalline Feststoffe, an deren Zusammensetzung und Struktur aufgrund der analytischen und vor allem IR-spektroskopischen Daten kein Zweifel besteht [20]. Während alle Versuche, 4 in V in y liden - V erbindung die

[CpRuCl(=C=CHCO₂Me)(PPh₃)] [4] zu überführen, fehlschlugen, ist im Falle von **26** durch Umsetzung mit Et₃NHCl oder durch Chromatographie der Reaktionslösung an Al₂O₃/Cl⁻ ein Austausch des anionischen Liganden möglich. Nach entsprechender Aufarbeitung gelingt die Isolierung eines grünen Pulvers, bei dem es sich laut der elementaranalytischen und spektroskopischen Daten um den Carben-Komplex **29** handelt. Die analogen Verbindungen **30–32** (Schema 7) sind auf gleichem Wege durch Reaktion von **3** mit dem entsprechenden Diazoalkan und anschließender Chromatographie der Reaktionslösung an Al₂O₃/Cl⁻ zugänglich.

Die Komplexe **29–32** sind kaum luftempfindlich und können gut über längere Zeit unter Argonatmosphäre gelagert werden. Charakteristisch im ¹³C-NMR-Spektrum ist vor allem jeweils das Dublett im Tieffeldbereich für das Carben-Kohlenstoffatom bei ca. 320 ppm. Eine mit **29–32** vergleichbare Struktur besitzen die von Winter et al. synthetisierten, jedoch heteroatomstabilisierten Carben-Verbindungen [CpRuX{=C(OEt)Ph}(CO)] (X = SnPh₃, 1) [21,22].

6. Die Molekülstruktur der Komplexe 7 und 29

Zur Absicherung der Strukturvorschläge für die dargestellten η^2 -Acetato- und Carben-Verbindungen wurden von 7 und 29 Kristallstrukturanalysen durchgeführt. Wie Abb. 1 zeigt, liegt 7 auch im Kristall monomer vor. Der Carboxylatoligand ist chelatartig mit nahezu gleichen C–O- und Ru–O-Bindungsabständen (siehe Tabelle 1) und einem fast idealen Winkel von 118.6(5)° am sp²-hybridisierten Kohlenstoffatom C1 an das Rutheniumzentrum koordiniert. Mit 2.200(3) Å und 2.202(4) Å sind die Abstände für die Ru–O-Bindungen

Abb. 1. Molekülstruktur des Komplexes 7 im Kristall.

mit denjenigen in [{(S)-Binap}Ru(η^2 -O₂C^tBu)₂] sehr gut vergleichbar [23]. Auch der kleine Öffnungswinkel der Carboxylatogruppe O1-Ru-O2 von 59.0(1)° besitzt erwartungsgemäß nahezu die gleiche Größe wie die O-Ru-O-Winkel in [{(S)-Binap}Ru(η^2 -O₂C^tBu)₂] [60.6(2)°, 60.0(3)°]. Die Liganden in **29** ordnen sich nahezu pseudooktaedrisch um das Metallzentrum an (Abb. 2). Aufgrund des *trans*-Einflusses des Carbenliganden ist die Cyclopentadienyleinheit nicht völlig symmetrisch an das Rutheniumzentrum gebunden. Der Ru-C1-Bindungsabstand (Tabelle 2) von 1.92(2) Å entspricht dem einer

Abb. 2. Molekülstruktur des Komplexes 29 im Kristall.

Tabelle 1 Ausgewählte Bindungslängen (Å) und -winkel (°) von 7

Ru-P	2.322(1)		2.159(6)
Ru-O1	2.200(3)	Ru-C7	2.158(6)
RuO2	2.202(4)	Ru-C8	2.148(6)
C1-01	1.266(6)	Ru-C9	2.136(5)
C102	1.254(4)	Ru-C10	2.158(5)
C1-C2	1.520(8)		
P-Ru-O1	90.4(1)	Ru-O2-C1	91.3(3)
P-Ru-O2	89.1(1)	O1-C1-O2	118.6(5)
O1~Ru~O2	59.0(1)	O1-C1-C2	120.5(4)
Ru-O1-C1	91.0(2)	O2-C1-C2	120.9(5)

Ruthenium–Kohlenstoff-Doppelbindung [21,22,24–26] und ist sowohl mit den gefundenen Abständen in $[CpRuI{=C(OEt)Ph}(CO)]$ (1.934 Å) [21], $[CpRu{=C(Ph)-\eta^{3}-PhCC(Ph)CHPh}]$ [1.896(5) Å] [24] oder $[CpRu{\kappa^{2}(C,C)-[=C(Ph)C_{6}H_{4}-o-CH_{2}]}(CO)]$ [1.949(5) Å] [25] gut vergleichbar.

Überraschend ist, daß die Phenylgruppen des Carbenliganden nicht wie in [CpRuI{=C(OEt)Ph}(CO)] vertikal in Richtung des Cyclopentadienylrings, sondern eher horizontal angeordnet sind [21]. Auffallend ist in diesem Zusammenhang auch, daß – wie die Torsionswinkel P-Ru-C1-C50 (23.72°) und P-Ru-C1-C60 (-166.49°) zeigen – die Ebene der Carbeneinheit nahezu ekliptisch zur Ru-P-Bindung steht (Abb. 3).

Wie MO-Rechnungen von Hoffmann und Mitarbeitern zeigen, hat dies seinen Grund darin, daß die Orientierung des Carbenliganden durch dessen Akzeptororbital mit p-Symmetrie bestimmt wird [27]. Dieses wiederum sollte sich am HOMO des asymmetrischen [CpRuCl(PPh₃)]-Fragmentes orientieren. Aus einer optimalen Wechselwirkung des leeren p-Orbitals am α -C-Atom mit dem HOMO des Metalls resultiert dann, verbunden mit der senkrecht auf dem p-Orbital stehenden Ebene der Carbeneinheit, die entsprechende räumliche Anordnung. Überträgt man diese Überlegungen auf **29**, so ist wegen des π -Donorvermögens des Chloroliganden die beschriebene

Tabelle 2

Ausgewählte Bindungslängen (Å) und Bindungs- und Torsionswinkel (°) von **29**; Cp^+ repräsentiert den Schwerpunkt des Cyclopentadienylringes

Ru-Cl 1.92(2) Ru-Cl0 2.337(Ru-Cl 2.387(3) Ru-Cl1 2.31(2	14)))
Ru-Cl 2.387(3) Ru-Cl1 2.31(2	:) ;) ;)
D D 0.000(4) D 010 0.07(2	() ()
Ru-P 2.202(4) $Ru-C12$ 2.27(2)
C1-C50 1.49(2) Ru-C13 2.21(2	
C1-C60 1.47(2) Ru-C14 2.3000	12)
C1-Ru-P 97.1(5) C60-C1-C50 111	.5(12)
C1-Ru-Cl 102.6(5) Ru-C1-C50 128	.1(11)
P-Ru-Cl 89.9(1) Ru-C1-C60 121	.7(11)
Cl-Ru-C1-C50 116.05 P-Ru-C1-C60 -166	.49
Cl-Ru-C1-C60 -75.16 Cp ⁺ -Ru-C1-C50 -115	.44
P-Ru-C1-C50 23.72 Cp ⁺ -Ru-C1-C60 55	.35

Abb. 3. Molekülstruktur des Komplexes **29** im Kristall; Sicht entlang der Ru=C-Bindungsachse.

sterisch ungünstigere Gruppierung von PPh_3 und Carbeneinheit erklärbar.

7. Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Argon in Schlenkrohrtechnik durchgeführt. Die Ausgangsverbindungen 1 [5], 2 [6] und 3 [2] sowie die Diazomethane [28] wurden nach Literaturangaben hergestellt. Die Bestimmung der Zersetzungspunkte erfolgte durch DTA. NMR-Spektren wurden mit den Geräten Jeol FX 90 Q, Bruker AC 200 und Bruker AMX 400, IR-Messungen mit dem Gerät Perkin Elmer 1420, das Massenspektrum an einem Finnigan MAC Ts Q 7000 (ESI) aufgenommen.

7.1. Darstellung von $[CpRu(\eta^2 - O_2CCF_3)(PPh_3)]$ (5)

Eine Lösung von 85 mg (0.17 mmol) 1 in 2 ml Toluol wird mit einer Lösung von 14 μ l (0.17 mmol) Trifluoressigsäure in 1 ml Toluol versetzt. Die Lösung verfärbt sich dabei spontan von Gelb nach Rot und wird sofort im Vakuum zur Trockne gebracht. Den zurückbleibenden orangefarbenen Feststoff wäscht man zweimal mit je 2 ml kaltem Pentan und trocknet das erhaltene orangefarbene mikrokristalline Pulver im Hochvakuum. Ausbeute: 81 mg (88%); Schmp. 95 °C (Zers.). (Gef.: C, 55.49; H, 4.10. C₂₅H₂₀F₃O₂PRu ber.: C, 55.46; H, 3.72%). ¹H-NMR (90 MHz, d_8 -Toluol, 223 K): δ 7.85 (m, 15H, C₆H₅), 4.37 (s, br, 5H, C₅H₅). ³¹P-NMR (36.2 MHz, d_8 -Toluol, 223 K): δ 49.7 (s, br).

7.2. Darstellung von $[CpRu(\eta^2 - O_2CBu)(PPh_3)]$ (6)

Eine Lösung von 139 mg (0.29 mmol) 1 in 5 ml Benzol wird mit 0.31 ml (0.32 mmol) einer 1.02 M Lösung von Pivalinsäure in Benzol versetzt und 5 h bei Raumtemperatur gerührt. Die entstandene rote Lösung wird im Vakuum zur Trockne gebracht und der ölige Feststoff bei -78 °C zweimal mit je 2 ml Pentan gewaschen. Man erhält ein orangefarbenes mikrokristallines Pulver, das im Hochvakuum getrocknet wird. Ausbeute: 123 mg (83%); Schmp. 56 °C (Zers.). (Gef.: C, 63.47; H, 5.44. C₂₈H₂₉O₂PRu ber.: C, 63.50; H, 5.52%). IR (C₆H₆): ν (OCO_{as}) = 1490, ν (OCO_{sym}) = 1425 cm⁻¹. ¹H-NMR (200 MHz, C₆D₆): δ 7.33 (m, 15H, C₆H₅), 3.98 (s, 5H, C₅H₅), 1.33 (s, 9H, C(CH₃)₃). ³¹P-NMR (81.0 MHz, C₆D₆): δ 45.6 (s).

7.3. Darstellung von $[Cp^* Ru(\eta^2 - O_2C'Bu)(PPh_3)]$ (7)

Eine Lösung von 273 mg (0.49 mmol) 2 in 5 ml Benzol wird mit 1.8 ml (0.50 mmol) einer 0.28 M Lösung von Pivalinsäure in Benzol versetzt und 4 h bei Raumtemperatur gerührt. Die nunmehr rote Lösung wird im Vakuum zur Trockne gebracht, der rotbraune Rückstand mit 2 ml Pentan (-30°C) gewaschen und das erhaltene orangerote mikrokristalline Pulver im Hochvakuum getrocknet. Ausbeute: 279 mg (95%); Schmp. 76 °C (Zers.). (Gef.: C, 65.86; H, 6.68. $C_{33}H_{39}O_{2}PRu$ ber.: C, 66.09; H, 6.55%). IR ($C_{6}H_{6}$): $\nu(\text{OCO}_{as}) = 1495, \ \nu(\text{OCO}_{svm}) = 1420 \text{ cm}^{-1}.$ ¹H-NMR $(200 \text{ MHz}, C_6 D_6)$: δ 7.80, 7.07 (jeweils m, 15H, $C_6 H_5$), 1.41 (s, 15H, C_5Me_5), 1.00 (s, 9H, $C(CH_3)_3$). ¹³C-NMR $(100.6 \text{ MHz}, C_6 D_6)$: δ 190.3 (s, O₂C), 136.3 (d, J(PC) = 33.0 Hz, *ipso*-C von PC₆H₅), 134.7 (d, J(PC) = 13.1 Hz, ortho-C von PC_6H_5 , 129.0 (d, J(PC) =1.8 Hz, para-C von PC_6H_5 , 127.9 (d, J(PC) = 9.0 Hz, meta-C von PC_6H_5), 78.6 (d, $J(PC) = 3.1 \text{ Hz}, C_5\text{Me}_5$), 40.0 (s, $C(CH_3)_3$), 27.4 (s, $C(CH_3)_3$), 10.0 (s, C_5Me_5). ³¹P-NMR (81.0 MHz, $C_6 D_6$): δ 45.3 (s).

7.4. Darstellung von $[Cp^*Ru(\eta^{-1}-O_2CCH_3)(C_2H_4)(PPh_3)](8)$

In eine Lösung von 20 mg (0.04 mmol) **2** in 1 ml d_6 -Benzol wird im NMR-Rohr 1 min lang Ethen geleitet. Danach wird die Lösung mit 2 µl (0.04 mmol) Essigsäure versetzt. Die ¹H-NMR- sowie ³¹P-NMR-spektroskopischen Daten der Lösung belegen das Vorliegen von **8**. ¹H-NMR (200 MHz, C₆D₆): δ 7.76, 7.04 (jeweils m, 15H, C₆H₅), 3.32 (m, 2H, C₂H₄), 2.62 (m, 2H, C₂H₄), 1.17 (s, 3H, O₂CCH₃), 1.16 (s, 15H, C₅Me₅). ³¹P-NMR (81.0 MHz, C₆D₆): δ 52.8 (s).

7.5. Darstellung von $[Cp^* Ru(\eta^2 - O_2 CCH_3)(PPh_3)]$ (9)

In eine Lösung von 276 mg (0.50 mmol) **2** in 5 ml Toluol wird bei 0 °C 1 min lang Ethen eingeleitet und die Lösung anschließend mit 29 μ l (0.50 mmol) Essigsäure versetzt. Nach Erwärmen auf Raumtemperatur wird das Reaktionsgemisch 30 min gerührt, danach das Lösungsmittel im Vakuum entfernt, der rotbraune Rückstand mit 2.5 ml Pentan gewaschen und das erhaltene orangerote mikrokristalline Pulver im Vakuum getrocknet. Ausbeute: 264 mg (95%); Schrnp. 64 °C (Zers.). (Gef.: C, 64.35; H, 6.03; Molmasse 500.5 (osmometrisch in CH₂Cl₂). C₃₀H₃₃O₂PRu ber.: C, 64.62; H, 5.97%; Molmasse: 557.6). IR (C_6H_6) : $\nu(\text{OCO}_{as}) = 1440, \ \nu(\text{OCO}_{sym}) = 1425 \text{ cm}^{-1}. \text{ }^{1}\text{H-NMR}$ (200 MHz, C₆D₆): δ 7.75, 7.04 (jeweils m, 15H, C₆H₅), 2.83 (d, J(PH) = 1.1 Hz, 15H, $C_5 \text{ Me}_5$), 1.38 (s, 3H, O_2CCH_3). ¹³C-NMR (100.6 MHz, C_6D_6): δ 182.1 (s, O_2C), 136.0 (d, J(PC) = 36.2 Hz, *ipso-C* von PC_6H_5), 134.7 (d, J(PC) = 12.5 Hz, ortho-C von PC_6H_5), 129.0 (s, para-C von PC_6H_5), 127.9 (d, J(PC) = 9.6 Hz, meta-C von PC_6H_5), 78.3 (d, J(PC) = 2.5 Hz, C_5Me_5), 24.2 (s, O_2CCH_3), 10.3 (s, C_5Me_5). ³¹P-NMR $(81.0 \text{ MHz}, C_6 D_6)$: δ 46.5 (s).

7.6. Darstellung von $[CpRu(\eta^{1}-O_{2}CCH_{3})(PPh_{3}),]$ (10)

Eine Lösung von 91 mg (0.19 mmol) 3 in 5 ml Toluol wird mit einer Lösung von 30 mg (0.19 mmol) PPh₃ in 5 ml Toluol versetzt. Das nunmehr gelbe Reaktionsgemisch wird 5 min gerührt, danach wird das Solvens im Vakuum entfernt und der Rückstand bei -78 °C aus Toluol/Pentan (1:1) umkristallisiert. Nach zweimaligem Waschen mit je 3 ml kaltem Pentan erhält man ein gelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 100 mg (70%); Schmp. 154 °C (Zers.). (Gef.: C, 69.30; H, 4.77. C₄₃H₃₈O₂P₂Ru ber.: C, 68.88; H, 5.11%). IR (KBr): ν (C=O) = 1625 cm^{-1} . ¹H-NMR (200 MHz, C₆D₆): δ 7.16 (m, 30H, C₆H₅), 4.46 (s, 5H, C₅H₅), 2.21 (s, 3H, O₂CCH₃). ¹³C-NMR (100.6 MHz, $C_6 D_6$): δ 177.6 (t, J(PC) =1.5 Hz, O₂C), 140.8 (m, *ipso*-C von PC₆H₅), 134.2 (vt, N = 10.0 Hz, ortho-C von PC₆H₅), 128.9 (s, para-C von PC_6H_5), 127.7 (vt, N = 8.4 Hz, meta-C von PC_6H_5), 80.0 (s, C_5H_5), 25.2 (s, O_2CCH_3). ³¹P-NMR $(81.0 \text{ MHz}, C_6 D_6)$: δ 43.4 (s).

7.7. Darstellung von $[CpRu(\eta'-O_2CCF_3)(PPh_3)_2]$ (11)

Eine Lösung von 98 mg (0.18 mmol) **5** in 5 ml Toluol wird bei -78 °C mit einer Lösung von 47 mg (0.18 mmol) PPh₃ in 5 ml Toluol versetzt. Nach Erwärmen auf Raumtemperatur wird das Lösungsmittel im Vakuum entfernt und der Rückstand bei -78 °C aus 10 ml Toluol/Pentan (1:1) umkristallisiert. Die überstehende Lösung wird abdekantiert und der Rückstand bei -78 °C zweimal mit je 3 ml Pentan gewaschen. Zurück bleibt ein gelbes feinkristallines Pulver, das im Hochvakuum getrocknet wird. Ausbeute: 101 mg (70%); Schmp. 163 °C (Zers.). (Gef.: C, 64.16; H, 4.68. C₄₃H₃₅F₃O₂P₂Ru ber.: C, 64.26; H, 4.39%). IR (KBr): ν (C=O) = 1675 cm⁻¹. ¹H-NMR (200 MHz, C₆D₆): δ 7.26 (m, 30H, C₆H₅), 4.30 (s, 5H, C₅H₅). ³¹P-NMR (81.0 MHz, C₆D₆): δ 42.1 (s).

7.8. Darstellung von $[CpRu(\eta^1 - O_2CCF_3)(CO)(PPh_3)]$ (12)

In eine Lösung von 110 mg (0.27 mmol) 5 in 4 ml Toluol wird bei -78°C 1 min lang CO geleitet. Nach Erwärmen auf Raumtemperatur wird das Lösungsmittel im Vakuum entfernt, der Rückstand in 1 ml Toluol gelöst und die Lösung mit Toluol an Aluminiumoxid (neutral, Aktivitätsstufe V, Säulenlänge 3 cm) chromatographiert. Das Eluat wird im Vakuum vom Solvens befreit und der Rückstand bei -78°C aus 10 ml Pentan/Toluol (3:1) umkristallisiert. Man erhält ein hellgelbes mikrokristallines Pulver, welches mit 5 ml Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute: 78 mg (60%); Schmp. 168 °C (Zers.). (Gef.: C, 54.27; H, 3.32. C₂₆H₂₀F₃O₃PRu ber.: C, 54.84; H, 3.54%). IR (KBr): $\nu(C=O) = 1950$, $\nu(C=O) =$ 1690 cm^{-1} . ¹H-NMR (200 MHz, C₆D₆): δ 7.23 (m, 15H, C_6H_5), 4.45 (s, 5H, C_5H_5). ¹³C-NMR (50.3 MHz, $C_6 D_6$): δ 205.1 (d, J(PC) = 20.8 Hz, CO), 164.2 (q, $J(FC) = 35.3 \text{ Hz}, O_2C), 134.9 \text{ (d, } J(PC) = 31.7 \text{ Hz},$ *ipso*-C von PC₆H₅), 135.2 (d, J(PC) = 11.0 Hz, *ortho*-C von PC₆H₅), 131.3 (d, J(PC) = 2.4 Hz, para-C von PC_6H_5 , 129.3 (d, J(PC) = 11.0 Hz, meta-C von PC_6H_5), 116.2 (q, J(FC) = 291.8 Hz, CF_3), 85.2 (d, $J(PC) = 2.4 \text{ Hz}, C_5 \text{H}_5$). ³¹P-NMR (81.0 MHz, C₆D₆): δ 52.3 (s).

7.9. Darstellung von $[CpRu(\eta^{1}-O_{2}C'Bu)(CO)(PPh_{3})]$ (13)

In eine Lösung von 82 mg (0.16 mmol) 6 in 5 ml Toluol wird bei Raumtemperatur 1 min lang CO geleitet. Die nunmehr gelbe Lösung wird mit 10 ml Pentan versetzt und auf -78 °C gekühlt. Dabei bildet sich ein hellgelber Niederschlag, von welchem die Mutterlauge abdekantiert wird. Nach dem Waschen mit 5 ml Pentan wird das erhaltene feinkristalline Pulver im Vakuum getrocknet. Ausbeute: 80 mg (90%); Schmp. 239 °C (Zers.). (Gef.: C, 62.82; H, 5.03. C₂₉H₂₉O₃PRu ber.: C, 62.47; H, 5.24%). IR (KBr): ν (C=O) = 1945, ν (C=O) = 1625 cm⁻¹. ¹H-NMR (200 MHz, C₆D₆): δ 7.28 (m, 15H, C_6H_5), 4.59 (s, 5H, C_5H_5), 1.19 (s, 9H, $C(CH_3)_3$). ¹³C-NMR (50.3 MHz, $C_6 D_6$): δ 206.6 (d, J(PC) =22.2 Hz, CO), 184.6 (d, J(PC) = 1.8 Hz, $O_2CC(CH_3)_3$), 136.1 (d, J(PC) = 46.2 Hz, *ipso*-C von PC₆H₅), 134.7 (d, J(PC) = 11.1 Hz, ortho-C von PC_6H_5), 131.0 (d, $J(PC) = 2.8 \text{ Hz}, \text{ para-C von PC}_{6}\text{H}_{5}, 129.1 \text{ (d, } J(PC)$ = 7.4 Hz, meta-C von PC_6H_5), 85.8 (d, J(PC) = 1.9 Hz, C_5H_5), 40.5 (s, $C(CH_3)_3$), 29.9 (s, $C(CH_3)_3$). ³¹P-NMR (81.0 MHz, C_6D_6): δ 54.4 (s).

7.10. Darstellung von $[Cp^* Ru(\eta^1 - O_2CBu)(CO)(PPh_3)]$ (14)

In eine Lösung von 62 mg (0.10 mmol) 7 in 3 ml Toluol wird bei Raumtemperatur 30 s lang CO geleitet. Die Lösung wird im Vakuum zur Trockne gebracht und der gelbe Rückstand mit 2 ml Pentan gewaschen. Man erhält ein gelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 37 mg (57%); Schmp. 201 °C (Zers.). (Gef.: C, 64.84; H, 6.41. $C_{34}H_{30}O_{3}PRu$ ber.: C, 65.06; H, 6.26%). IR (KBr): $\nu(C \equiv O) = 1910, \quad \nu(C = O) = 1610 \text{ cm}^{-1}.$ ¹H-NMR $(200 \text{ MHz}, C_6 D_6)$: δ 7.62, 7.02 (jeweils m. 15H, $C_6 H_5$), 1.38 (d, J(PH) = 1.8 Hz, 15H, C₅Me₅), 1.21 (s, C(CH₃)₃). ¹³C-NMR (50.3 MHz, C₆D₆): δ 209.4 (d, J(PC) = 22.0 Hz, CO, 182.4 (s, O₂C), 135.8 (d, J(PC) $= 41.5 \text{ Hz}, \text{ ipso-C von PC}_{6} \text{H}_{5}, 134.1 \text{ (d, } J(\text{PC}) =$ 11.0 Hz, ortho-C von PC_6H_5 , 129.8 (d, J(PC) =3.4 Hz, para-C von PC_6H_5 , 128.2 (d, J(PC) = 9.2 Hz, meta-C von PC_6H_5), 95.1 (d, $J(PC) = 2.5 Hz, C_5Me_5$), 39.1 (s, $C(CH_3)_3$), 29.3 (s, $C(CH_3)_3$), 9.5 (s, C_5Me_5). ³¹P-NMR (81.0 MHz, C_6D_6): δ 52.9 (s).

7.11. Darstellung von $[Cp^*Ru(\eta^{-1}-O_2CCH_3)(CO)(PPh_3)]$ (15)

In eine Lösung von 39 mg (0.07 mmol) **9** in 3 ml Toluol wird bei Raumtemperatur 1 min lang CO geleitet. Die Lösung wird im Vakuum zur Trockne gebracht und der gelbe Rückstand mit 2 ml Pentan gewaschen. Man erhält ein gelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 36 mg (88%); Schmp. 211 °C (Zers.). (Gef.: C, 64.06; H, 5.88. $C_{31}H_{33}O_3PRu$ ber.: C, 63.57; H, 5.68%). IR (KBr): $\nu(C=O) = 1925$, $\nu(C=O) = 1625$ cm⁻¹. ¹H-NMR (200 MHz, C₆D₆): δ 7.74, 7.13 (jeweils m, 15H, C₆H₅), 2.04 (s, 3H, O₂CCH₃), 1.51 (d, J(PH) = 2.0 Hz, 15H, C_5Me_5). ³¹P-NMR (81.0 MHz, C₆D₆): δ 53.9 (s).

7.12. Darstellung von $[CpRu\{O_2SO(p-C_6H_4Me)\}](PPh_3)]_n$ (16)

Eine Lösung von 62 mg (0.13 mmol) 1 in 2 ml Toluol wird mit 0.21 ml (0.13 mmol) einer 0.61 M Lösung von *p*-Toluolsulfonsäure in THF versetzt und die nunmehr dunkelrote Lösung 5 min bei Raumtemperatur gerührt. Dabei fällt ein orangefarbener Feststoff aus. Die Reaktionsmischung wird im Vakuum zur Trockne gebracht und der verbleibende Rückstand zweimal mit je 2 ml Toluol gewaschen. Man erhält ein orangefarbenes mikrokristallines Pulver, das i. Vak. getrocknet wird. Ausbeute: 81 mg (88%); Schmp. 109 °C (Zers.). (Gef.: C, 59.90; H, 4.70; S, 5.42. ($C_{30}H_{27}O_3PRuS$)_n ber.: C, 60.09; H, 4.54; S, 5.35%).

7.13. Darstellung von $[CpRu[\eta^{-1}-OSO_{2}(p-C_{6}H_{4}Me)](NH_{2}Ph)(PPh_{3})]$ (17)

Eine Lösung von 62 mg (0.13 mmol) **1** in 2 ml C₆D₆ wird zuerst mit einer Lösung von 2.5 mg (0.13 mmol) *p*-Toluolsulfonsäure in 1 ml C₆D₆ und anschließend mit 12 μ l (0.13 mmol) Anilin versetzt. Die ¹H-NMR-, ¹³C- NMR- und IR-Spektren belegen das Vorliegen von 17. IR (C_6D_6): ν (NH) = 3300, 3350 cm⁻¹. ¹H-NMR (200 MHz, C_6D_6): δ 7.87 (d, J(HH) = 8.0 Hz, 2H, p- C_6H_4 Me), 7.50, 6.97 (jeweils m, 15H, C_6H_5), 6.75 (d, J(HH) = 8.0 Hz, 2H, p- C_6H_4 Me), 5.31 (s, br, 1H, NH₂), 4.00 (s, 5H, C_5H_5), 3.62 (s, br, 1H, NH₂), 2.06 (s, 3H, CH₃). ³¹P-NMR (36.2 MHz, C_6D_6): δ 46.5 (s).

7.14. Darstellung von $[CpRu[\eta^{1}-OSO_{2}(p-C_{6}H_{4}Me)](CO)(PPh_{3})]$ (18)

Eine Lösung von 70 mg (0.15 mmol) **1** in 2 ml Toluol wird bei Raumtemperatur mit 0.20 ml (0.15 mmol) einer 0.61 M Lösung von *p*-Toluolsulfonsäure in THF versetzt. Anschließend wird sofort 30 s lang CO eingeleitet. Das Lösungsmittel wird im Vakuum entfernt und der gelbe Rückstand zweimal mit je 5 ml Pentan gewaschen. Man erhält ein gelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 73 mg (77%); Schmp. 88 °C (Zers.). (Gef.: C, 59.41; H, 4.42; S, 5.54. $C_{31}H_{27}O_4PRuS$ ber.: C, 59.32; H, 4.34; S, 5.10%). IR (KBr): $\nu(C\equiv O) = 1960 \text{ cm}^{-1}$. ¹H-NMR (200 MHz, C_6D_6): δ 7.73, 7.56, 7.00, 6.73 (jeweils m, 19H, C_6H_5 und C_6H_4), 4.67 (s, 5H, C_5H_5), 1.91 (s, 3H, CH₃). ³¹P-NMR (81.0 MHz, C_6D_6): δ 49.9 (s).

7.15. Darstellung von $[CpRu{\eta^{1}-OSO_{2}(p-C_{6}H_{4}Me)](NCCH_{3})(PPh_{3})]$ (19)

Eine Suspension von 76 mg (0.13 mmol für n = 1) **16** in 3 ml Benzol wird mit 2 ml CH₃CN versetzt und die enstandene hellgelbe Lösung im Vakuum zur Trockne gebracht. Zurück bleibt ein hellgelber Feststoff, der zweimal mit je 2 ml Pentan gewaschen und im Vakuum getrocknet wird. Ausbeute: 77 mg (92%); Schmp. 108 °C (Zers.). (Gef.: C, 59.38; H, 4.80; N, 2.41; S, 4.62. C₃₂H₃₀NO₃PRuS ber.: C, 59.99; H, 4.72; N, 2.19; S, 5.00%). IR (CH₂Cl₂): ν (C=N) = 2260 cm⁻¹. ¹H-NMR (400 MHz, CD₂Cl₂): δ 7.58 (d, J(HH) = 8.0 Hz, 2H, p-C₆H₄Me), 7.38 (m, 15H, C₆H₅), 7.13 (d, J(HH) = 8.0 Hz, 2H, p-C₆H₄Me), 4.42 (s, 5H, C₅H₅), 2.25, 2.00 (jeweils s, jeweils 3H, p-C₆H₄Me, NCMe). ³¹P-NMR (81.0 MHz, CD₂Cl₂): δ 50.9 (s).

7.16. Umsetzung von $[CpRu{\eta}^{-1}-OSO_{2}(p-C_{6}H_{4}Me)](NCCH_{3})(PPh_{3})]$ (19) mit CO

In eine Lösung von 66 mg (0.11 mmol) **19** in 3 ml Benzol wird für 30 s CO eingeleitet. Die ³¹P-NMRsowie IR-spektroskopische Untersuchung der Lösung bestätigt das Vorliegen von **18** (vgl. Sektion 7.14).

7.17. Darstellung von $[CpRu[\eta^{1}-OSO_{2}(p-C_{6}H_{4}Me)](PPh_{3})_{2}]$ (20)

Eine Lösung von 60 mg (0.09 mmol) **19** in 5 mlCH₂Cl₂ wird mit 2.5 mg (0.09 mmol) PPh₃ versetzt und 5 min bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt und der gelbe Rückstand zweimal mit je 5 ml Pentan gewaschen. Man erhält ein hellgelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 77 mg (89%); Schmp. 54 °C (Zers.). (Gef.: C, 66.32; H, 5.05; S, 3.12. $C_{48}H_{42}O_3P_2RuS$ ber.: C, 66.81; H, 4.91; S, 3.71%). ¹H-NMR (200 MHz, C_6D_6): δ 7.75, 7.09 (jeweils m, 34H, C_6H_5 und C_6H_4), 4.48 (s, 5H, C_5H_5), 2.30 (s, 3H, CH₃). ³¹P-NMR (81.0 MHz, C_6D_6): δ 39.8 (s).

7.18. Darstellung von $[CpRu{\eta^{1}-OSO_{2}(p-C_{6}H_{4}Me)](O_{2})(PPh_{3})]$ (21)

In eine Lösung von 64 mg (0.10 mmol) **19** in 5 ml CH_2Cl_2 wird 30 s lang Sauerstoff eingeleitet. Das Lösungsmittel wird im Vakuum entfernt und der hellgelbe Rückstand zweimal mit je 5 ml Pentan gewaschen. Man erhält ein gelbes mikrokristallines Pulver, das im Vakuum getrocknet wird. Ausbeute: 47 mg (74%); Schmp. 75 °C (Zers.). (Gef.: C, 57.29; H, 4.24; S, 5.00. $C_{30}H_{27}O_5PRuS$ ber.: C, 57.05; H, 4.31; S, 5.08%). IR (KBr): $\nu(O_2) = 840$ cm⁻¹. ¹H-NMR (200 MHz, C_6D_6): δ 7.72, 7.65, 6.97, 6.67 (jeweils m, 19H, C_6H_5 und C_6H_4), 4.53 (s, 5H, C_5H_5), 1.89 (s, 3H, CH_3). ³¹P-NMR (81.0 MHz, C_6D_6): δ 25.8 (s).

7.19. Darstellung von $[CpRu\{\kappa^2(O,Cl)-OC_6Cl_5\}](PPh_3)]$ (22)

Eine Lösung von 146 mg (0.30 mmol) 1 in 10 ml Benzol wird mit einer Lösung von 80 mg (0.30 mmol) Pentachlorphenol in 1 ml Benzol versetzt und 10 min bei Raumtemperatur gerührt. Die entstandene gelbe Suspension wird über Filterflocken filtriert, das Filtrat anschließend im Vakuum zur Trockne gebracht und der Rückstand dreimal mit je 5 ml Pentan gewaschen. Nach dem Trocknen im Vakuum erhält man ein orangefarbenes mikrokristallines Pulver. Ausbeute: 152 mg (73%); Schmp. 51 °C (Zers.). (Gef.: C, 49.73; H, 3.01. $C_{29}H_{20}Cl_5OPRu$ ber.: C, 50.21; H, 2.91%). ¹H-NMR (200 MHz, C_6D_6): $\delta = 7.35$ (m, 15H, C_6H_5), 3.90 (s, 5H, C_5H_5). ³¹P-NMR (81.0 MHz, C_6D_6): δ 42.5 (s).

7.20. Darstellung von $[CpRu(OC_6Cl_5)(CO)(PPh_3)]$ (23)

In eine Lösung von 70 mg (0.10 mmol) **22** in 5 ml CH_2Cl_2 wird 2 min lang CO eingeleitet. Das Reaktionsgemisch wird 10 min bei Raumtemperatur gerührt und das Solvens im Vakuum entfernt. Der gelbe Rückstand wird anschließend dreimal mit je 3 ml Pentan gewaschen und im Vakuum getrocknet. Ausbeute: 65 mg (90%); Schmp. 110 °C (Zers.). (Gef.: C, 51.21; H, 3.06. $C_{30}H_{20}Cl_5O_2PRu$ ber.: C, 49.92; H, 2.79%). IR (KBr): $\nu(C \equiv O) = 1940$ cm⁻¹. ¹H-NMR (200 MHz, C_6D_6): δ 7.34 (m, 15H, C_6H_5), 4.15 (s, 5H, C_5H_5). ¹³C-NMR (C_6D_6 , 100.6 MHz): δ 205.4 (d, J(PC) = 18.6 Hz, CO), 167.1 (s, *ipso*-C von C₆Cl₅), 134.8 (d, J(PC) = 47.2 Hz, *ipso*-C von PC₆H₅), 134.3 (d, J(PC) = 10.8 Hz, *ortho*-C von PC₆H₅), 130.9 (d, J(PC) = 2.1 Hz, *para*-C von PC₆H₅), 129.5, 128.8, 127.1 (jeweils s, C₆Cl₅), 128.8 (d, J(PC) = 10.5 Hz, *meta*-C von PC₆H₅), 84.7 (d, J(PC) = 1.0 Hz, C₅H₅). ³¹P-NMR (81.0 MHz, C₆D₆): δ 48.7 (s).

7.21. Darstellung von $[CpRu{\kappa^{2}(C,O)-C(=CHCO_{2}Me)OC('Bu)=O](PPh_{3})]$ (24)

Eine Lösung von 156 mg (0.36 mmol) 6 in 3 ml Benzol wird bei 0 °C mit 33 µl (0.36 mmol) Propiolsäuremethylester versetzt, wobei eine Farbänderung von Tiefrot nach Gelb zu beobachten ist. Die Reaktionsmischung wird im Vakuum vom Lösungsmittel befreit, der Rückstand in 1 ml Toluol gelöst und die Lösung mit Toluol als Laufmittel an Aluminiumoxid (neutral, Aktivitätsstufe V, Säulenlänge 2 cm) chromatographiert. Das Eluat wird im Vakuum zur Trockne gebracht, der gelbe Rückstand in 15 ml Pentan gelöst und die Lösung 20 h auf -78 °C gekühlt. Man erhält orangefarbene Kristalle, die abfiltriert, mit 1 ml kaltem Pentan gewaschen und im Vakuum getrocknet werden. Ausbeute: 110 mg (50%); Schmp. 79 °C (Zers.). (Gef.: C, 62.85; H, 5.79. C₃₂H₃₃O₄PRu ber.: C, 62.63; H, 5.42%). IR (KBr): $\nu(C=O_{Ester}) = 1700$, $\nu(C=O_{Ring}) = 1651$, $\nu(C=C) = 1540 \text{ cm}^{-1}$. H-NMR (400 MHz, d_8 -Toluol, 298 K): δ 7.49 (m, 16H, C₆H₅ und = $CHCO_2CH_3$, 4.79 (s, br, 5H, C_5H_5), 3.81 (s, br, 3H, CO₂CH₃), 1.06 (s, br, 9H, C(CH₃)₃). ¹H-NMR (400 MHz, d_8 -Toluol, 243 K); Hauptisomer: δ 7.53 (m, C_6H_5 und = $CHCO_2CH_3$), 4.96 (s, 5H, C_5H_5), 3.90 (s, 3H, CO_2CH_3), 0.98 (s, 9H, $C(CH_3)_3$); Nebenisomer: δ 7.53 (m, C_6H_5 und = $CHCO_2CH_3$), 4.57 (s, 5H, C_5H_5), 3.75 (s, 3H, CO₂CH₃), 1.19 (s, 9H, C(CH₃)₃). ¹³C-NMR (100.6 MHz, d_8 -Toluol, 223 K); Hauptisomer: δ 228.1 (d, J(PC) = 18.6 Hz, RuC), 187.0 (s, $O_2CC(CH_3)_3$), 171.1 (s, CO_2CH_3), 137.1 (d, J(PC) = 41.1 Hz, *ipso-C* von PC_6H_5), 134.3 (d, J(PC) = 11.4 Hz, ortho-C von PC₆H₅), 129.3 (s, para-C von PC₆H₅), 127.6 (d, $J(PC) = 11.8 \text{ Hz}, \text{ meta-C von } PC_6H_5), 113.5 (s,$ $=CHCO_2CH_3$), 79.4 (s, C₅H₅), 50.1 (s, CO₂CH₃), 37.0 (s, $C(CH_3)_3$), 26.8 (s, $C(CH_3)_3$); Nebenisomer: δ 221.7 (d, J(PC) = 20.0 Hz, RuC), 188.1 (s, $O_2CC(CH_3)_3$, 161.4 (s, CO_2CH_3), 136.4 (d, J(PC) =40.7 Hz, *ipso*-C von PC_6H_5 , 133.9 (d, J(PC) =11.2 Hz, ortho-C von PC_6H_5), 129.4 (s, para-C von PC_6H_5), 127.7 (d, J(PC) = 11.8 Hz, meta-C von PC_6H_5), 111.3 (s, = $CHCO_2CH_3$), 77.7 (s, C_5H_5), 49.5 (s, CO_2CH_3), 37.7 (s, $C(CH_3)_3$), 27.0 (s, C(CH₃)₃). ³¹P-NMR (36.2 MHz, d_8 -Toluol, 323 K): δ 56.2 (s). ³¹P-NMR (36.2 MHz, d_8 -Toluol, 243 K): δ 56.0, 59.6 (jeweils s).

7.22. Darstellung von $[CpRu{\kappa^{2}(C,O)-C(=CHPh)OC(CH_{3})=O](PPh_{3})]$ (25)

Eine Lösung von 165 mg (0.34 mmol) 3 in 3 ml Benzol wird mit 38 µl (0.34 mmol) Phenylacetylen versetzt und die Reaktionsmischung sofort im Vakuum zur Trockne gebracht. Anschließend extrahiert man den Rückstand dreimal mit je 5 ml Pentan und kühlt die vereinigten Extrakte auf -78°C ab. Nach 20h erhält man einen orangefarbenen Feststoff, der abfiltriert und im Vakuum getrocknet wird. Ausbeute: 90 mg (45%); Schmp. 81 °C (Zers.). (Gef.: C, 67.06; H, 4.80. C₃₃H₂₉O₂PRu ber.: C, 67.22; H, 4.96%). IR (KBr): ν (C=O) = 1615, ν (C=C) = 1550 cm⁻¹. ¹H-NMR (400 MHz, d_8 -Toluol, 223 K): δ 7.56 (m. 20H, PC₆H₅ und = CHC_6H_5), 6.44 (d, J(PH) = 1.8 Hz, 1H, $=CHC_6H_5$, 4.77 (s, 5H, C₅H₅), 1.23 (s, 3H, CH₃). ¹³C-NMR (100.6 MHz, d_8 -Toluol, 223 K): δ 196.5 (d, J(PC) = 23.1 Hz, RuC, 178.9 (s, O₂C), 138.6 (s, *ipso-C* von =CH C_6 H₅), 134.8 (d, J(PC) = 39.3 Hz, *ipso*-C von PC_6H_5), 132.9 (d, J(PC) = 11.0 Hz, ortho-C von PC_6H_5 , 129.3, 129.9 (jeweils s, para-C von PC_6H_5) und *ortho*-C von = CHC_6H_5), 127.8 (d, J(PC) = 8.6 Hz, meta-C von PC_6H_5), 127.2 (s, meta-C von $=CHC_6H_5$), 123.7 (s, para-C von = CHC_6H_5), 121.7 (d, J(PC) = 1.9 Hz, = CHC_6H_5), 77.3 (s, C_5H_5), 16.8 (s, CH_3). ³¹P-NMR (36.2 MHz, d_8 -Toluol): δ 60.6 (s, br).

7.23. $D \text{ arstellung } von [C p R u(\eta^{-1} - O_2CCH_3)(=CPh_2)(PPh_3)]$ (26)

Eine Lösung von 85 mg (0.18 mmol) 3 in 5 ml Toluol wird mit 34 mg (0.35 mmol) Ph_2CN_2 versetzt und 5 min bei Raumtemperatur gerührt. Anschließend wird das Solvens im Vakuum entfernt und der verbleibende gelbgrüne Rückstand zweimal mit 3 ml Pentan gewaschen. Ausbeute: 82 mg (70%); Schmp. 62 °C (Zers.). (Gef.: C, 69.37; H, 4.95. C₃₈H₃₃O₂PRu ber.: C, 69.82; H, 5.09%). IR (C₆H₆): ν (C=O) = 1635 cm⁻¹. ¹H-NMR (400 MHz, $C_6 D_6$): δ 7.72, 7.38, 7.07 (jeweils m, 25H, $C_6 H_5$), 4.37 (s, 5H, C_5H_5), 1.59 (s, 3H, CH_3). ¹³C-NMR $(100.6 \text{ MHz}, d_8$ -Toluol, 223 K): δ 180.2 (s, O₂C), 156.4 (s, *ipso*-C von CC_6H_5), 137.5 (d, J(PC) = 37.4 Hz, *ipso*-C von PC_6H_5), 133.7 (d, J(PC) = 10.5 Hz, *ortho*-C von PC_6H_5), 128.9 (s, para-C von CC_6H_5), 128.4 (s, para-C von PC_6H_5), 127.2 (d, J(PC) = 8.6 Hz, meta-C von PC_6H_5), 126.4, 124.1 (jeweils s, ortho-C und meta-C von CC_6H_5), 77.9 (d, J(PC) = 2.7 Hz, C_5H_5), 18.7 (s, CH₃). Das Signal für das α -Kohlenstoffatom des Carbenliganden konnte nicht genau lokalisiert werden. ³¹P-NMR (162.0 MHz, $C_6 D_6$): δ 46.7 (s).

7.24. $D arstellung von [C p R u(\eta^{-1} - O_2CCH_3)(CNCH_3)(PPh_3)]$ (27)

(a) Eine Lösung von 169 mg (0.26 mmol) **26** in 5 ml Benzol wird mit 14 μl (0.26 mmol) Methylisonitril versetzt und 30 min bei Raumtemperatur gerührt. Das Solvens wird im Vakuum entfernt, der Rückstand mit 30 ml Hexan extrahiert und der zurückbleibende gelbe Feststoff im Vakuum getrocknet. Die ¹H-NMR- und ³¹P-NMR-spektroskopischen Daten beweisen das Vorliegen von 27. Der Hexanextrakt wird im Vakuum zur Trockne gebracht und der Rückstand in 1 ml Benzol gelöst. Die Lösung wird mit Hexan an Al₂O₃ chromatographiert (neutral, Aktivitätsstufe V, Säulenlänge 3 cm), wobei man eine farblose Fraktion eluiert, die nach Entfernen des Solvens im Vakuum einen farblosen Feststoff liefert. Ein Vergleich der IR-spektroskopischen Daten belegt das Vorliegen von Ph₂C=CPh₂. Ausbeute an 27: 54 mg (40%).

(b) Eine Lösung von 89 mg (0.18 mmol) **3** in 5 ml Toluol wird mit 10 μ l (0.18 mmol) Methylisonitril versetzt, wobei eine Farbänderung von Dunkelrot nach Hellgelb eintritt. Nach 1 min Rühren bei Raumtemperatur entfernt man das Solvens im Vakuum, wäscht den Rückstand zweimal mit je 3 ml Pentan und trocknet das hellgelbe feinkristalline Pulver im Hochvakuum. Ausbeute: 69 mg (72%); Schmp.: 95 °C (Zers.). (Gef.: C, 61.76; H, 5.03; N, 2.40. C₂₇H₂₆NO₂PRu ber.: C, 61.36; H, 4.96; N, 2.65%). IR (KBr): ν (C=N) = 2110, ν (C=O) = 1600 cm⁻¹. ¹H-NMR (200 MHz, C₆D₆): δ 7.40 (m, 15H, C₆H₅), 4.72 (s, 5H, C₅H₅), 2.30 (d, J(PH) = 1.5 Hz, 3H, CNCH₃), 2.03 (s, 3H, O₂CCH₃). ³¹P-NMR (81.0 MHz, C₆D₆): δ 59.5 (s).

7.25. Darstellung von $[CpRuCl(CNCH_3)(PPh_3)]$ (28)

Eine Lösung von 100 mg (0.19 mmol) 27 in 2 ml Toluol wird mit Toluol an Al_2O_3/Cl^- (neutral, Aktivitätsstufe V, Säulenlänge 10 cm) chromatographiert. Das Eluat wird anschließend im Vakuum zur Trockne gebracht, der Rückstand mit 3 ml Pentan gewaschen und das gelbe mikrokristalline Pulver im Vakuum getrocknet. Ausbeute: 44 mg (30%); Schmp. 95 °C (Zers.). (Gef.: C, 59.44; H, 4.80; N, 2.66. C₂₅H₂₃ClNPRu ber.: C, 59.47; H, 4.59; N, 2.77%). IR (KBr): ν (C=N) = 2105 cm^{-1} . ¹H-NMR (200 MHz, C₆D₆): δ 7.41 (m, 15H, C₆H₅), 4.52 (s, 5H, C₅H₅), 2.26 (d, J(PH) = 1.5 Hz, 3H, CNCH₃). ¹³C-NMR (100.6 MHz, C₆D₆): δ 162.5 (d, br, J(PC) = 24.0 Hz, $CNCH_3$), 138.0 (d, $J(PC) = 42.0 \text{ Hz}, \text{ ipso-C von PC}_{6}\text{H}_{5}), 134.6 \text{ (d, } J(PC)$ $= 10.8 \text{ Hz}, \text{ ortho-C von PC}_{6}\text{H}_{5}, 129.7 \text{ (d, } J(\text{PC}) =$ 2.3 Hz, para-C von PC_6H_5 , 128.3 (d, J(PC) = 9.7 Hz, meta-C von PC_6H_5), 82.0 (d, $J(PC) = 2.0 \text{ Hz}, C_5H_5$), 29.3 (s, CNCH₃). ³¹P-NMR (81.0 MHz, C₆D₆): δ 53.1 (s).

7.26. Darstellung von $[CpRuCl(=CPh_2)(PPh_3)]$ (29)

(a) Eine Lösung von 170 mg (0.35 mmol) **3** in 5 ml Toluol wird mit 68 mg (0.35 mmol) Ph_2CN_2 versetzt und 5 min bei Raumtemperatur gerührt. Das Solvens wird im Vakuum entfernt, der Rückstand in 2 ml Toluol gelöst und die Lösung mit Toluol als Laufmittel an Al_2O_3/Cl^- (neutral, Aktivitätsstufe V, Säulenlänge 6 cm) chromatographiert. Das Eluat wird im Vakuum zur Trockne gebracht, das verbleibende grüne Pulver mit 5 ml Pentan gewaschen und im Vakuum getrocknet. Ausbeute: 113 mg (51%).

(b) Eine Lösung von 93 mg (0.19 mmol) 3 in 5 ml Toluol wird mit $27 \text{ mg} (0.19 \text{ mmol}) \text{ Ph}_2 \text{CN}_2$ versetzt und 5 min bei Raumtemperatur gerührt. Anschließend wird das Solvens im Vakuum entfernt, der Rückstand in 5 ml Aceton gelöst und die Lösung mit 39 mg (0.29 mmol) Et₃NHCl versetzt. Nach weiteren 30 min Rühren bei Raumtemperatur wird das Reaktionsgemisch erneut im Vakuum vom Lösungsmittel befreit und der Rückstand mit 2 ml Toluol extrahiert. Der Extrakt wird mit Toluol als Laufmittel an Al₂O₃ (neutral, Aktivitätsstufe V, Säulenlänge 4 cm) chromatographiert, das Eluat im Vakuum zur Trockne gebracht und das verbleibende grüne Pulver mit 5 ml Pentan gewaschen. Ausbeute: 64 mg (62%); Schmp. 102 °C (Zers.). (Gef.: C, 69.11; H, 4.48; Ru, 16.15. C₃₆H₃₀ClPRu ber.: C, 68.62; H, 4.80; Ru, 16.04%). ¹H-NMR (400 MHz, $C_6 D_6$): δ 7.52, 7.32, 6.94, 6.83 (jeweils m, 25H, C₆H₅), 4.69 (s, 5H, $C_{5}H_{5}$). ¹³C-NMR (100.6 MHz, $C_{6}D_{6}$): δ 327.5 (d, J(PC) = 16.2 Hz, RuC, 164.5 (d, J(PC) = 4.8 Hz, ipso-C von CC_6H_5), 136.6 (d, J(PC) = 42.4 Hz, *ipso-C* von PC_6H_5 , 134.7 (d, J(PC) = 10.0 Hz, ortho-C von PC_6H_5 , 129.3 (d, J(PC) = 2.0 Hz, para-C von PC_6H_5 , 127.8 (d, J(PC) = 9.6 Hz, meta-C von PC₆H₅), 127.6, 127.0, 125.4 (jeweils s, para-C, ortho-C und meta-C von CC_6H_5 , 88.8 (d, J(PC) = 2.7 Hz, C₅H₅). ³¹P-NMR (162.0 MHz, C₆D₆): δ 47.5 (s). MS (34 eV): m/z (I_r) = 595 (100, M⁺ - Cl), 427 [3.7, $(CpRu(PPh_3)^+]$, 333 [2.0, $(CpRu(=CPh_2)^+]$.

7.27. Darstellung von $[CpRuCl = C(C_6H_5)(p-C_6H_4Me)](PPh_3)]$ (30)

Wie unter 7.26. (a) für 29 beschrieben, erhält man Verbindung 30 ausgehend von 120 mg (0.25 mmol) 3 und 52 mg (0.25 mmol) Phenyl(p-tolyl)diazomethan als grünes Pulver. Ausbeute: 116 mg (72%); Schmp. 100 °C (Zers.). (Gef.: C, 68.68; H, 5.01. C₃₇H₃₂ClPRu ber.: C, 68.99; H, 5.01%). ¹H-NMR (200 MHz, C_6D_6): δ 7.71, 7.54, 6.94 (jeweils m, 24H, C_6H_5 und C_6H_4), 4.72 (s, 5H, C_5H_5), 1.91 (s, 3H, CH₃). ¹³C-NMR (100.6 MHz, $C_6 D_6$): δ 323.0 (d, J(PC) = 16.2 Hz, RuC), 164.3 (d, $J(PC) = 5.6 \text{ Hz}, \text{ ipso-C von } CC_6 \text{H}_5 \text{ oder ipso-C von}$ $p-C_6H_4Me$), 162.4 (d, J(PC) = 4.1 Hz, *ipso-C* von CC_6H_5 oder $p-C_6H_4Me$), 138.3 (s, para-C von p- $C_6 H_4 Me$), 136.7 (d, J(PC) = 42.1 Hz, *ipso-C* von PC_6H_5 , 134.7 (d, J(PC) = 9.8 Hz, ortho-C von PC_6H_5), 129.4 (d, J(PC) = 1.9 Hz, para-C von PC_6H_5), 128.0 (s, para-C von CC_6H_5), 127.8 (d, $J(PC) = 9.5 \text{ Hz}, \text{ meta-C von } PC_6H_5), 127.0, 126.8,$ 126.6, 124.9 (jeweils s, *ortho*-C und *meta*-C von CC_6H_5 und $p-C_6H_4$ Me), 88.5 (d, J(PC) = 3.6 Hz, C_5H_5), 21.5 (s, CH₃). ³¹P-NMR (81.0 MHz, C_6D_6): δ 48.4 (s).

7.28. Darstellung von $[CpRuCl] = C(p-C_6H_4Cl)_2](PPh_3)]$ (31)

Wie unter 7.26. (a) für 29 beschrieben, erhält man Verbindung **31** ausgehend von 190 mg (0.39 mmol) **3** und 103 mg (0.39 mmol) 4,4-Dichlordiphenyldiazomethan als grünes Pulver. Ausbeute: 170 mg (62%); Schmp. 138°C (Zers.). (Gef.: C, 61.74; H, 4.08. C₃₆H₂₈Cl₃PRu ber.: C, 61.86; H, 4.04%). ¹H-NMR (400 MHz, C₆D₆): δ 7.39, 7.05, 6.94, 6,83 (jeweils m, 23H, C_6H_5 und C_6H_4), 4.58 (s, 5H, C_5H_5). ¹³C-NMR $(100.6 \text{ MHz}, C_6 D_6)$: δ 316.1 (d, J(PC) = 16.5 Hz,RuC), 162.3 (d, J(PC) = 5.1 Hz, *ipso*-C von p-C₆H₄Cl), 136.0 (d, J(PC) = 42.3 Hz, *ipso*-C von PC₆H₅), 134.6 (d, J(PC) = 9.7 Hz, ortho-C von PC_6H_5), 133.9 (s, para-C von $p-C_6H_4Cl$, 129.6 (d, J(PC) = 1.9 Hz, para-C von PC_6H_5 , 128.0 (d, J(PC) = 9.5 Hz, meta-C von PC_6H_5), 127.4, 126.5 (jeweils s, ortho-C und meta-C von $p-C_6H_4Cl$, 88.9 (d, J(PC) = 3.1 Hz, C_5H_5). ³¹P-NMR (162.0 MHz, C_6D_6): δ 47.4 (s).

7.29. Darstellung von $[CpRuCl] = C(p-C_6H_4OMe)_2](PPh_3)]$ (32)

Wie unter 7.26. (a) für 29 beschrieben, erhält man Verbindung 32 ausgehend von 200 mg (0.41 mmol) 3 und 104 mg (0.41 mmol) Di-(*p*-anisyl)diazomethan als grünes Pulver. Ausbeute: 82 mg (29%); Schmp. 118 °C (Zers.). (Gef.: C, 5.78; H, 4.75. C₃₈H₃₄ClO₂PRu ber.: C, 66.13; H, 4.97%). ¹H-NMR (400 MHz, $C_6 D_6$): δ 7.78, 6.90, 6.82, 6.22 (jeweils m, 23H, C₆H₅ und C_6H_4), 4.67 (s, 5H, C_5H_5), 3.08 (s, 6H, CH_3). ¹³C-NMR (100.6 MHz, d_8 -Toluol, 213 K): δ 162.6 (d, $J(PC) = 4.9 \text{ Hz}, \text{ ipso-C von } p-C_6 H_4 \text{OMe}, 157.9 \text{ (s,}$ para-C von $p-C_6H_4OMe$, 136.2 (d, J(PC) = 42.3 Hz, *ipso*-C von PC_6H_5), 134.5 (d, J(PC) = 10.0 Hz, ortho-C von PC_6H_5), 128.8, 127.9 (jeweils s, para-C von PC_6H_5 und ortho-C von $p-C_6H_4OMe$), 127.4 (d, $J(PC) = 9.1 \text{ Hz}, \text{ meta-C von } PC_6H_5), 112.0 \text{ (s, meta-C)}$ von $p-C_6H_4OMe$), 87.0 (s, C_5H_5), 54.4 (s, OCH₃). Das Signal für das α-Kohlenstoffatom des Carbenliganden konnte nicht genau lokalisiert werden. ³¹P-NMR (81.0 MHz, $C_6 D_6$): δ 49.0 (s).

7.30. Daten zur Kristallstrukturanalyse von 7 und 29

Weitere Angaben zu den Kristallstrukturanalysen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-406003 (7) bzw. CSD-406004 (29), der Autorennamen und des Zeitschriftenzitats angefordert werden.

7: Kristalle aus Aceton bei -78 °C; Kristallgröße $0.30 \times 0.20 \times 0.15 \text{ mm}^3$; Kristallsystem triklin; Raumgruppe P1 (Nr. 2); a = 10.071(3), b = 11.079(3), c =15.234(5) Å; $\alpha = 101.87(2)^{\circ}$, $\beta = 97.53(2)^{\circ}$, $\gamma =$ 113.17(2)°; $V = 1486(1) \text{ Å}^3$; Z = 2; $d_{\text{ber}} = 1.340 \text{ g cm}^{-3}$; μ für Mo-K $\alpha = 0.600 \text{ mm}^{-1}$, $\lambda = 0.70930 \text{ Å}$, Graphitmonochromator, Zirkon-Filter (Faktor 15.4), Enraf-Nonius CAD4 Diffraktometer, Meßmethode $\omega/2\theta$ -scan, Meßbereich max. $2\theta = 50^{\circ}$, gemessene Reflexe 5524, unabhängige Reflexe 5198, beobachtete Reflexe 4136 $[I > 2\sigma(I)]$, alle 5198 unabhängigen Reflexe zur Verfeinerung verwendet; LP- und lineare Zerfallskorrektur (Intensitätsverlust 16.5%); Lösung der Struktur mit direkten Methoden (SHELXS-86), anisotrope Verfeinerung der Nicht-Wasserstoffatome durch Methode der kleinsten Fehlerquadrate. R = 0.039, $R_w = 0.088$; Reflex/Parameter-Verhältnis: 15.4; Restelektronendichte $+0.343/-0.258 \text{ e}\text{\AA}^{-3}$

29: Kristalle aus $CH_2Cl_2/Hexan$ bei -20 °C; Kristallgröße $0.18 \times 0.18 \times 0.15 \text{ mm}^3$; Kristallsystem monoklin; Raumgruppe Cc (Nr. 9); a = 18.340(5), b =9.722(2), c = 19.546(5) Å; $\beta = 123.12(2)^{\circ}$; V =2919.7(1) Å³; Z = 4; $d_{ber} = 1.434 \text{ g cm}^{-3}$; μ für Mo- $K\alpha = 0.699 \text{ mm}^{-1}$, $\lambda = 0.70930 \text{ Å}$, Graphitmonochromator, Zirkon-Filter (Faktor 15.4), Enraf-Nonius CAD4 Diffraktometer, Meßmethode ω/θ -scan, Meßbereich max. $2\theta = 68^{\circ}$, gemessene Reflexe 6403, unabhängige Reflexe 6102, beobachtete Reflexe 2133 $[I > 2\sigma(I)]$, 6099 Reflexe zur Verfeinerung verwendet; LP-Korrektur; Lösung der Struktur nach der Patterson-Methode (SHELXS-93), anisotrope Verfeinerung der Nicht-Wasserstoffatome durch Methode der kleinsten Fehlerquadrate. R = 0.067, $R_{w} = 0.174$; Reflex/Parameter-Verhältnis: 17.3; Restelektronendichte +0.462/ $-1.019 \,\mathrm{e}\mathrm{\AA}^{-3}$.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (SFB 347) und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Unser Dank gilt außerdem Frau M.-L. Schäfer, Herrn C. Grünwald und Herrn Dr. W. Buchner für NMR-Messungen, Herrn Dr. M. Herderich für massenspektroskopische Untersuchungen, Herrn C.P. Kneis für Elementaranalysen, Frau R. Schedl für DTA-Messungen sowie Frau K. Manger für engagierte experimentelle Mitarbeit. Der Degussa AG sind wir für wertvolle Chemikalienspenden zu besonderem Dank verpflichtet.

Literaturverzeichnis

 M. Schäfer, J. Wolf und H. Werner, J. Chem. Soc., Chem. Commun., (1991) 1341; H. Werner, M. Schäfer, O. Nürnberg und J. Wolf, Chem. Ber., 127 (1994) 27.

- [2] T. Daniel, N. Mahr, T. Braun und H. Werner, Organometallics, 12 (1993) 1475.
- [3] T. Braun, O. Gevert und H. Werner, J. Am. Chem. Soc., 117 (1995) 7291.
- [4] T. Braun, P. Meuer und H. Werner, Organometallics, 15 (1996) 4075.
- [5] H. Lehmkuhl, H. Mauermann und R. Benn, *Liebigs Ann. Chem.*, (1980) 754.
- [6] T. Braun, Dissertation, Universität Würzburg, 1996.
- [7] S.D. Robinson und M.F. Uttley, J. Chem. Soc., Dalton Trans., (1973) 1912; D.A. Tocher, R.O. Gould, T.A. Stephenson, M.A. Bennett, J.P. Ennett, T.W. Matheson, L. Sawyer und V.K. Shah, J. Chem. Soc., Dalton Trans., (1983) 1571; G.B. Deacon und R.J. Phillips, Coord. Chem. Rev., 33 (1980) 227.
- [8] C.S. Yi und N. Liu, Organometallics, 14 (1995) 2616.
- [9] T. Arliguie, B. Chaudret, F.A. Jalon, A. Otero, J.A. Lopez und F.J. Lahoz, Organometallics, 10 (1991) 1888.
- [10] R. Mynott, H. Lehmkuhl, E.-M. Kreuzer und E. Joußen, Angew. Chem., 102 (1990) 314; Angew. Chem., Int. Ed. Engl., 29 (1990) 289; H. Lehmkuhl, J. Grundke und R. Mynott, Chem. Ber., 116 (1983) 159; H. Lehmkuhl, J. Grundke, G. Schroth und R. Benn, Z. Naturforsch., 39b (1985) 1050; J.W. Faller und B.V. Johnson, J. Organomet. Chem., 88 (1975) 101.
- [11] K. Kirchner, K. Mauthner, K. Mereiter und R. Schmid, J. Chem. Soc., Chem. Commun., (1993) 892; J.S. Valentine, Chem. Rev., 73 (1973) 235.
- [12] R.J. Kulawiec und R.H. Crabtree, Coord. Chem. Rev., 99 (1990) 89.
- [13] M.A. Tena, O. Nürnberg und H. Werner, Chem. Ber., 126 (1993) 1597.
- [14] F. Fribolin, Ein- und zweidimensionale NMR-Spektroskopie, VCH, Weinheim, 1988, pp. 245-251.
- [15] M.A. Esteruelas, F.J. Lahoz, A.M. López, E. Oñate und L.A. Oro, Organometallics, 13 (1994) 1669.
- [16] P. Schwab, N. Mahr, J. Wolf und H. Werner, Angew. Chem.,

105 (1993) 1498; Angew. Chem., Int. Ed. Engl., 32 (1993) 1480; H. Werner, J. Organomet. Chem., 500 (1995) 331; P. Schwab, N. Mahr, J. Wolf und H. Werner, Angew. Chem., 106 (1994) 82; Angew. Chem., Int. Ed. Engl., 33 (1994) 97.

- [17] P. Schwab, M.B. France, J.W. Ziller und R.H. Grubbs, Angew. Chem., 107 (1995) 2179; Angew. Chem., Int. Ed. Engl., 34 (1995) 2039; P. Schwab, R.H. Grubbs und J.W. Ziller, J. Am. Chem. Soc., 118 (1996) 100.
- [18] D.S. Bohle, G.R. Clark, C.E.F. Rickard, W.R. Roper, W.E.B. Shepard und L.J. Wright, J. Chem. Soc., Chem. Commun., (1987) 563; J. Organomet. Chem., 358 (1988) 411.
- [19] J.H. Merrifield, G.-Y. Lin, W.A. Kiel und J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5811.
- [20] M.I. Bruce und R.C. Wallis, Aust. J. Chem., 34 (1981) 209.
- [21] H. Adams, N.A. Bailey, C. Ridgway, B.F. Taylor, S.J. Walters und M.J. Winter, J. Organomet. Chem., 394 (1990) 349.
- [22] H. Adams, C.A. Maloney, J.E. Muir, S.J. Walters und M.J. Winter, J. Chem. Soc., Chem. Commun., (1995) 1511.
- [23] T. Ohta, H. Takaya und R. Noyori, Inorg. Chem., 27 (1988) 566.
- [24] M. Crocker, M. Green, K.R. Nagle, A.G. Orpen, H.-P. Neumann, C.E. Morton und C.J. Schaverien, *Organometallics*, 9 (1990) 1422.
- [25] J. Yang, J. Yin, K.A. Abboud und W.M. Jones, *Organometallics*, 13 (1994) 971.
- [26] M.O. Albers, D.J.A. de Waal, D.C. Liles, D.J. Robinson, E. Singleton und M.B. Wiege, J. Chem. Soc., Chem. Commun., (1986) 1680; M.I. Bruce, M.G. Humphrey, M.R. Snow und E.R.T. Tiekink, J. Organomet. Chem., 314 (1986) 213; M.I. Bruce, G.A. Koutsantonis, M.J. Lidell und E.R.T. Tiekink, J. Organomet. Chem., 420 (1991) 253.
- [27] B.E.R. Schilling, R. Hoffmann und J.W. Faller, J. Am. Chem. Soc., 101 (1979) 592.
- [28] L.I. Smith und K.L. Howard, Org. Synth. Coll. Vol., 3 (1955) 351.