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Synthesis of diversely functionalized symmetrical benzidines through electrochemical dehydrogenative
cross-coupling reaction of two N,N-disubstituted anilines, is described. The reactions conducted under
mild conditions with no oxidizing reagents and transition metal catalysts.

� 2021 Elsevier Ltd. All rights reserved.
The synthesis of benzidine derivatives has always attracted con- dant. As an alternative to chemical oxidation, electrooxidation is

siderable attention from synthetic chemists because they are not
only common structural constituents that are present in many bio-
logical and pharmaceutical molecules [1], but also can serve as
important building blocks for the synthesis of functionalized hete-
rocycles [2]. In addition, the chemical and physical properties of
benzidine-based compounds have enabled their use in the manu-
facture of azodyes and in cell biology as staining reagents [3]. Tra-
ditionally the synthesis of benzidine derivatives has largely relied
on the rearrangement of hydrazobenzenes [4]. Although effective,
the conventional rearrangement reactions suffer from major limi-
tations, including (1) the highly prefunctionalized starting materi-
als; (2) the formation of a substantial amount of by-products. A
more concise and atom economical method based on dehydro-
genative coupling methodology would be highly desirable since
fewer steps would be needed.

Indeed, the direct dehydrogenative coupling methods has been
well known [5]. Recent studies have investigated that excess
amounts of metal salt oxidants such as TiCl4, CAN, CuBr/H2O2, Cu
(ClO4)2 and FeCl3�6H2O, can be utilized for their transformation
[6]. For examples, Chen et al. reported that Fe salts can be used
to promote oxidative coupling of aniline, which tend to form ben-
zidine derivatives.6a In contrast, examples of external-oxidant-free
and transition metal-free dehydrogenative coupling are less abun-
attracting increasing interests [7]. Particularly, great achievements
for biaryl synthesis have been gained in the electrochemical dehy-
drogenative coupling cross-coupling of two aromatic compounds
[8]. Under these backgrounds, we strongly thought that the new
electrochemical method for the synthesis of benzidine derivatives
should be realized. For example, in 1962, Mizoguchi et al. reported
the first reaction between two N,N-Dimethylaniline by means of
electrochemical processes focused on the para/para selective
homocoupling mode [9]. However, this method needs to be con-
ducted in a strictly controlled buffer solution. Very recently, Li
et al. disclosed that an efficient reaction dehydrogenative cross
coupling of amino-naphthalenes with eletron-rich arenes to pro-
vide nonsymmetrical biaryls [10].

Herein, we report a new, general anode strategy for the synthe-
sis of various symmetrical benzidines by para-selective dehydro-
genative cross-coupling of two anilines under neutral reaction
conditions while avoiding the use of additional metal catalysts
and stoichiometric oxidants. We initiated our study by identifying
the optimal reaction conditions for the electrochemical dehydro-
genative cross-coupling of two N,N-dibenzylanilines. To our
delight, the desired benzidines 2a were indeed obtained in 87%
yield when the reaction was conducted under constant current
electrolysis at 8 mA in the presence of tetrabutylammonium hex-
afluorophosphate (n-Bu4NPF6, 0.5 equiv) in acetonitrile (ACN,
5 mL) at room temperature (Table 1, entry 1). The electrode mate-
rials have a significant impact on the reaction outcome, while an
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Table 1
Screening of the reaction conditions.a

a Reaction conditions: N,N-dibenzylaniline 1a (0.5 mmol), rt, in an undivided cell, 6 h. Unless otherwise noted.
b Estimated by 1H NMR using m-cresol as an internal reference.

Table 2
Reaction scope.a,b

a Reaction conditions: aniline 1 (0.5 mmol), rt, in an undivided cell, 6 h. Unless otherwise noted.
b Isolated yields.
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Scheme 1. Gram-scale synthesis of 6,60-biquinoline 3.

Fig. 1. UV–vis spectra of 2a, 2c, 2d and 2p (2.5 � 10�5 M) in dichloromethane.

Scheme 2. Possibl

X. Liu, Tian-Cheng Cai, D. Guo et al. Tetrahedron Letters 70 (2021) 153021

3

obvious loss of yield was obtained either with a platinum/carbon/
RVC plate anode or platinum/carbon plate cathode (Table 1, entries
2–5). In addition, this reaction was dramatically affected upon
replacing the electrolyte with either NaClO4, NH4I or KPF6 (Table 1,
entries 6–8). Other solvents, such as HFIP, DMF and CH2Cl2 were
also examined. However, all displayed lower effectiveness than
acetonitrile (Table 1, entries 9–11). Finally, lowering or increasing
the current intensity to 6 or 10 mA have adverse effects on the
reaction efficiency (Table 1, entries 12–13).

With optimized experimental conditions in hand, we set out to
evaluate the scope of the electrochemical dehydrogenative cross-
coupling of two anilines. As summarized in Table 2, a wealth of ani-
linederivatives carryingdifferent electronically and stericallyvaried
phenyl substituents reacted well, affording the corresponding sym-
metrical benzidines in 74–92% yields. The substitution effect of the
aryl ring of anilineswas firstly checked: several ortho- ormeta- sub-
stituents, such as Cl, Br, I, Me andMeO,were efficient for gaining the
products 2b-2k with moderate to good yields, respectively. It is
worthmentioning that the good results 2h-2i in the electrochemical
dehydrogenative cross-coupling reaction are achieved with the
e mechanism.
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highly bulky starting materials. When the anilines with different
substituent groups likeN-methyl-N-benzylanilines,N-ethyl-N-ben-
zylanilines and N-methyl-N-ethylanilines were involved, the target
products 2j-2m and 2owere obtained in high yields aswell. In addi-
tion, the reaction could afford the corresponding products2n and2p
up to 90% yield when dialkylanilines, such as N,N-dimethylaniline
and N,N-diethylaniline, were used as the substrates. Meanwhile,
oxidative coupling of N-phenylpiperidine and 1-phenylpyrrolidine,
afforded 2q-2r with 80–83% yields. Delightfully, this present elec-
trochemical protocol is efficiently applied in the incorporation of
various important pharmacophore motifs, including 1,2,3,4-
tetrahydroquinoline and 1-benzyl-1,2,3,4-tetrahydroquinoline,
into the symmetrical benzidines. More importantly, N-allylic con-
taining substituents were particularly reactive, expanding the syn-
thetic utility of the protocol in this work significantly.

The applicability of the present electrochemical reaction was
further tested. In the small-scale synthesis, a concentration of
0.1 M of the 1swas required, and the increase of reaction substrate
would reduce the yield of the target product. This clean electro-
chemical reaction offered a great opportunity for the exploration
of one-pot sequential transformation from readily available start-
ing materials. Pleasingly, the electrochemical dehydrogenative
cross-coupling reaction of 1s with a 20-fold increase in the concen-
tration of 1s gave the target product 3 in 72% isolated yield under-
went dehydrogenation without a tedious workup process. It is
worthwhile to point out that, unlike the results reported by Xu,
the reaction of 1s produced CAC dimerization product instead of
NAN dimerization [11]. Moreover, the 6,60-biquinoline 3was found
to be a potential photoactive material [12] (Scheme 1).

UV–visible absorption measurement was also performed with
selected coupling products (2a, 2c, 2d and 2p). The absorptionmax-
ima of 2p are at 320nm,whereas the2a, 2c and 2d exhibit a stronger
red-shifted absorption band. This result indicates that p electrons in
2a, 2c and 2d aremore easily excited to a higher antibondingmolec-
ular orbital. Moreover, different benzyl moieties on anilines lead to
large blueshifts of the absorption maxima, which shows that the
substitutions on the benzene ring have an obvious impact on the
energy gap between the HOMO and the LUMO (Fig. 1).

In continuation, a plausible mechanism for the aforementioned
transformation is proposed in Scheme 2. Initially, aniline 1a under-
went a single electron oxidation at the anode to give the cationic
radical A. Next, the dehydrogenative cross-coupling reaction
between energetically favourable radical B and another 1a would
deliver the target product 2a through loss of an electron and two
H+ species. Combined with cyclic voltammetry analysis (supple-
mentary material), the product 2a is likely oxidized reversibly to
a radical cation, which can serve as a catalyst for self-catalysis.

In conclusion, we have achieved the para-selective anodic dehy-
drogenative cross-coupling of anilines (21 examples, 74–92%,
>1.8 g). This reaction proceeded smoothly with excellent selectiv-
ity in the absence of any transition metals or oxidants. In addition,
this explained procedure, owing to the exploitation of an undi-
vided cell, is satisfactorily facile, thus meeting the demands of con-
temporary syntheses and suitable to be used as alternative to the
prior methods.
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Table 1
Screening of the reaction conditions.a
aReaction conditions: N,N-dibenzylaniline 1a (0.5 mmol), rt, in an undivided cell, 6 h.
Unless otherwise noted.
bEstimated by 1H NMR using m-cresol as an internal reference.
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