126 Chemistry Letters 2000 ## Synthesis of 1-Alkenylboronic Esters *via* Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides and Triflates Kou Takahashi, Jun Takagi, Tatsuo Ishiyama, and Norio Miyaura* Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Received November 2, 1999; CL-990936) The synthesis of 1-alkenylboronic acid pinacol esters via the palladium-catalyzed cross-coupling reaction of 1-alkenyl halides or triflates with bis(pinacolato)diboron [(Me₄C₂O₂)B-B(O₂C₂ Me₄)] was carried out in toluene at 50 °C in the presence of potassium phenoxide (1.5 equivalents) and PdCl₂(PPh₃)₂•2PPh₃ (3 mol%). The transition metal-catalyzed cross-coupling reaction of disilanes and distannanes is an elegant method for the synthses of organosilicone 1 and $- {\rm tin}^2$ compounds directly from organic electrophiles, but the lack of suitable boron nucleophiles has limited this protocol. We have recently demonstrated the synthesis of arylboronates from aryl halides 3 or triflates, 4 and allylboronates from allyl acetates 5 $\it via$ a palladium-catalyzed cross-coupling reaction of tetra(alkoxo)diborons. Very recently, Masuda and Murata 6 found that pinacolborane (Me $_4$ C $_2$ O $_2$)BH is an excellent boron-nucleophile for the palladium-catalyzed coupling reaction in the presence of triethylamine. Thus, tetra(alkoxo)diboron and pinacolborane are two nucleophiles now available for the boron cross-coupling reaction. In this paper, we report the palladium-catalyzed coupling reaction of bis(pinacolato)diboron (1) and 1-alkenyl halides or triflates, which provides a one-step procedure for the synthesis of 1-alkenylboronic esters from vinyl electrophiles (Eq. 1).⁷ Our initial studies (Eq. 2 and Table 1) were focused on the reaction conditions selectively yielding a vinyl boronate (3) because the previous reaction reported for the coupling with aryl halides³ resulted in the formation of an inseparable mixture of several products (3-6) (entry 1). Thus, the reaction involved the Heck coupling⁸ between 2a and 3 yielding a small Table 1. Reaction conditions^a | Entr | y Catalyst/Base/Solvent | Yield/9 | % (3/4/5/6)) ^b | |------|--|---------|----------------------------| | 1 | PdCl ₂ (dppf)/AcOK/DMSO | 53 | (51/11/ 1/37) | | 2 | PdCl ₂ (dppf)/K ₂ CO ₃ /DMSO | 56 | (52/ 2/ 5/41) ^d | | 3 | PdCl ₂ (dppf)/PhOK/DMSO | 67 | (70/ 2/ 4/24) ^d | | 4 | PdCl ₂ (dppf)/PhOK/DMF | 77 | (71/ 1/ 4/24) ^d | | 5 | PdCl ₂ (dppf)/PhOK/EtOH | 69 | (80/ 1/ 9/10) ^d | | 6 | PdCl ₂ (dppf)/PhOK/dioxane | 86 | (91/1/4/4) ^d | | 7 | PdCl ₂ (dppf)/PhOK/toluene | 74 | (89/7/3/1) ^d | | 8 | PdCl ₂ (PPh ₃) ₂ /PhOK/DMSO | 81 | (90/ 1/ 1/ 8) ^d | | 9 | PdCl ₂ (PPh ₃) ₂ /PhOK/DMF | 89 | (92/ 1/ 1/ 6) ^e | | 10 | PdCl ₂ (PPh ₃) ₂ /PhOK/toluene | 78 | (97/ 1/ 1/ 1)° | | 11 | PdCl ₂ (PPh ₃) ₂ •2PPh ₃ /PhOK/toluer | ne 96 | (96/ 1/ 2/ 1) ^e | ^aA mixture of 2-bromodecene 2a (1.0 mmol), diboron 1 (1.1 mmol), palladium catalyst (0.03 mmol) and base (1.5 mmol) in solvent (6 ml) was stirred at 50 °C or 80 °C. ^bGC yields and their compositions were shown in the parentheses. ^cAt 80 °C for 16 h. ^dAt 50 °C for 16 h. ^cAt 50 °C for 5 h. amount of **5**, the homocoupling between **2a** and **3** giving dimer **6**, 9 and an unusual coupling giving a positional isomer **4** together with the desired coupling to afford **3**. Although the formation of positional isomer **4** is not well understood, the Heck product and the dimer (**5** and **6**) can be eliminated by changing KOAc or K_2CO_3 (entries 1 and 2) to a strong base because those side reactions are due to the slow transmetalation of **1** to the vinyl-Pd-Br intermediate. Thus, the selective coupling to give **3** was finally achieved by carrying out the reaction at 50 °C in the presence of a solid PhOK suspended in toluene (entries 10 and 11), whereas other solid bases such as K_3PO_4 •n H_2O and NaOEt were not effective. The palladium-triphenylphosphine catalyst gave adequately better results than the palladium-dppf complex (entries 3-11). The synthesis of 1-alkenylboronates from the representative haloalkenes is summarized in Table 2. The reaction with 2-iododecene **2b** and *t*-butyl derivative **2c** still suffered from the formation of a positional isomer (entries 1 and 2), but other 2-bromoalkenes (**2d-2g**) selectively gave alkenylboronates in high yields, which are not available by conventional hydroboration of terminal alkynes¹⁰ (entries 2-6). The use of an insoluble base suspended in toluene can tolerate various functional groups in haloalkenes (entries 4-6). Although (*E*)-1-alkenylboronates have been synthesized by hydroboration of terminal alkynes and (*Z*)-derivatives by a two-step procedure from 1-halo-1-alkynes,¹¹ the coupling reaction of diboron provided an alternative and stereoselective method for synthesizing both isomers with high stereoselectivity over 99% (entries 7 and 8). Chemistry Letters 2000 127 **Table 2.** Synthesis of 1-alkenylboronates (Eq. 1)^a | | | h | |-------|--|----------------------| | Entry | Haloalkene | Yield/% ^b | | | $= \stackrel{R}{\swarrow}$ | | | 1 | 2b : R=C ₈ H ₁₇ , X=I | 65° | | 2 | 2c: R=t-C ₄ H ₉ , X=Br | 69 ^d | | 3 | 2d : R=Ph, X=Br | 88 | | 4 | 2e : R=(CH ₂) ₃ Cl, X=Br | 85 | | 5 | 2f: R=(CH ₂) ₃ CN, X=Br | 85 | | 6 | $\mathbf{2g}$: R=CH ₂ CH(OSi [†] BuMe ₂)CH(CH ₃) ₂ ,
X=Br | 70 | | 7 | C ₈ H ₁₇ Br | 47 ^e | | 8 | C ₈ H ₁₇ Br | 74 | | 9 | Br | 57 | | 10 | Br , | 99 | ^aA mixture of haloalkene (1.0 mmol), 1 (1.1 mmol), $PdCl_2(PPh_3)_2$ (0.03 mmol) plus PPh_3 (0.06 mmol), and PhOK (1.5 mmol) in toluene (5 ml) was stirred at 50 °C for 5 h. ^bGC yields. The products were isolated by Kugelrohr distillation or chromatography over silica gel. ^cThe reaction accompanied with (Z)-1-dodecenylboronate (3%). ^d(E)-1-(2-t-butylethenyl)boronate (7%) was also produced. ^c(1-octylethenyl)boronate (6%). 2,2-Disubstituted 1-alkenylboronate and cyclic 1-alkenylboronate were obtained from the corresponding bromides without any difficulty because the side-reactions observed in Eq. 2 were very slow for these substrates (entries 9 and 10). However, all attempts at the couplings with 4-iodo-3-penten-2-one and methyl 3-bromo-2-methylpropenoate were unsuccessful. Preliminary results for the cross-coupling of diboron 1 with 1-alkenyl triflate are shown in Eq. 3. Under similar reaction conditions to those used for halides, various triflates provided the corresponding 1-alkenylboronates, which results will be reported elsewhere. ## **References and Notes** - Y. Hatanaka and T. Hiyama, *Tetrahedron Lett.*, **28**, 4715 (1987); H. Matsumoto, K. Shono, and Y. Nagai, *J. Organomet. Chem.*, **208**, 145 (1981). - H. Azizian, C. Eaborn, and A. Pidcock, *J. Organomet. Chem.*, 215, 49 (1981); D. Azarian, S. S. Dua, C. Eaborn, and D. R. M. Walton, *J. Organomet. Chem.*, 117, C55 (1976). - 3 T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., 60, 7508 (1995); S. R. Piettre and S. Baltzer, Tetrahedron Lett., 38, 1197 (1997); A. Giroux, Y. Han, and P. Prasit, Tetrahedron Lett., 38, 3841 (1997). - 4 T. Ishiyama, Y. Itoh, T. Kitano, and N. Miyaura, *Tetrahedron Lett.*, **38**, 3447 (1997). - 5 T. Ishiyama, T.-a. Ahiko, and N. Miyaura, *Tetrahedron Lett.*, 37, 6889 (1996); T.-a. Ahiko, T. Ishiyama, and N. Miyaura, *Chem. Lett.*, 1997, 811. - M. Murata, S. Watanabe, and Y. Masuda, *J. Org. Chem.*, 62, 6458 (1997). - During the course of our study, a similar cross-coupling reaction of haloalkenes with diboron 1 or pinacolborane was reported: S. M. Marcuccio, M. Rodopoulos, H. Weigold, 10th International Conference on Boron Chemistry, Durham, England, July 1999, PB-35; M. Murata, T. Oyama, S. Watanabe, and Y. Masuda, 76th Annual Meeting of Chemical Society of Japan, March 1999, 2B712. - 8 R. F. Heck, in "Palladium Reagents in Organic Syntheses," Academic Press, New York (1985), pp. 214-242. - 9 Dimers included 2-octyl-1,3-dodecadiene and 2,3-dioctyl-1,3-butadiene, but the reaction shown in entry 1 selectively gave the former diene *via* the head to tail coupling between **2a** and **3**. N. Miyaura and A. Suzuki, *J. Organomet. Chem.*, **213**, C53 (1981). - I. Rivera and J. A. Soderquist, *Tetrahedron Lett.*, 32, 2311 (1991); Y. Yamamoto, R. Fujikawa, A. Yamada, and N. Miyaura, *Chem. Lett.*, 1999, 1069. - 11 D. S. Matteson, in "Stereodirected Synthesis with Organoboranes," Springer, New York (1995), pp. 31-41.