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A trimethyl-, triethyl-, or triisopropylsilyl group attached to the meta position of toluene retards the rate of permutational hydrogen/metal
interconversion with butyllithium in the presence of potassium tert-butoxide by factors of 1.7, 3, and 7, respectively. Although remote from the
reaction center, the substituents sterically impede the coordination of potassium to the arene electron sextet. sr-Arene/metal bonding may
play a major role in modulating chemical and, by extension, biochemical reactivity.

To rationalize and even predict chemical reactivity requires toluene parent compound. In addition, triisopropyl-3-tolyl-
detailed knowledge about the involved transition states. As silane was included in the study. The superbasic mixed-metal
part of our continuing efforts to probe the composition and (“LIC-KOR") reagent is known to produce benzylmetal
geometry of such elusive species in the context of organo- species that retain most of the potassium, whereas most of
metallic reactiond?? we have carried out a new series of the lithium, although not all, combines witiert-butoxide
competition kinetic experiments. In this way, we have  (the alcoholate thus formed being removable by extraction
measured the rates of the permutational hydrogen/metalof the residue with toluené)The organometallic intermedi-
interconversion (“metalation”) between trimethylsilyl- and atesl (see Scheme 1) were trapped with iodomethane. The
triethylsilyl-substituted toluenes and butyllithium in the

presence of potassiutert-butoxide relative to that of the || NN AN

Scheme 1. Metalation of Trialkylsilyl-Substituted Toluenes
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Table 1. Metalation of Trialkyltolylsilanes with Butyllithium
in the Presence of Potassiuert-Butoxide® or, as Indicated by
Values in Brackets, with Butyllithium in the Presence of
N,N,N',N"" N""-Pentamethyldiethylenetriamine (PMDTARates
Relative to Toluenekie = 1.0)

isomer R =CH; R = CoHjs R = CH(CHjy)
ortho 0.70 [0.50] 0.26 [0.33]

meta 0.60 [1.3 ] 0.34 [1.0] 0.14 [-]
para 3.5[4.3] 2.5[4.1]

a|n tetrahydrofuran (THF) at+75 °C.?In THF at 0°C.

The results compiled in Table 1 are remarkable in several
aspects. They reveal a rate enhancement brought about b
para-positioned trialkylsilyl groups but also a strong rate
retardation if such substituents are located at the meta posi
tion. However, the latter effect is restricted to the potassium-
containing mixed-metal reagent, being absent when the
similarly polar butyllithium/PMDTA {,N',N',N",N"-pen-
tamethyldiethylenetriamine) complex is employed (Table 1).

The reaction-inhibiting action of thenetatrialkylsilyl
groups proved to be cumulative. 1-Methyl-3,5-phenylenebis-
(triethylsilane) was found to undergo the LIC-KOR-promoted
metalation, generating intermedi®2e0.14 & 0.37) times
as rapidly as toluene (Scheme 2).

Scheme 2. Metalation of
1-Methyl-3,5-phenylenebis(triethylsilane) with LIC-KOR
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The rate decrease causedrbgtatrialkylsilyl is too large
to be attributed to an electronic interaction. Actually, the
averageo,, of —0.0% would require an unreasonably high
reaction constanp of +4.4 to support the hypothesis of a
simple inductive effect [log 0.66 4.4(—0.05)]. Moreover,
this p value would have to grow te-9.4 and+17 when
metatriethylsilyl and metatriisopropylsilyl are considered,

><o_.Li‘: _CsH;

Figure 1. Metalation of toluenes with butyllithium/potassiuert-
butoxide: w-arene/potassium interaction at the transition state.

the assumption of anS-type coordination of potassium by
¥he arener-electrons at the transition stage(Figure 1).
Under such circumstances, the bulky trialkylsilyl substituents
‘will inevitably become repulsive.

Potassiumt-arene interactions have been postulated for
the first time in an attempt to rationalize why the crowded
enda4,4,4-triphenyl-2-butenylpotassium can compete with
its unstrainecexoisomer at the conformational equilibrium
on equal term$.Later, several X-ray structures of organo-
potassium$,organosodium&and even alkali metal amidés
have been published that featufemetal coordination as a
key factor modeling the crystallographic architecture. In
contrast, evidence fayb-lithium coordination is scaréeif
one disregards “radical-aniori$’and “arene-dianionst2¢13
It can only manifest itself if no better donor components are
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available. The solvation provided by ether- or amine-type trimethylsilyl andpara-triethylsilyl group falls in the 0.6 kcal/
donors is strong enough to override argomplex interac- mol range AAG" —0.59 and—0.57 kcal/mol).

tion and favor the formation of coordinatively saturated |f an ortho-trialkylsilyl group stabilizes charge excess to
monomers oru-bound dimers and tetramers. Thus, it the same extent aspmra-trialkylsilyl, we can evaluate the
becomes intelligible why the butyllithium/PMDTA-mediated  steric hindrance affecting the metalation of trimethyl-2-
metalation of toluenes does not mirror advenseta tolylsilane and triethyl-2-tolylsilane. The numbers obtained
trialkylsilyl effects. by adding 0.59 and 0.57 kcal/mol (see the preceding
Although of unusual magnitude, the rate-enhancing effect naragraph) to the experimental relative activation energies
of para-trialkylsilyl is in perfect agreement with the electron- (AAG* +0.14 and+0.53 kcal/mol) are amazingly moderate

withdrawing capacity of this substituent. It is irrelevant in (9. 73-1.1 kcal/mol). This may be attributed at least in part
the present context whether the stabilization of electron {5 the extreme in-plane deformability of-Si bonds

excess by adjacent second-row (or heavier) elements is
described by the arguably misleading concepts of d-orbital
resonanc®&or hyperconjugatidht®or by “polarization” (in

the sense of an—o¢* mixing). ' Whatever the exact nature

A seminal review by G. W. Gokel et &.culminated in
the conclusion that “Future studies in molecular recognition
and supramolecular chemistry must include catiarinter-
. . actions in the panoply of feeble forces. The consequences
of the phenomenon may be, it lowers the activation energy o . : : "
of this interaction are potentially profound for biology.

for the LIC-KOR-promoted metalation of trimethyl-4-tolyl- -\, 00 fully endorsing this statement, we feel tempted to add
silane and triethyl-4-tolylsilane. If the potassium was placed |, o o S
... and for synthesis-oriented mechanistic investigations as

perfectly over the middle of the arene ring, the steric »

) - . ; well.
hindrance exhibited by eneta or paratrialkylsilyl group
should be identical. In this case, the electronic bonus
provided by aparatrimethylsilyl and para-triethylsilyl
substituent would represent the differena&\G* —0.69 and
—0.78 kcal/mol relative to the toluene parent compound)
between the compensated steric hindrane®G@* +0.20 and ) ] ) _ )
+0.42 keal/mol) and the experimentally observed net rate  SuPPorting Information Available: Experimental pro-
enhancement of 3.5-fold and 2.5-fold4G* —0.49 and cedures and characterization data for silane-type starting
—0.36 kcal/mol). However, as testified by X-ray structures, materials and products. This material is available free of
liefthe metal may prefer to reside somewhat outside of the charge via the Internet at http://pubs.acs.org.
arene center in order to minimize steric repulsion while still o[ 0502580
maintaining am8-coordination® We assume the potassium
to choose indeed such an asymmetric location at the transition ;5 () pitt, c. G.J. Organomet. Chen1973 61, 49-70. (b) Traylor,
state3, staying closer to the ipso and more distant from the T. G.; Hanstein, W.; Berwin, H. J.; Clinton, N. A.; Brown, R. &. Am.

; i~ Chem. Soc1971, 93, 5715-5725.

p_ara Carb(_)n atom Therefore, we _be“eve_that th_e steric (16) It is of course a matter of semantics whether the tgfkeoordination
hindrance is diminished when the trimethylsilyl or triethyl- s siil’ appropriate when the distances of the metal to the para and ipso
silyl substituent is moved from the meta to the para position pozitiodns %rednfot equal but differ SII:ightly (bwlﬂo"/ile"). This Wig Pllave
(Say, for the sake of argument, to one-half of the meta values:to e decided from case to case. For example, there are model structures

) such as the KCI, RbCI, and CsCl complexes of uranyl-salophen “recefgtors”
AAG* +0.10 and+0.21 kcal/mol). Thus, the lowering of that keep the metal relatively remote from the benzyl ligand. As a
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; i ; consequence, the mode of interaction is no longerbut rathern®- or
the metalation barrier due to the electronic effect oba& n?like, thus marking the other extreme of thearene coordination
continuum.
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