Research paper

Accepted Date:

A novel *O*-phenanthroline-based bis(half-salamo)-like chemical sensor: For rapid and efficient continuous recognition of Cu^{2+} , HPO_4^{-2-} and $H_2PO_4^{-2-}$

Ruo-Nan Bian, Xin Xu, Tao Feng, Wen-Kui Dong

PII:	S0020-1693(20)31298-6
DOI:	https://doi.org/10.1016/j.ica.2020.120098
Reference:	ICA 120098
To appear in:	Inorganica Chimica Acta
Received Date:	3 August 2020
Revised Date:	12 October 2020

20 October 2020

Please cite this article as: R-N. Bian, X. Xu, T. Feng, W-K. Dong, A novel *O*-phenanthroline-based bis(half-salamo)-like chemical sensor: For rapid and efficient continuous recognition of Cu^{2+} , HPO_4^{-2-} and $H_2PO_4^{--}$, *Inorganica Chimica Acta* (2020), doi: https://doi.org/10.1016/j.ica.2020.120098

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier B.V. All rights reserved.

011100		D.		10100	\mathbf{f}_{c}
oun	lal		l e.	-pro	018

A novel *O*-phenanthroline-based bis(half-salamo)-like chemical sensor: For rapid and efficient continuous recognition of Cu²⁺, HPO4²⁻ and H2PO4⁻

4

5 Ruo-Nan Bian, Xin Xu, Tao Feng, Wen-Kui Dong*

6

7 School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

8

9 ABSTRACT

A novel O-phenanthroline-based bis(half-salamo)-like fluorescent chemical sensor 10 LPOV with two N₃O coordination sites was synthesized. These N₃O coordination sites 11 were used for binding to specific metal ions. The sensor Lpov can detect Cu^{2+} by the 12 phenomenon of fluorescence quenching and the Lpov-3Cu²⁺ complex can detect 13 HPO_4^{2-} and $H_2PO_4^{-}$ within the detection range. By combining and calculating the 14 experimental results, the recognition mechanism of the sensor for the corresponding 15 ion detection is proposed and the DFT calculation is carried out. The LOD = 7.22×10^{-10} 16 ⁶ M, LOQ = 2.41×10^{-5} M and the binding constant Ka (Ka = 2.29×10^{13} M⁻¹) of Lpov 17 were calculated. The order of the binding constant is as high as 10^{13} , which indicates 18 that the Lpov-3Cu²⁺ complex generated by the reaction of the fluorescent chemical 19 sensor **Lpov** with Cu^{2+} is extremely stable. 20

21

Keywords: *O*-phenanthroline; bis(half-salamo)-like sensor; hydrogen phosphate;
 DFT calculation; water quality monitoring¹

24

25 **1. Introduction**

^{*} Corresponding author. Fax: +86 931 4938703.

E-mail addresses: dongwk@126.com (W.-K. Dong).

The world is enriched by ions, but excess ions can also be a burden on the 1 environment and human life. For example, the addition of copper (II) ions to 2 swimming pools can have a sterilizing effect and copper is a component of many 3 important enzymes in the body that can promote the absorption and utilization of iron 4 can maintain the function of the central nervous system. However, when excess 5 copper remains in the body, it tends to put a strain on the body's organs, especially the 6 liver and gall bladder [1-8]. When there are problems with these two organs, 7 8 maintaining the body's metabolism can lead to disorders, cirrhosis, ascites or even worse [9-13]. Phosphates are important in inorganic chemistry, biochemistry, and 9 biogeochemistry, but in excess, they can trigger red tide. They contaminate the soil 10 and further affect the crops, putting human health at risk [14-16]. Fluorescent 11 chemical sensors have become popular in recent years in the field of ion detection 12 because they can be used to measure ion rapidly and accurately through changes in 13 fluorescence intensity. The convenient detection of the corresponding ions has 14 attracted increased attention [17-23]. O-phenanthroline combines with metal ions to 15 form chelates easily, and the products are more stable [24-29]. 16

Since O-phenanthroline and its derivatives can be used as a kind of common 17 excellent fluorescent chemical sensors for subsequent fluorescence detection work, 18 here, we have introduced O-phenanthroline into the design of half-salamo-like probe 19 molecules. It is the first time to synthesize half-salamo-like probe molecules with O-20 phenanthroline, unprecedented. Two N and one O atoms from one half-salamo-like 21 unit and one N atom on O-phenanthroline can form together one N₃O coordination 22 sites, and used as binding sites for identifying specific metal ions. Half-salamo-based 23 24 compounds provide a more stable and flexible sensor structure due to the introduction of oxygen atoms that are more electronegative compared to half-salen-based 25 compounds [30-35]. By introducing different groups, the solubility of the ligands in 26 water system can be adjusted, achieve the purpose of detecting metal ions in 27 28 environmental water samples.

1 2. Experimental

2	2.1. Materials and measurements
3	Please refer to the Supporting information for all experimental instruments and
4	raw materials.
5	
6	2.2 Synthesis method of Lpov
7	The synthetic route to Lpov is shown in Scheme 1 .
8	
9	Scheme 1 Synthesis route to Lpov
10	
11	2.2.1 Synthesis of 1,10-phenanthroline-2,9-dicarbaldehyde
12	1,10-Phenanthroline-2,9-dicarboxaldehyde was synthesized according to a
13	previously reported method [36-40]. To a double-mouthed round bottom flask, 30 mL
14	of a dioxane solution dissolved in selenium dioxide (4.5 g, 40.55 mmol) was added
15	and placed in a water bath. With a constant-pressure drop funnel, 100 mL of dioxane
16	solution dissolved in neo-copper reagent (3 g, 14.40 mmol) was added drop by drop to
17	the double-bottomed flask. After 12h in the water bath reaction, while hot filter out
18	the tar and selenium collection filtrate, the filtrate was yellow. When the filtrate was
19	cooled, a large number of yellow precipitates were generated, namely 1,10-
20	phenanthroline-2,9-dicarboxaldehyde crude product. After filtering out the crude
21	product, it was collected and dissolved in benzene, to which n-hexane was added for
22	recrystallization. Finally, the resulting product was filtered and dried to obtain a
23	golden yellow needle-like solid. Golden yellow needle-like solid 3.1313 g, yield:
24	81.75%. M.p.: 238-240 °C. Anal. Calcd. for C14H8N2O2 (%): C, 71.18; H, 3.41; N,
25	11.86. Found: C, 71.29; H, 3.25; N, 11.62. ¹ H NMR (500 MHz, DMSO) δ 10.36 (d,
26	<i>J</i> = 0.8 Hz, 1H), 8.80 (dd, <i>J</i> = 8.2, 0.8 Hz, 1H), 8.32 (d, <i>J</i> = 8.2 Hz, 1H), 8.29 (s, 1H).
27	
28	2.2.2 Synthesis of 2-[O-(1-Ethyloxyamide)] oxime-6-methoxyphenol

29 2-[O-(1-Ethyloxyamide)]oxime-6-methoxyphenol was prepared according to a

previously reported method [41-46]. Weighing 1,2-bis(aminooxy)ethane 414.45 mg 1 (4.5 mmol) in ethanol (20 mL), another 684.67 mg (4.5 mmol) of 3-2 methoxysalicylaldehyde was dissolved in ethanol (20 mL). An ethanol solution of 3-3 methoxysalicylaldehyde was added drop by drop to an ethanol solution of 1,2-4 bis(aminooxy)ethane in a water bath at 55°C, with a controlled drop acceleration of 5 about 10 s a drop and continuous reaction for 6 h to obtain light yellow ethanol 6 solution. Decompression distillation removes excess solvent and concentrates the 7 8 reaction solution to about 5 mL. The concentrated solution is a bright yellow oily liquid, further purified by column chromatography to obtain white solid 748.44 mg, 9 yield: 73.51%; M.p.: 95.5-96.5°C. Anal. Calcd. for C₁₀H₁₄N₂O₄ (%): C, 53.09; H, 10 6.24; N, 12.38. Found: C, 53.32; H, 6.20; N, 12.16. ¹H NMR (500 MHz, CDCl₃) δ 11 3.92 (s, 3H), 3.96 (t, J = 4.5 Hz, 2H), 4.38 (t, J = 4.5 Hz, 2H), 5.50 (brs, 2H), 6.82 12 (dd, J = 7.8, 1.6 Hz, 1H), 6.87 (t, J = 7.8 Hz, 1H), 6.90 (dd, J = 7.8, 1.6 Hz, 1H), 8.24 13 (s, 1H), 9.88 (s, 1H). 14

15

16 2.2.3 Synthesis of Lpov

synthesized using the method. 2-[0-(1-17 Lpov was one-pot Ethyloxyamide)]oxime-6-methoxyphenol (453 2.0 mmol) mg, and 1,10-18 phenanthroline-2,9-dicarboxaldehyde (236 mg, 1.0 mmol) were dissolved in the 19 ethanol (20 mL), respectively. The reaction was stirred at 55°C for 6 h. At the end of 20 the reaction, a large amount of yellowish precipitate is generated at the bottom of the 21 round bottom flask. The product is filter-dried. Light yellow solid: 517.23 mg. M.p.: 22 145-148°C. Yield: 79.25%. Anal. calcd. for C₃₄H₃₂N₆O₈ (%): C, 62.57; H, 4.94; N, 23 12.88. Found: C, 62.82; H, 4.75; N, 12.67. ¹H NMR (500 MHz, DMSO) δ 9.41 (s, 24 2H), 8.52 (dd, J = 18.5, 15.5 Hz, 6H), 8.19 (d, J = 8.4 Hz, 2H), 8.06 (s, 2H), 7.17 (d, J 25 = 7.9 Hz, 2H), 7.00 (d, J = 9.1 Hz, 2H), 6.81 (t, J = 8.0 Hz, 2H), 4.55 (dd, J = 5.7, 2.926 Hz, 4H), 4.48 (dd, *J* = 5.6, 3.0 Hz, 4H), 3.80 (s, 6H). 27

28

29 2.3 Experimental methods

30 2.3.1 Preparation of the required solutions

1	The metal cations used in this experiment are all nitrates and the anions are all
2	sodium salts. Altogether 16 cations and 16 anions were used, respectively $\mathrm{Li^{+}}$, $\mathrm{Na^{+}}$,
3	$Ag^{+}, K^{+}, Cr^{3+}, Fe^{3+}, Ca^{2+}, Zn^{2+}, Mg^{2+}, Sr^{2+}, Ba^{2+}, Cu^{2+}, Ni^{2+}, Cd^{2+}, Co^{2+} and Al^{3+}, Cd^{3+}, C$
4	respectively. The anions are Cl ⁻ , H ₂ PO ₄ ⁻ , I ⁻ , F ⁻ , CN ⁻ , CH ₃ COO ⁻ , HS ⁻ , NO ₃ ⁻ , S ²⁻ , HCO ₃ ⁻ ,
5	Br ⁻ , $P_2O_7^{4-}$, CO_3^{2-} , ClO_4^{-} , $B_4O_7^{2-}$ and HPO_4^{2-} .
6	All salts were configured with distilled water at a concentration of 1×10^{-2} mol/L.
7	Lpov was used with V_{DMF} : $V_{Water} = 9:1$ solution was configured at a concentration of
8	1×10^{-3} mol/L. The pH of the buffer solution was adjusted using a pHS-45 model
9	acidimeter.
10	
11	2.3.2 Fluorescence spectroscopy experiments
12	Fresh Tris-HCl buffer solution was used for all the measurements of
13	fluorescence spectra. The ions were added in an amount 20 times greater than Lpov
14	and diluted with the buffer solution so that Lpov in the cuvette was mixed with the
15	ions. The concentration of the solution was 1×10^{-5} mol/L.
16	
17	2.3.3 Determination of Job Work Curves
18	Keeping the total concentrations of Lpov and constant while measuring the
19	Job work curve, will The concentrations of Lpov and Cu(NO ₃)·3H ₂ O were adjusted
20	in the following ratios 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0. Configure
21	the desired solution according to the ratios and stir at room temperature for 4h. The
22	configured solutions under the same conditions were measured, the fluorescence data
23	at 382 nm were recorded, and the Job work curves were plotted according to the data
24	obtained.
25	
26	2.3.4 ESI-MS spectrum sample
27	Lpov (0.05 mmol, 32.64 mg) and $Cu(NO_3)_2$ (0.25 mmol, 46.89 mg) were
28	dissolved in trichloromethane solution, stirred for 6h. Evaporated and concentrated to
29	obtain solid powder, it's the complex Lpov-3Cu ²⁺ . Lpov-3Cu ²⁺ (0.03 mmol, 25.24
30	mg) and NaH ₂ PO ₄ (0.15 mmol, 17.98 mg) / Na ₂ HPO ₄ (0.15 mmol, 21.29 mg) were $_5$

dissolved in trichloromethane solution, stirred for 6h. Evaporated and concentrated to
 obtain solid powder, it's the complex [Lpov-Cu²⁺]-H₂PO_{4⁻} / [Lpov-Cu²⁺]-HPO_{4²⁻}.

3

4 **3. Results and discussion**

5 3.1 Solubility testing and characterization of Lpov

The solubilities of the sensor in common organic solvents were tested. Lpov 6 was dissolved in dichloromethane, trichloromethane, DMSO (dimethyl sulfoxide), EA 7 8 (ethyl acetate), py (pyridine), THF (tetrahydrofuran) and DMF (N,Ndimethylformamide) at room temperature. Three methods were used to characterize 9 Lpov: ¹H NMR, ¹³C NMR and ESI-MS. Through the comprehensive analysis of the 10 spectrum results (Supporting information), it is determined that the synthesized 11 powder solid is the target product Lpov. 12

13

14 3.2 Fluorescent chemical behavior of Lpov and the effect of metal ions

Solvent effect is an important factor affecting the photochemical behavior of fluorescent chemical sensors [47-51]. First, a solution of the same concentration of **Lpov** dissolved in different organic solvents was prepared to compare the fluorescence in different organic solvents behavior. The experimental results are shown in **Fig. 1**, from which it can be seen that the **Lpov** emits the highest fluorescence intensity in DMF, thus DMF was chosen as a solvent for later probing the chemical behavior of **Lpov** fluorescence.

22

23 Fig. 1 Effect of the solvent system on the fluorescence intensity of the Lpov

24

A set of experiments were made to investigate the effect of water content on the fluorescence of **Lpov**, in order to detect metal ions in ambient water samples. Formulated at DMF:H₂O ratios of 9:1, 8:2, 7:3, 6:4, 5:5, 4:6 solvent, weighing the same mass of **Lpov** and dissolving it in prepared DMF:H₂O solutions of different ratios, it was found that **Lpov** is not completely soluble in a solution with a ratio of

4:6, so the fluorescence measurement of that ratio was abandoned. To test the
fluorescence intensity of the same concentration Lpov solution dissolved in another
five proportions, the choice was determined by comparing the peak value DMF: H₂O.
The ratio of 9:1 was used as the solvent for the subsequent fluorescence spectrum
experiment. The experimental results are shown in Fig. 2.

6

Fig. 2 The effect of water content in solvent (DMF:H₂O, v/v) on the fluorescence
intensity of Lpov

9

Next, the effect of metal ions on the fluorescence behavior of Lpov was 10 investigated in Tris-HCl buffer solution (DMF/H₂O = 9/1, v/v, pH = 7.23), the metal 11 cation full scan fluorescent experiment was carried out (Fig. 3). From the analyses of 12 the experimental results, it can be seen that **Lpov** is most severely affected by Cu^{2+} , 13 and the fluorescence intensity quenched the 89.38%. Subsequently, Cu2+ titration 14 experiments were completed in order to determine the optimal coordination ratio of 15 **Lpov** to Cu^{2+} . After calculation and analysis of the results, the optimal coordination 16 ratio of **Lpov** to Cu^{2+} was determined to be 1:3. The mass spectral analysis of the 17 Lpov-3Cu²⁺ complex (Supporting information) also allowed the determination of the 18 coordination ratio of **Lpov** to the optimal coordination ratio of Cu^{2+} is 1:3. 19

20

Fig. 3 Fluorescence spectra of Lpov and metal ions (20 equiv.) in DMF/H₂O buffer solution (Lpov, 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23)

23

24 3.3 Performance investigation of Cu^{2+} detection by Lpov

It can be seen from **Fig. 3** that the fluorescence emission of **Lpov** was the strongest at 382 nm. However, the addition of Cu^{2+} made the maximum emission peak of **Lpov** disappear. In the titration experiment, it was found that with the addition of Cu^{2+} , the titration reached the end point until 3 eq. (**Fig. 4**). Meanwhile, the solution in the cuvette changed from colorless to a dark green visible to the naked eye. Thus, it was evident that **Lpov** has a very excellent ability to recognize Cu^{2+} , and in order to

further develop the performance of Lpov to detect Cu²⁺, the numerical values that
LOD (Limit of Detection) and LOQ (Limit of Quantitation) of Lpov for Cu²⁺ were
calculated based on the processing of titration spectrogram data and previous
literature [52-54].

5 LOD = K ×
$$\delta$$
 / S ; LOQ = 10 × δ / S ; $\delta = \sqrt{\frac{\sum (F_0 - \overline{F_0})^2}{N - 1}}$ (N = 20); K = 3.

N in the formula is measured number of times for Lpov blank solution and S 6 7 represents the slope of the fluorescence intensity versus sample concentration curve, K is coefficient determined at a certain level of confidence (IUPAC recommends K = 8 3 for spectrochemical analysis), where F_0 is the fluorescence intensity of the Lpov 9 blank solution (The blank solution is the LPOV solution without adding metal ions, c = 10 1×10^{-3} mol/L). The LOD = 7.22×10^{-6} M and LOQ = 2.41×10^{-5} M of Lpov were 11 calculated. Through the titration experiment data, referring to the previous literature 12 and combining the Benesi-Hildebrand equation (1), the value of the binding constant 13 Ka (Ka = 2.29×10^{13} M⁻¹) was calculated [55,56]. The order of the binding constant is 14 as high as 10^{13} , which indicates that the Lpov-3Cu²⁺ complex generated by the 15 reaction of **Lpov** with Cu^{2+} is extremely stable. 16

17

$$1/(F - F_0) = 1/(F_{\text{max}} - F_0) \{ (K_a [M^{m^+}]^n) + 1 \}$$
(1)

F is the fluorescence intensity of the Lpov-3Cu²⁺ complex at 382 nm, F_0 is the fluorescence intensity at 382 nm when the Cu²⁺ ion concentration is zero, and F_{max} is the maximum fluorescence intensity at 382 nm (EX WL: 325 nm). [M^{m+}] is the concentration of Cu²⁺ ions and n is the coordination ratio of Lpov to Cu²⁺ (n = 3). The Benesi-Hildebrand fit curve of Lpov to Cu²⁺ is shown in Fig. 5 shown.

23

Fig. 4 Fluorescence titration of Cu^{2+} in DMF/H₂O buffer solution with Lpov. (The inset shows a scatter plot of the fluorescence intensity of Lpov at 382 nm with Cu^{2+} concentration; Lpov, 1×10⁻³ mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).

27

28

Fig. 5 Benesi-Hildebrand fit curve of Cu²⁺ with Lpov

One of the most important indicators for distinguishing the quality of 1 fluorescent chemical sensors is the ability to recognize specific ions without 2 interference from other ions. Therefore, it is very necessary to do anti-interference 3 experiments. Under the same conditions, the anti-interference experiment of Lpov to 4 identify Cu²⁺ was conducted. According to the anti-interference experimental data, it 5 can be clearly observed that other metal ions do not interfere with the detection of 6 Cu^{2+} . As shown in Fig. 6, the interference of other metal ions on the recognition of 7 Cu^{2+} by **Lpov** can be seen directly from the histogram. 8

9

Fig. 6 Lpov (1×10⁻³ mol/L) in DMF/H₂O buffer solution for Cu²⁺ recognition antiinterference experiment. (Emission peak at 382 nm. The black bar is the fluorescence intensity of Lpov at 382 nm after adding common metal ion, the red bar is the fluorescence intensity of the Lpov-3Cu²⁺ complex after adding common metal ion. Lpov, 1×10⁻³ mol/L; cation, 1×10⁻² mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).

16

The wider pH range of the sensor, the wider the range of applications. As shown in **Fig. 7**, the pH application range of **Lpov** was studied. The change of fluorescence intensity of **Lpov** and Cu^{2+} was tested under the condition of pH = 2 ~ 13. According to the experimental data, the change of fluorescence intensity of **Lpov** and Cu^{2+} was relatively stable in the range of pH = 4 ~ 8, which indicated that the recognition effect of **Lpov** on Cu^{2+} was very stable in a wide range of pH.

Fluorescent chemical sensors have the advantage of fast response times, eliminating tedious testing times and allowing chemical sensors to dominate in various applications. The response time of **Lpov** to Cu^{2+} was tested. After the change of fluorescence intensity and time statistics, it was found that the response time of **Lpov** to Cu^{2+} was very short. The response time is approximately 10 s, and the fluorescence tends to stabilize after 10 s, as shown in **Fig. 8**.

1 Fig. 7 The pH response of Lpov and Cu^{2+} in fluorescent chemical sensors (Lpov,

- 2 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v)
- 3

Fig. 8 Time response diagram of interaction between **Lpov** and Cu^{2+} in fluorescent chemical sensor (**Lpov**, 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).

6

To further verify the optimal coordination ratio of Lpov to Cu^{2+} , Job working 7 curves were measured and plotted. As shown in Fig. 9, at the excitation wavelength of 8 325 nm, the fluorescence intensity of Lpov exhibits a turning point at the mass 9 fraction (Cu^{2+}) of 0.75. The results indicated that the optimal coordination ratio of 10 **Lpov** to Cu^{2+} should be 1:3. The mass spectrogram of the **Lpov-3Cu^{2+}** complex can 11 also be used to infer the optimal coordination ratio of Lpov to Cu^{2+} , as shown in Fig. 12 10. As can be seen in the mass spectra, m/z = 838.1234 is the molecular ion peak of 13 $[Lpov+3Cu^{2+}]^{4+}$. Compared with other references [57,58], it is found that the binding 14 constant of Lpov for Cu²⁺ recognition is larger, which indicates that the copper(II) 15 16 complex of Lpov is more stable. In addition, the LOD of the chemical sensor Lpov is smaller than those of other Cu^{2+} probes in the literatures, indicating that the chemical 17 sensor is more sensitive to recognize Cu²⁺. Binding constants and detection lines 18 between the related chemosensors mentioned in literatures are compared, as shown in 19 Table 1. 20

21

Fig. 9 Job working curve of Cu^{2+} on Lpov (Lpov, 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23)

24

Fig. 10 ESI-MS spectrum (a) ESI-MS spectrum of Lpov; (b) ESI-MS spectrum of the
 Lpov-3Cu²⁺ complex

27

Table 1 Comparison of binding constants and detection lines between thechemosensors.

2 3.4 Mechanism of recognition of Cu^{2+} by Lpov

The stability order of complexes generated from divalent Mn²⁺ to Zn²⁺ with 3 ligands containing N coordination atoms can be observed in the following order: 4 $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Zn^{2+} < Cu^{2+}$, the sequence called the Irving-Williams sequence, 5 which roughly corresponds to the variation of the weak-field CFSE [59,60]. 6 According to Jahn-Teller effect, there are three electrons in the two degenerate d 7 orbitals (Eg) of divalent copper (II) ions in octahedral complexes due to the splitting 8 of crystal field. The number of electrons occupied in these two orbitals is different, 9 and the complex is a nonlinear molecule, which leads to the splitting of Eg [61]. The 10 results of splitting lead to Jahn-Teller distortion, and the Irving-Williams (CFSE 11 increase) order obtained from the crystal field splitting energy is abnormal, which 12 leads to the Lpov- $3Cu^{2+}$ complex being more stable than other divalent metal (II) 13 complexes in the same period. 14

The effect of the complexes in different oxidation states on the charge density is linear, indicating that there is a strong relationship between the charge density around the metal and the oxidation state [62,63]. In the presence of Cu^{2+} , the fluorescence intensity of the system is quenched. This indicates that Cu^{2+} interacts with the system effectively and has the photoinduced electron transfer (PET) effect, which reduces the fluorescence intensity.

Based on the Irving-Williams sequence, the copper (II) complexes are more 21 stable in comparison to those of other same period divalent metal ions. Based on all 22 the above experimental results, a mechanism for Lpov to recognize Cu^{2+} was 23 proposed. Compared with oxygen atoms, the electronegativity of N atoms is relatively 24 small, the ability to attract electrons is relatively weak, and it is easy to give electrons, 25 so the coordination ability of N atoms is stronger than that of O atoms [64,65]. When 26 **Lpov** was combined with three Cu^{2+} ions, the two Cu^{2+} ions are respectively 27 combined with the N₃O coordination sites, which makes Lpov present a spiral 28 29 structure. After the sensor molecular screwed, a larger coordination site was formed in the middle, and the last Cu²⁺ entered the coordination site to combine with four N 30

atoms, and finally formed a 1:3 type complex. Mechanism of recognition of Cu^{2+} by 1 Lpov is shown in Fig. 11. 2 3 Fig. 11 Proposed recognition mechanism of Cu²⁺ by Lpov 4 5 3.5 Computational procedure for **Lpov-3Cu**²⁺ complex 6 For the structures of the ligand and its complexes, full optimization was 7 8 performed by Density Functional Theory (DFT) using Gaussian'09. 9 The calculation results of LPOV showed that the molecular orbital No.171 is a HOMO orbital, $E_{171} = -5.85798$ eV, the molecular orbital No.172 is a LUMO orbital, 10 $E_{172} = -2.16327$ eV, and the energy gap $\Delta E = E_{172} - E_{171} = 3.69471$ eV, the energy gap 11 is large. In order to fully analyze the charge density distribution, choose to calculate 12 the electron cloud and distribution of LUMO+2 (174), LUMO+1 (173), LUMO (172), 13 HOMO (171), HOMO-1 (170), HOMO-2 (169) orbits respectively (Fig. 12a). It can 14 be seen from the figure that the HOMO, LUMO of LPOV and the electron clouds in 15 16 the adjacent orbits are mostly distributed locally. LUMO and LUMO+1 orbital electron clouds were mainly distributed on the part of O-phenanthroline. HOMO and 17 HOMO-1 orbital electron clouds were mainly distributed on the half-salamo-like part. 18 HOMO-2 and LUMO+2 orbital electron clouds were mainly distributed on the half-19 salamo-like part and the part of O-phenanthroline. 20 For the α -spin orbit of the Lpov-3Cu²⁺ complex, the molecular orbital No.199 is 21

the HOMO orbital, $E_{199} = -3.05712$ eV, the molecular orbital No.200 is the LUMO 22 orbital, $E_{200} = -1.83946$ eV and the energy gap $\Delta E = E_{200} - E_{199} = 1.21766$ eV. In order 23 to fully analyze the charge density distribution, select the LUMO+2 (202), LUMO+1 24 (201), LUMO (200), HOMO (199), HOMO-1 (198), HOMO-2 (197) orbits to 25 calculate the electron cloud and distribution (Fig. 12b). It can be seen from the figure 26 that the HOMO, LUMO of the α -spin orbit of the Lpov-3Cu²⁺ complex and the 27 electron clouds in the adjacent orbit mostly show local distribution. HOMO and 28 LUMO orbital electron clouds were mainly distributed on the benzene ring part of the 29 *O*-phenanthroline. For the β -spin orbital of the Lpov-3Cu²⁺ complex, the molecular 30

1	orbital No.198 is the HOMO orbital, $E_{198} = -3.77036$ eV, the molecular orbital No.199
2	is the LUMO orbital, $E_{199} = -1.83484$ eV, and the energy gap $\Delta E = E_{199} - E_{198} =$
3	1.93552 eV. In order to fully analyze the charge density distribution, choose to
4	calculate the electron cloud and distribution of LUMO+2 (201), LUMO+1 (200),
5	LUMO (199), HOMO (198), HOMO-1 (197), HOMO-2 (196) orbits respectively (Fig
6	12b). It can be seen from the figure that the HOMO, LUMO of the β -spin orbit of the
7	Lpov- $3Cu^{2+}$ complex and the electron clouds in the adjacent orbit mostly show local
8	distribution. The HOMO electron cloud was mainly distributed on the the terminal
9	group of the O-phenanthroline and Cu (II) atom. The LUMO electron cloud is mainly
10	distributed on the part of <i>O</i> -phenanthroline.

11

Fig. 12 Molecular orbital energy diagrams of LPOV and the LpoV-3Cu²⁺ complex. (a)
 Molecular orbital energy diagram of LPOV. (b) Molecular orbital energy diagram of
 the LpoV-3Cu²⁺ complex

15

16 3.6 Detection of Cu^{2+} in tap water samples

Copper (II) ions in drinking water are often caused by water leaching from 17 copper (II) pipes, and high levels of dissolved oxygen can accelerate copper 18 corrosion. The tap water sample experiment was used to verify the practicability of 19 **Lpov.** A known amount of Cu^{2+} was added to the tap water as the tap water sample. 20 After adding Lpov, the recovery rate was calculated based on the measured 21 fluorescence intensity, as shown in Fig. 13. The recovery rate ranges from 98.3% to 22 101.25% and the relative standard deviation is controlled within 3%. The results of 23 this experiment proved that **Lpov** can be used for the determination of Cu^{2+} in tap 24 25 water.

26

Fig. 13 Determination of Cu^{2+} in tap water sample (n = 3; Lpov, 1×10⁻³ mol/L).

28

29 3.7 Study on the performance of detecting HPO_4^{2-} and $H_2PO_4^{-}$ with the **Lpov-3Cu**²⁺ 30 complex

After experimental research on Cu^{2+} detection, the Lpov-3 Cu^{2+} complex was 1 unexpectedly found to have good selectivity for HPO4²⁻/H2PO4⁻ in the anion anti-2 interference experiment. The anions of HPO4²⁻ and H₂PO4⁻ are important buffer pairs 3 in the living system, which can maintain a certain pH value, thus ensuring the stability 4 of the blood of the living body. First, the anion anti-interference experiment of Lpov 5 to Cu²⁺ was done in Tris-HCl buffer solution, as shown in Fig. 14. After adding 6 HPO_4^{2-} to the Lpov-3Cu²⁺ complex, the fluorescence intensity increased by 970.83%, 7 and after adding H₂PO₄, the fluorescence intensity increased by 427.08%. However, 8 the fluorescence intensity after adding other anions was not much different from that 9 of the Lpov-3Cu²⁺ complex. Therefore, using the Lpov-3Cu²⁺ complex as a new 10 sensor, it can continue to recognize HPO4²⁻/H2PO4⁻ with remarkable recognition. 11

12

13 3.8 Titration of the $Lpov-3Cu^{2+}$ complex to $2Lpov-Cu^{2+}$ and Job work curves

To determine the coordination ratio of the *Lpov-3Cu*²⁺ complex to HPO₄²⁻ 14 /H₂PO₄⁻, take HPO₄²⁻ as an example, the *Lpov-3Cu*²⁺ complex was titrated against 15 HPO_4^{2-} (as shown in Fig. S6). The processing of the titration experimental data and 16 the summary of the mass spectrometry data revealed that the Lpov- $3Cu^{2+}$ complex 17 with HPO_4^{2-} both with an optimal coordination ratio of 1:1. At the same time, the 18 results of the Job working curve experiment also proved that the optimal coordination 19 ratio of $[Lpov+3Cu^{2+}]^{4+}$ to HPO_{4²⁻} is 1:1 (as shown in Fig. S7), which laid a 20 foundation for the later mechanism exploration. Reference to other literatures [66,67], 21 comparison of binding constants and detection lines between the chemosensors is 22 shown in Table 1. 23

24

Fig. 14 The Lpov-3Cu²⁺ complex (1×10^{-3} mol/L) in DMF/H₂O buffer solution for HPO₄²⁻/H₂PO₄⁻ recognition anti-interference experiment. (Emission peak at 382 nm. The black bar is the fluorescence intensity of LPOv, the red bar is the fluorescence intensity of LPOv with Cu²⁺ added, the blue bar is the fluorescence intensity of the Lpov-3Cu²⁺ complex after adding common metal anions, the pink bar is the

- 1 fluorescence intensity of LPOV after adding common metal anions. LPOV, 1×10^{-3}
- 2 mol/L; cation, 1×10^{-2} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).
- 3

4 3.9 Computational procedure for **2Lpov-Cu²⁺** complex

For the α -spin orbit of the **2Lpov-Cu²⁺** complex, the molecular orbital No.351 5 is the HOMO orbital, $E_{351} = -9.25337$ eV, the molecular orbital No.352 is the LUMO 6 orbital, $E_{352} = -6.62316$ eV and the energy gap $\Delta E = E_{352} - E_{351} = 2.63021$ eV. In order 7 8 to fully analyze the charge density distribution, select the LUMO+2(354), LUMO+1 (353), LUMO (352), HOMO (351), HOMO-1 (350), HOMO-2 (349) orbits to 9 calculate the electron cloud and distribution (Fig. 15). It can be seen from the figure 10 that the HOMO, LUMO of the α -spin orbit of the 2Lpov-Cu²⁺ complex and the 11 electron clouds in the adjacent orbit mostly show local distribution. The LUMO 12 orbital electron clouds were mainly distributed on the part of the O-phenanthroline. 13 The HOMO orbital electron clouds were mainly distributed on the half-salamo-like 14 part. For the β -spin orbital of the **2Lpov-Cu²⁺** complex, the molecular orbital No.350 15 16 is the HOMO orbital, $E_{350} = -8.96004$ eV, the molecular orbital No.351 is the LUMO orbital, $E_{351} = -8.72330$ eV, and the energy gap $\Delta E = E_{351} - E_{350} = 0.23674$ eV. In 17 order to fully analyze the charge density distribution, choose to calculate the electron 18 cloud and distribution of LUMO+2 (353), LUMO+1 (352), LUMO (351), HOMO 19 (350), HOMO-1 (349), HOMO-2 (348) orbits respectively (Fig. 15). It can be seen 20 from the figure that the HOMO, LUMO of the β -spin orbit of the Lpov-3Cu²⁺ 21 complex and the electron clouds in the adjacent orbit mostly show local distribution. 22 The HOMO and LUMO orbital electron clouds were mainly distributed on the part of 23 24 the *O*-phenanthroline and Cu(II) atom.

25

26

Fig. 15 Molecular orbital energy diagrams of the 2Lpov-Cu²⁺ complex.

27

28 3.10 On the recognition mechanism of $HPO_4^{2-}/H_2PO_4^{-}$ by sensor **[Lpov+3Cu²⁺]⁴⁺**

It can be inferred from the titration experiments (**Fig. 16**) and Job working curves (**Fig. 17**) that the optimal coordination ratio of **Lpov-3Cu²⁺** and H₂PO₄⁻ is 1:1.

1	The LOD and LOQ of $H_2PO_4^-$ were calculated as per IUPAC guidelines and it was
2	found to be 5.83 $\times 10^{-8}$ and 1.96 $\times 10^{-7}$ M, respectively. H ₂ PO ₄ ⁻ releases two molecules
3	of H^+ through two-step ionization. H^+ combines with the complex Lpov-3Cu ²⁺ , and
4	then releases Cu^{2+} . The results are consistent with the ESI-MS spectra of complex
5	$[Lpov+3Cu^{2+}]^{4+}+H_2PO_4^-$ (Fig. 18). This may be due to the relatively small <i>Ksp</i> of the
6	product that is generated from PO_4^{3-} with Cu^{2+} [68]. Mechanism of recognition of
7	$HPO_4^{2-}/H_2PO_4^{-}$ by the Lpov-3Cu²⁺ complex is shown in Fig. 19 .
8	
9	Fig. 16 Fluorescence titration of H ₂ PO ₄ ⁻ in DMF/H ₂ O buffer solution with the Lpov-
10	3 Cu ²⁺ complex. (The Lpov-3Cu ²⁺ complex, 1×10^{-3} mol/L; cation, 1×10^{-2} mol/L; Tris-
11	HCl buffer solution, $9/1$, v/v , pH = 7.23).
12	
13	Fig. 17 Job working curve of $H_2PO_4^-$ on the Lpov-3Cu ²⁺ complex
14	
15	Fig. 18 ESI-MS spectrum (a) ESI-MS spectrum of the $2Lpov-Cu^{2+}$ complex (HPO ₄ ²⁻
16); (b) ESI-MS spectrum of the 2Lpov-Cu ²⁺ complex ($H_2PO_4^-$)
17	
18	Fig. 19 Proposed recognition mechanism of $HPO_4^{2-}/H_2PO_4^{-}$ by the Lpov-3Cu ²⁺
19	complex
20	
21	4. Conclusions
22	An O-phenanthroline-based bis(half-salamo)-like chemical sensor Lpov was
23	synthesized with 2,9-dimethyl-1,10-phenanthroline and 2-[O-(1-
24	ethyloxyamide)]oxime-6-methoxyphenol. Lpov can detect Cu ²⁺ by the phenomenon
25	of fluorescence quenching and the Lpov-3Cu ²⁺ complex can detect HPO ₄ ²⁻ and
26	$H_2PO_4^-$ within the detection range. Half-salamo-like structure was introduced into O-
27	phenanthroline, which makes Lpov have two N ₃ O coordination sites. Different from
28	the traditional N2O2 coordination sites of salamo-like compounds, the introduction of

29 N atom of *O*-phenanthroline with stronger coordination ability makes the coordination

mode more novel and provides more possibilities for the coordination modes. By
calculation, LOD = 7.2215×10⁻⁶ M and binding constant Ka = 2.29×10¹³ M⁻¹. The
proposed recognition mechanism of the sensor is verified by the results of mass
spectrometry and DFT calculations. **6 Declarations of interest:**

7 The authors declare no conflict of interest.

8

9 Acknowledgements

This work was supported by the National Natural Science Foundation of China
(21761018) and the Program for Excellent Team of Scientific Research in Lanzhou
Jiaotong University (201706), both of which are gratefully acknowledged.

1 **References**

- 2 [1] P.G. Sutariya, H. Soni, S.A. Gandhi, A. Pandya, New J. Chem. 43 (2019) 9855.
- 3 [2] S. Slassi, M. Aarjane, A.E. Ghayoury, A. Amine, Spectrochim. Acta A 215 (2019) 348.
- 4 [3] S. Saha, S. Das, P. Sahoo, Chem. Select. 4 (2019) 13968.
- 5 [4] A. Sumiyoshi, Y. Chiba, R. Matsuoka, T. Noda, T. Nabeshima, Dalton Trans. 48 (2019) 131696 13175.
- [5] L. Wang, Z.L. Wei, M. Yu, Y.Q. Pan, Y. Zhang, W.K. Dong, Chin. J. Inorg. Chem. 35 (2019)
 8 1791.
- 9 [6] X.X. An, C. Liu, Z.Z. Chen, K.F. Xie, W.K. Dong, Crystals 9 (2019) 602.
- 10 [7] G. Kumar, D. Kumar, S. Devi, R. Johari, C.P. Singh, Eur. J. Med. Chem. 45 (2010) 3056.
- 11 [8] M.J. Timm, L. Leung, K. Anggara, T. Lim, Z. Hu, S. Latini, A. Rubio, J.C. Polanyi, J. Am.
- 12 Chem. Soc. 142 (2020) 9453.
- 13 [9] V. Raju, R.S. Kumar, Y. Tharakeswar, S.K.A. Kumar, Inorg. Chim. Acta 493 (2019) 49.
- 14 [10] S. Mondal, S.M. Mandal, D. Ojha, D. Chattopadhyay, C. Sinha, Polyhedron 172 (2019) 28.
- [11] H.R. Mu, M. Yu, L. Wang, Y. Zhang , Y.J. Ding, Phosphorus Sulfur Silicon Relat. Elem. 195
 (2020) 730.
- 17 [12] Y.X. Sun, Y.Q. Pan, X. Xu, Y. Zhang, Crystals 9 (2019) 607.
- [13] S.Z. Zhang, J. Chang, H.J. Zhang, Y.X. Sun, Y. Wu, Y.B. Wang, Chin. J. Inorg. Chem. 36
 (2020) 503.
- 20 [14] Q.P. Kang, X.Y. Li, L. Wang, Y. Zhang, W.K. Dong, Appl. Organomet. Chem. 33 (2019)
 21 e5013.
- 22 [15] Y.Q. Pan, X. Xu, Y. Zhang, Y. Zhang, W.K. Dong, Spectrochim. Acta A 229 (2020) 117927.
- 23 [16] Y.F. Cui, Y. Zhang, K.F. Xie, W.K. Dong, Crystals 9 (2019) 596.
- 24 [17] P.K. Muwal, A. Nayal, M.K. Jaiswal, P.S. Pandey, Tetrahedron Lett. 59 (2018) 29.
- [18] S. Maity, M. Shyamal, R. Maity, N. Mudi, P. Hazra, P.K. Giri, S.S. Samanta, S. Pyne, A.
 Misra, Photochem. Photobiol. Sci. 19 (2020) 681.
- 27 [19] V. Kumar, S. Kundu, B. Sk, A. Patra, New J. Chem. 43 (2019) 18582.
- 28 [20] S. Khanra, S. Ta, M. Ghosh, S. Chatterjee, D. Das, RSC Adv. 9 (2019) 21302.
- 29 [21] B. Das, A. Jana, A. Das Mahapatra, D. Chattopadhyay, A. Dhara, S. Mabhai, S. Dey,

- 1 Spectrochim. Acta A 212 (2019) 222.
- 2 [22] J.B. Chae, H. Lee, C. Kim, J. Fluores. 30 (2020) 347.
- 3 [23] K. Aich, S. Das, S. Gharami, L. Patra, T.K. Mondal, Chem.Select 4 (2019) 8068.
- 4 [24] T.W. Chen, U. Rajaji, S.M. Chen, J.Y. Wang, Z.A. Alothman, M.A. Ali, S.M. Wabaidur, F.A.
- 5 Hemaid, S.Y. Lee, W.H. Chang, Ultrason. Sonochem. 66 (2020) 1350.
- 6 [25] G.J. Park, H. Kim, J.J. Lee, Y.S. Kim, S.Y. Lee, S. Lee, I. Noh, C. Kim, Sens. Actuators B
 7 215 (2015) 568.
- 8 [26] H.R. Mu, X.X. An, C. Liu, Y. Zhang, W.K. Dong, J. Struct. Chem. 61 (2020) 1155.
- 9 [27] A. Kumar, S. Kumar, P.S. Chae, Dyes Pigm. 181 (2020) 108522.
- 10 [28] Y. Zhang, Y.Q. Pan, M. Yu, X. Xu, W.K. Dong, Appl. Organomet. Chem. 33 (2019) e5240.
- 11 [29] Z.Y. Gündüz, C. Gündüz, C. Özpınar, O.A. Urucu, Spectrochim. Acta A 136 (2015) 1679.
- 12 [30] Y. Zhang, L.Z. Liu, Y.D. Peng, N. Li, W.K. Dong, Transit. Met. Chem. 44 (2019) 627.
- 13 [31] S. Akine, Z. Varadi, T. Nabeshima, Eur. J. Inorg. Chem. 2013 (2013) 5987.
- 14 [32] T. Nakamura, S. Tsukuda, T. Nabeshima, J. Am. Chem. Soc. 141 (2019) 6462.
- [33] Y. Zhang, M. Yu, Y.Q. Pan, Y. Zhang, L. Xu, X.Y. Dong, Appl. Organomet. Chem. 34 (2020)
 e5442.
- 17 [34] L. Wang, Z.L. Wei, C. Liu, W.K. Dong, J.X. Ru, Spectrochim. Acta A 239 (2020) 118496.
- 18 [35] M. Yu, Y. Zhang, Y.Q. Pan, L. Wang, Inorg. Chim. Acta 509 (2020) 119701.
- 19 [36] C.J. Chandler, L.W. Deady, J.A. Reiss, J. Heterocyclic Chem. 18 (1981) 599.
- 20 [37] S. Tursunbadalov, L. Soliev, J. Chem. Eng. Data 63 (2018) 598.
- [38] H. Morito, S. Shibano, T. Yamada, T. Ikeda, M. Terauchi, R.V. Belosludov, H. Yamane, Solid
 State Sci. 102 (2020) 106166.
- [39] C.A. Huerta-Aguilar, T. Pandiyan, N. Singh, N. Jayanthi, Spectrochim. Acta A 146 (2015)
 142.
- [40] T.S. Ortner, K. Wurst, M. Seibald, B. Joachim, H. Huppertz, Eur. J. Inorg. Chem. 2016 (2016)
 3292.
- 27 [41] X.X. An, Z.Z. Chen, H.R. Mu, L. Zhao, Inorg. Chim. Acta 511 (2020) 119823.
- [42] R.N. Bian, J.F. Wang, Y.J. Li, Y. Zhang, W.K. Dong, J. Photochem. Photobiol. A. 400 (2020)
 112829.
- 30 [43] X. Xu, R.N. Bian, S.Z. Guo, W.K. Dong, Y.J. Ding, Inorg. Chim. Acta 513 (2020) 119945.

1	[44] L. Wang, Y.Q. Pan, J.F. Wang, Y. Zhang, Y.J. Ding, J. Photochem. Photobio. A 400 (2020)
2	112719.

- 3 [45] L. Wang, Z.L. Wei, Z.Z. Chen, C. Liu, W.K. Dong, Y.J. Ding, Microchem. J. 155 (2020)
 4 104801.
- 5 [46] Z.L. Wei, L. Wang, J.F. Wang, W.T. Guo, Y. Zhang, W.K. Dong, Spectrochim. Acta A 228
 6 (2020) 117775.
- 7 [47] R.T. loto, C.A. Loto, M. Akinyele, Alex. Eng. J. 59 (2020) 933.
- 8 [48] Z.L. Wei, L. Wang, S.Z. Guo, Y. Zhang, W.K. Dong, RSC Adv. 9 (2019) 41298.
- 9 [49] F.S. Carlos, L.A. Silva, C. Zanlorenzi, F.S. Nunes, Inorg. Chim. Acta 508 (2020) 119634.
- 10 [50] H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, J. Mater. Sci. Mater. Electron 31 (2020) 6963.
- 11 [51] M. Yu, H.R. Mu, L.Z. Liu, N. Li, Y. Bai, X.Y. Dong, Chin. J. Inorg. Chem. 35 (2019) 1109.
- 12 [52] F. Risplendi, F. Raffone, L.C. Lin, J.C. Grossman, G. Cicero, J. Phys. Chem. C 124 (2020)
 13 1438.
- 14 [53] L. Xu, M. Yu, L.H. Li, J.C. Ma, W.K. Dong, J. Struct. Chem. 60 (2019) 1358.
- 15 [54] K.G. Yves, T. Chen, J.T. Aladejana, Z. Wu, Y. Xie, ACS Omega 5 (2020) 8784.
- 16 [55] J. Chang, S.Z. Zhang, Y. Wu, H.J. Zhang, Y.X. Sun, Transit. Met. Chem. 45 (2020) 279.
- 17 [56] A. Vera, J.L. Moreno, C. Garcia, D. Morais, F. Bastida, Sci. Total Environ. 685 (2019) 564.
- 18 [57] M. Tian, H. He, B.B. Wang, X. Wang, Y. Liu, F.L. Jiang, Dyes Pigm. 165 (2019) 383.
- 19 [58] M. Sahu, A.K. Manna, K. Rout, J. Modal, G.K. Patra, Inorg. Chim. Acta 508 (2020) 119633.
- [59] H.A. Carlos Alberto, R.G. Brayan, T. Pandiyan, N. Jayanthi, S. Narinder, Photochem.
 Photobiol. Sci. 18 (2019) 1761.
- 22 [60] Y.Q. Pan, Y. Zhang, M. Yu, Y. Zhang, L. Wang, Appl. Organomet. Chem. 34 (2020) e5441.
- 23 [61] L.W. Zhang, Y. Zhang, Y.F. Cui, M. Yu, W.K. Dong, Inorg. Chim. Acta 506 (2020) 119534.
- 24 [62] A.K. Manna, K. Rout, S. Chowdhury, G.K. Patra, Photochem. Photobio. Sci. 18 (2019) 1512.
- 25 [63] C. Liu, X.X. An, Y.F. Cui, K.F. Xie, W.K. Dong, Appl. Organomet. Chem. 34 (2019) e5272.
- [64] F. Spadaro, A. Rossi, S.N. Ramakrishna, E. Laine, P. Woodward, N.D. Spencer, Langmuir. 34
 (2018) 2219.
- 28 [65] L.Z. Liu, M. Yu, X.Y. Li, Q.P. Kang, W.K. Dong, Chin. J. Inorg. Chem. 35 (2019) 1283.
- 29 [66] S.S Kumar, R.S. Kumar, S.K.A. Kumar, Inorg. Chim. Acta 502 (2020) 119348.
- 30 [67] W. Du, C.M. Jia, Y.F. Zhang, Q. Chen, Y.L. Wang, Y. Huang, Q. Zhang, Anal. Methods 10

1	(2020) 1993.
2	[68] C. Liu, Z.L. Wei, H.R. Mu, W.K. Dong, Y.J. Ding, J. Photochem. Photobio. A 397 (2020)
3	112569.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
27 28	
20 20	
30	

No.	sensor	Binding constant (M ⁻¹)	Detection limit (M)	Identificatio n substance	Reference
1	N-NHO RhB-Cu	6.42 × 10 ⁴	4.7 × 10 ⁻⁶	Cu ²⁺	[57]
2	N N N N N N N N N N N N N N N N N N N	2.4 × 10 ²	1.7 × 10 ⁻⁶	Cu ²⁺	[58]
3		3.84 × 10 ⁷	5.5×10^{-8}	H ₂ PO ₄ -	[66]
4		2.1 × 10 ⁵	None	H ₂ PO ₄ -	[67]
5		2.29×10^{13}	7.22×10^{-6}	Cu ²⁺	This work
	-	3.26× 10 ⁹	5.83 × 10 ⁻⁸	H ₂ PO ₄ -	This work

1 Table 1. Comparison of binding constants and detection lines between chemosensors.

1	Conflicts of Interest: The authors declare no competing financial interests.
2	
3	
4	Research Highlights
5	
6	1. An novel O-phenanthroline-based bis(half-salamo)-like fluorescent chemical
7	sensor L_{POV} with two N ₃ O cavities was synthesized.
8 9 10	2. The sensor Lpov can detect quickly and efficiently Cu^{2+} and the Lpov-Cu^{2+} complex can continuously detect HPO ₄ ²⁻ and H ₂ PO ₄ ⁻ .
11	3 The order of the binding constant is as high as 10^{13} (Ka = 2.20×10 ¹³ M ⁻¹)
12	5. The order of the binding constant is as high as 10 $(Ka - 2.29 \times 10^{-10} M)$.
14	
15	
16 17 18 19 20 21 22 23	No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co- authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. In addition, we solemnly declare that the article is original and unpublished and is not being considered for publication elsewhere.
24	LEGENDS
25	Scheme 1 Synthesis route to Lpov
26	
27	Fig. 1 Effect of the solvent system on the fluorescence intensity of the Lpov
28	
29	Fig. 2 The effect of water content in solvent (DMF:H ₂ O, v/v) on the fluorescence
30	intensity of Lpov
31	
32	Fig. 3 Fluorescence spectra of Lpov and metal ions (20 equiv.) in DMF/H ₂ O buffer
33	solution (Lpov , 1×10^{-3} mol/L; Tris-HCl buffer solution, $9/1$, v/v, pH = 7.23)
34	

1	Fig. 4 Fluorescence titration of Cu^{2+} in DMF/H ₂ O buffer solution with Lpov. (The
2	inset shows a scatter plot of the fluorescence intensity of Lpov at 382 nm with Cu^{2+}
3 4	concentration; Lpov , 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).
5 6	Fig. 5 Benesi-Hildebrand fit curve of Cu ²⁺ with Lpov
7	Fig. 6 Lpov (1×10^{-3} mol/L) in DMF/H ₂ O buffer solution for Cu ²⁺ recognition anti-
8	interference experiment. (Emission peak at 382 nm. The black bar is the fluorescence
9	intensity of Lpov at 382 nm after adding common metal ion, the red bar is the
10	fluorescence intensity of the Lpov- $3Cu^{2+}$ complex after adding common metal ion.
11	Lpov , 1×10^{-3} mol/L; cation, 1×10^{-2} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH =
12 13	7.23).
14	Fig. 7 The pH response of Lpov and Cu^{2+} in fluorescent chemical sensors (Lpov,
15	1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v)
16	
17	Fig. 8 Time response diagram of interaction between Lpov and Cu^{2+} in fluorescent
18	chemical sensor (Lpov , 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).
19	
20	Fig. 9 Job working curve of Cu^{2+} on Lpov (Lpov, 1×10^{-3} mol/L; Tris-HCl buffer
21	solution, 9/1, v/v, pH = 7.23)
22	
23	Fig. 10 ESI-MS spectrum (a) ESI-MS spectrum of Lpov; (b) ESI-MS spectrum of the
24	Lpov-3Cu ²⁺ complex
25	
26 27	Fig. 11 Proposed recognition mechanism of Cu ²⁺ by Lpov
28	Fig. 12 Molecular orbital energy diagrams of L_{POV} and the Lpov-3Cu ²⁺ complex. (a)
29	Molecular orbital energy diagram of LPOV. (b) Molecular orbital energy diagram of
30	the Lpov-3Cu ²⁺ complex
31	

1	Fig. 13 Determination of Cu^{2+} in tap water sample (n = 3; Lpov, 1×10^{-3} mol/L).
2	
3	Fig. 14 The Lpov-3Cu ²⁺ complex (1×10^{-3} mol/L) in DMF/H ₂ O buffer solution for
4	$HPO_4^{2-}/H_2PO_4^{-}$ recognition anti-interference experiment. (Emission peak at 382 nm.
5	The black bar is the fluorescence intensity of L_{POV} , the red bar is the fluorescence
6	intensity of L_{POV} with Cu^{2+} added, the blue bar is the fluorescence intensity of the
7	Lpov- $3Cu^{2+}$ complex after adding common metal anions, the pink bar is the
8	fluorescence intensity of LPOV after adding common metal anions. LPOV, 1×10^{-3}
9	mol/L; cation, 1×10^{-2} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.23).
10	
11	Fig. 15 Molecular orbital energy diagrams of the 2Lpov-Cu ²⁺ complex.
12	
13	Fig. 16 Fluorescence titration of H ₂ PO ₄ ⁻ in DMF/H ₂ O buffer solution with the Lpov-
14	3 Cu ²⁺ complex. (The Lpov-3Cu ²⁺ complex, 1×10^{-3} mol/L; cation, 1×10^{-2} mol/L; Tris-
15	HCl buffer solution, $9/1$, v/v , pH = 7.23).
16	
17	Fig. 17 Job working curve of $H_2PO_4^-$ on the Lpov-3Cu²⁺ complex
18	
19	Fig. 18 ESI-MS spectrum (a) ESI-MS spectrum of the $2Lpov-Cu^{2+}$ complex (HPO ₄ ²⁻
20); (b) ESI-MS spectrum of the 2Lpov-Cu²⁺ complex ($H_2PO_4^-$)
21	
22	Fig. 19 Proposed recognition mechanism of $HPO_4^{2-}/H_2PO_4^{-}$ by the Lpov-3Cu ²⁺
23	complex
24	
25	

Molecular orbital					
Energy		Energy			
(eV)		(eV)	335 ⁻³ , ³ ,	૾ૢૻ૱ૢ૱ૹ૱	్త _చ ితితో స
-1.26504	LUMO+2				
-1.76028	LUMO+1		LUMO	LUMO+1	LUMO+2
0.40299	ΔE		20110		
-2.16327	LUMO				
3.69471	ΔΕ		300 gá 1. gá . gá	100 - 100 -	
-5.85798	HOMO				
0.05170	ΔE		မ်ားသူတွင် ကို		ૺ ૾ૺૢૢ૽૱ૼૻૢૼૻ૾ૻૺૢ૾ૻૢૼ૿ૼૢૼૼૼૼૼૼૼ૾૾ૼ૾
-5.90968	HOMO-1			૾ૢૺૢ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	್ರೆಕ್ಟಿತ್ರಿಂತ್ರಿಕ್ಸ್ ಕ್
-5.95594	HOMO-2				
			- HOMO	HOMO-1	HOMO-2

Fig. 12

Fig. 13

- σ

Fig. 15

 Fig. 19

Graphical Abstract

11 An *O*-phenanthroline-based bis(half-salamo)-like fluorescent chemical sensor 12 L_{POV} with two N₃O cavities was synthesized. The chemical sensor Lpov can detect 13 Cu^{2+} by the phenomenon of fluorescence quenching and the $Lpov-3Cu^{2+}$ complex can 14 continuously detect HPO_4^{2-} and $H_2PO_4^{-}$. Different from the traditional N₂O₂ cavity of 15 salamo-like compound, the introduction of *O*-phenanthroline N atoms with stronger 16 coordination ability makes the coordination mode of the sensor molecule more novel 17 and provides more possibilities for the coordination modes.

20 Probe for the detection of Cu^{2+} and $HPO_4^{2-}/H_2PO_4^{-}$:

3 Biographies

4

Ruo-Nan Bian is currently pursuing her master's degree in the School of Chemical
and Biological Engineering at Lanzhou Jiaotong University, China. She obtained her
B.S.in the School of Chemical and Biological Engineering at Lanzhou Jiaotong
University, China, in 2017.

9

Xin Xu is currently pursuing her master's degree in the School of Chemical and
Biological Engineering at Lanzhou Jiaotong University, China. She obtained her
bachelor's degree in the School of Chemistry and Chemical Engineering of Jining
University, China, in 2018.

14

Tao Feng is currently pursuing his master's degree in the School of Chemical and Bio
logical Engineering at Lanzhou Jiaotong University, China. He obtained his B.S.in the
College of Chemical Engineering, Shanxi Datong University, China in 2017.

18

Wen-Kui Dong received his PhD degree in 1998 from Lanzhou University, China. He
is a professor in the School of Chemical and Biological Engineering at Lanzhou
Jiaotong University. His current research interests are focusing on the chemistry of
functional supramolecular complexes, materials and new products, as well as

- 1 processes and applications of environmental chemical engineering.
- 2
- 3

Journal Pression