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A general and efficient synthetic method for the synthesis of biologically important series of 3,6-disub-
stituted-1H-pyrazolo[3,4-b]pyridines was discovered. 2,6-Difluoropyridine was deprotonated using
1.1 equiv of n-BuLi in THF at <�60 �C, followed by quenching with a variety of Weinreb amides to gen-
erate 2,6-Difluoro-3-ketopyridines in high yields. A mild tandem reaction sequence of selective nucleo-
philic substitution of the 6-fluoride with a variety of nucleophiles, followed by hydrazine substitution
of the 2-fluoride and pyrazole formation in a one-pot fashion afforded a series of 3,6-disubstituted-1H-
pyrazolo[3,4-b]pyridines in moderate to good yields.

� 2009 Elsevier Ltd. All rights reserved.
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Substituted pyrazolo[3,4-b]pyridines represent an important
class of heterocycles due to their well-documented biological
activity.1 We were particularly interested in the synthesis of 3,6-
disubstituted-1H-pyrazolo[3,4-b]pyridines due to their potent
antiviral activity on the inhibition of non-nucleoside reverse trans-
criptase.2 Despite continuing interest in these heterocycles, to date
a few published methods for the synthesis of this class of 3,6-
disubstituted-1H-pyrazolo[3,4-b]pyridines required harsh condi-
tions and a four-step sequence starting from commercially avail-
able 2,6-difluoropyridine in low overall yield.3 In our search for a
practical and mild synthesis of 3,6-disubstituted-1H-pyrazol-
o[3,4-b]pyridines, we reasoned that the desired compounds could
be assembled in a one-pot protocol from 2,6-difluoro-3-ketopyri-
dines via a selective double SNAr reaction followed by pyrazole for-
mation (Scheme 1). Herein, we report our efforts to accomplish the
described set of chemical transformations.

The first step was to generate lithiated 2,6-difluoropyridine and
to convert the 3-lithiated species into a variety of 2,6-difluoro-3-
ketopyridines. It is well known that ortho lithiation of 2-fluoropyr-
idine and 2,6-difluoropyridine can be performed using either LDA,4

or LiTMP.5 Stronger bases such as n-BuLi are known to add to the
pyridine ring, even at very low temperature.6 However, given the
cost benefit and convenience of using n-BuLi alone, it was worth
re-examining the deprotonation of 2,6-difluoropyridine with n-
ll rights reserved.
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ong).
on College, Box 5288, David-
BuLi. Thus, to a THF solution of 2,6-difluoropyridine was slowly
added 1.1 equiv of 1.6 M n-BuLi in hexane through a syringe pump
while maintaining an internal temperature below �60 �C. After the
addition was complete, the reaction mixture was stirred at �78 �C
for 0.5 h resulting in the formation of an orange slurry of the lith-
iate. Precooled (�55 �C) solution of the Weinreb amide 1a7 was
quickly added to the lithiated 2,6-difluoropyridine slurry through
a cannula. The reaction mixture was then stirred at �60 �C for
1 h. To our delight, the desired product 2,6-difluoro-3-benzothi-
ophenoyl-pyridine 2a was isolated in 93% yield (Table 1, entry
1).8 Inspired by this successful transformation, the 3-lithiated-
2,6-difluoropyridine intermediate was trapped with a variety of
aromatic Weinreb amides 1b–j, including those with a simple phe-
nyl ring (entry 2), halogen-substituted aromatic rings (entries 1, 3,
6, and 9), electron rich aromatics (entries 4, 7, and 8), an electron
deficient aromatic (entry 5), and a furanyl group (entry 10) to pro-
duce the corresponding 2,6-difluoro-3-ketopyridines 2a–j in good
to excellent yields. The 3-lithiated-2,6-difluoropyridine also re-
acted with an aliphatic Weinreb amide (entry 11) to generate the
corresponding 2,6-difluoro-3-acetoxypyridine in a moderate yield
without further optimization.
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Table 1
Preparation of 2,6-difluoro-3-benzoylpyridines
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With the desired 2,6-difluoro-3-substituted-benzoyl-pyridines
in hand, a one-pot synthesis of 3,6-substituted-1H-pyrazolo[3,4-
b]pyridines was examined (Table 2). Selective replacement of the
6-fluorine with nucleophiles, followed by displacement of the 2-
fluoride by hydrazine and then closure of the pyrazole ring would
lead to the desired products. Our initial studies began with selec-
tive substitution of compound 2a with tert-butylamine.9 Accelera-
tion of SNAr reactions by using aprotic solvents is well known.
Thus, treatment of compound 2a with tert-butylamine in N,N-
dimethylacetoamide (DMAc) at 0–5 �C afforded a clean reaction
to a mixture of 6-tert-butylamino-2-fluoro-3-benzothiophenoyl-
pyridine 3a and 2-tert-butylamino-6-fluoro-3-benzothiophenoyl-
pyridine 4a in a 4:1 ratio, as determined by 1H NMR
spectroscopy. A similar outcome was observed when the reaction
was run in DMF, NMP, and DMSO. In a reversal of selectivity, 4a
was the major product when the reaction was performed in EtOAc,
MTBE, and THF. A highly selective formation of 4a was found in tol-
uene (4a:3a = 16.7:1). A lower ratio of 3a:4a was obtained when



Table 2
Synthesis of 6-tert-butylamino-1H-pyrazolo[3,4-b]pyridines via a one-pot double SNAr reaction/pyrazole formation
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the reaction was run at higher temperature. A rationale for this sol-
vent dependence can be tentatively proposed based on hydrogen-
bonding effects. In non-polar solvents (e.g., toluene), hydrogen-
bonding between the carbonyl group and the incoming amine
nucleophile can direct the substitution reaction to the more steri-
cally hindered C-2 site. In polar solvents (e.g., DMAc) this interac-
tion is disfavored due to preferential hydrogen-bonding between
the amine and the solvent, which in turn generates an effectively



Table 3
Synthesis of 3, 6-disubstituted-1H-pyrazolo[3,4-b]pyridines via a one-pot double SNAr reaction/pyrazole formation
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larger solvated nucleophile, factors which together lead to selec-
tive substitution at the less hindered C-6 position.

Employing the above protocol, a variety of 2,6-difluoro-3-keto-
pyridines 2b–k could be selectively converted to 6-tert-butylami-
no-2-fluoro-3-keto-pyridines 3a–k. Functional groups such as
bromo, chloro, fluoro, methoxy, nitro, furanyl, and benzothiophe-
nyl were well tolerated under the reaction conditions. Interest-
ingly, besides the solvent effects discussed above, both the
electronic and steric properties significantly affected the regiose-
lectivity of the initial displacement. An electron-donating group
at the para-position (entry 4, X = OMe) decreased the ratio of 3d
and 4d, wherein electron-withdrawing substituents (entries 1, 5,
and 9) favored formation of 6-substituted intermediates (3a, 3e,
3i) over the 2-substituted intermediates (4a, 4e, 4i). Substitution
at the ortho-position with electron-donating functional groups (en-
try 8) and electron-withdrawing groups (entries 1 and 9) signifi-
cantly increased the percentage of desired intermediates (3a, 3h,
and 3i), presumably due to steric effects.
After full conversion of the starting materials 2a–k to the inter-
mediates 3a–k and 4a–k, hydrazine monohydrate10 was slowly
added to the reaction mixture at 0–5 �C, and then warmed to room
temperature to afford 6-tert-butylamino-3-aryl-1H-pyrazolo[3,4-
b]pyridines 5a–k in 51–84% overall yield as a one-pot procedure
starting from 2a–k (Table 2).11 The second SNAr substitution of
the 2-fluorine by hydrazine and the pyrazole formation were
achieved in very mild conditions (0 �C to rt) in nearly quantitative
yields by HPLC analysis.

To further demonstrate the utility of this one-pot protocol,
selective substitution of the 6-fluorine of 2,6-difluoro-3-substi-
tutedbenzoyl-pyridines was investigated using different nucleo-
philes followed by hydrazine substitution of the 2-fluorine and
pyrazole formation. As shown in the Table 3, reaction of compound
2c with tert-butyl thiol (entry 1) or phenol (entry 4) afforded excel-
lent regioselective substitution of the 6-fluorine, giving a high
overall yield for the one-pot transformation. Reaction with a sec-
ondary amine (entry 2) or an aniline (entry 3) also proceeded
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smoothly. Addition of amino acids (entries 5 and 6) also proved
efficient, generating the corresponding pyrazoles in moderate
yields.12

In summary, the 2,6-difluoro-3-ketopyridines were generated
in high yields through a cost-effective and convenient protocol
involving deprotonation of 2,6-difluoropyridine using n-butyllith-
ium, followed by quenching with a variety of Weinreb amides. A
series of 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines could then
be efficiently prepared from the 2,6-difluoro-3-ketopyridines in
moderate to good yields by a tandem reaction sequence of selec-
tive nucleophilic substitution of the 6-fluoride, followed by hydra-
zine substitution of the 2-fluoride and pyrazole formation in a one-
pot fashion at very mild conditions (0 �C to room temperature).
This process could be performed with a variety of nitrogen-, oxy-
gen- and sulfur-containing nucleophiles. The high chemo- and reg-
ioselectivities observed in these reactions, the high yields after
multiple bond forming steps, and mild reaction conditions em-
ployed make this process broadly applicable to the synthesis of
the 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines both in acad-
emy and industry.
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