Noncatalytic selective 6-O-acetylation of methyl 2,3-di-O-benzoyl-α-D-glucopyranoside with acetic acid and acetic anhydride

Y. E. Tsvetkov, M. L. Gening, and N. E. Nifantiev*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (499) 135 8784. E-mail: nen@ioc.ac.ru

Noncatalytic acetylation of methyl 2,3-di-O-benzoyl- α -D-glucopyranoside with acetic acid or acetic anhydride proceeds regioselectively at the primary hydroxyl group and affords methyl 6-O-acetyl-2,3-di-O-benzoyl- α -D-glucopyranoside in good yield. The possibility of 6-O-acetylation should be taken into account when removing a 4,6-O-benzylidene protecting group with aqueous acetic acid at elevated temperature.

Key words: acetic acid, acetic anhydride, methyl 2,3-di-O-benzoyl- α -D-glucopyranoside, selective 6-O-acetylation.

The benzylidene group is widely used in synthetic organic chemistry for protection of 1,2- and 1,3-diols, including protection of hydroxy groups at the C(4) and C (6) atoms in hexopyranosides.¹ The 4,6-*O*-benzylidene group is usually removed by acid hydrolysis using dilute strong acids (sulfuric, hydrochloric, *p*-toluenesulfonic acid, *etc.*)^{1,2} or aqueous acetic acid upon heating.^{1,3-5} The advantage of the latter reagent is the simplicity of the reaction mixture work-up, which consists in evaporation. We also used the hydrolysis of benzylidene derivative **1** (see Ref. 6) with 80% aqueous AcOH to obtain 4,6-diol **2** (Scheme 1).

Scheme 1

Reagents and conditions: 80% aq. AcOH, 50 °C, 48 h.

The reaction gave diol 2 in 80% yield, as well as a product with higher chromatographic mobility, which, according to the NMR spectra, was 6-acetate 3 (10% yield). Therefore, aqueous AcOH at elevated temperatures is capable of acetylating the primary hydroxy group in 4,6-diol **2**.

Considering this result, we studied the possibility of noncatalytic selective 6-O-acetylation of diol 2 with acetic acid, since our further goal was to obtain 6-acetate 3. This compound is supposed to be used for the introduction of an azide group at the C(4) atom with the formation of 4-azido-4-deoxygalactose derivative,⁷ a precursor for the synthesis of containing 4-amino-4-deoxygalactose moiety analogs of cyclic oligosaccharides obtained earlier,⁸ as well as oligomeric blockers of bacterial adhesins,⁹ ion channels,^{10,11} and other molecular systems.¹² In addition, glucose derivatives selectively acetylated at the O(6) atom, similar to compound 3, are convenient blocks for the assembly of β -(1 \rightarrow 6)-linear¹³ and β -(1 \rightarrow 3),(1 \rightarrow 6)branched^{14,15} oligoglucosides corresponding to the fragments of β -glucans of the cell wall of fungi^{16,17} of the genera Candida, Aspergillus, and others.

Preliminary experiments showed that aqueous AcOH (70-90%) at 80 °C in fact selectively acetylates diol **2** with the formation of compound **3** as the main product. TLC of the reaction mixture showed also the presence of minor amounts of 4,6-diacetate **4** and 4-acetate **5** (Scheme 2). The conversion degree of the starting diol **2** and the reaction selectivity were practically independent of the concentration of AcOH used.

However, the low reaction rate (the degree of conversion of **2** after 90 h was 75–80%) did not allow us to consider the reaction with aqueous AcOH as a preparative method for selective 6-*O*-acetylation. Therefore, further we studied acetylation of **2** with anhydrous AcOH. The reaction of **2** with glacial AcOH at 100 °C for 36 h gave

Published in Russian in *Izvestiya Akademii Nauk. Seriya Khimicheskaya*, No. 11, pp. 2228–2230, November, 2020. 1066-5285/20/6911-2228 © 2020 Springer Science+Business Media LLC Scheme 2

Reagents and conditions: AcOH, 100 °C, 36 h or Ac₂O, 60 °C, 15 h or Ac₂O, pyridine, CH₂Cl₂, $0 \rightarrow 20$ °C.

good yield of 6-acetate **3** (72%), as well as compounds **4** and **5** in 15 and 6% yields, respectively. Thus, the reaction with anhydrous AcOH showed a sufficiently high regio-selectivity, which makes it suitable for 6-O-acetylation of 4,6-diols of the compound **2** type.

Acetic anhydride in the presence of basic or acidic catalysts^{18,19}, both homogeneous and heterogeneous, is one of the most commonly used reagents in the acetylation reaction. We studied the acetylation of diol 2 with acetic anhydride in the absence of catalysts. The reaction of 2 with Ac₂O at 60 °C for 15 h gave 6-acetate 3 and diacetate 4 in 83 and 15% yields, respectively. Carrying out this reaction at 50 °C for 22 h leads to a slight decrease in the yield of diacetate 4 (12%), while the yield of 3 remains unchanged (83%). TLC showed that 4-acetate 5 is formed in trace amounts in both cases.

For comparison, we carried out acetylation of **2** with 1.3 equiv of Ac_2O in the presence of 2 equiv. of pyridine at $0 \rightarrow 20$ °C. This reaction turned out to be less regioselective than the described above noncatalytic acetylation with AcOH or Ac_2O . As a result, 6-acetate **3**, 4,6-diacetate **4**, and 4-acetate **5** were isolated in 64, 21, and 9% yields, respectively.

To sum up, acetic acid and acetic anhydride in the absence of catalysts selectively acetylate the primary hydroxy group in methyl 2,3-di-O-benzoyl- α -D-gluco-pyranoside, giving the corresponding 6-acetate in good yield. The possibility of acetylation of C(6) hydroxy group should be taken into account when removing the 4,6-O-benzylidene group with aqueous acetic acid at elevated temperatures.

The efficiency of acetic acid and, in particular, acetic anhydride as reagents for selective 6-O-acetylation is superior to that of many reagents described in the literature, such as, for example, 1-acetoxybenzotriazole,^{20,21} 1-acetylimidazole,²² and acetyl chloride in the presence of pyridine²³ or 2,4,6-collidine.²⁴ Only in a few cases (acetyl chloride in the presence of basic alumina¹⁸ and acetic anhydride in the presence of 4 Å molecular sieves¹⁹) higher yields (~90%) of the products of selective 6-O-acetylation were achieved for substrates of similar structure.

Experimental

Thin layer chromatography was performed on Kieselgel 60 F254 silica gel plates (Merck), compounds were detected in UV

light or by spraying with a solution of orcinol (orcinol (180 mg) in a mixture of water (85 mL), 85% phosphoric acid (10 mL), and 95% ethanol (5 mL)), followed by heating at ~150 °C. Column chromatography was performed on Silica gel 60 (40-63 µm, Merck). Optical rotation was measured on a JASCO P-2000 digital polarimeter (Japan) at 20-25 °C. NMR spectra were recorded at 25 °C on a Bruker Avance 600 spectrometer in deuterochloroform (CDCl₃). Residual non-deuterated CHCl₃ $(\delta_{\rm H} 7.27)$ was used as an internal standard for ¹H NMR spectra, the signal of CDCl₃ ($\delta_{\rm C}$ 77.0) was used as a reference for ¹³C NMR spectra. The signal assignment was carried out using 2D COSY and HSQC correlation NMR spectroscopy. The electrospray ionization (ESI) high resolution mass spectrum was recorded on a Bruker micrOTOF II instrument. Acetic acid of reagent grade distilled over potassium permanganate was used for acetylation.

Synthesis of compounds 2 and 3. A suspension of benzylidene derivative 1 (3.90 g, 7.95 mmol) in 80% aq. AcOH (20 mL) was stirred at 50 °C for 48 h (after ~30 h the reaction mixture became homogeneous), AcOH was evaporated and coevaporated with toluene (3×30 mL). The residue was chromatographed (toluene—EtOAc (4 : 1), then toluene—acetone (4 : $1\rightarrow$ 3 : 1)) to obtain diol 2 (2.56 g, 80%) and 6-acetate 3 (0.37 g, 10%).

Methyl 2,3-di-*O*-benzoyl-α-D-glucopyranoside (2). A colorless foam, $R_{\rm f} = 0.17$ (toluene—EtOAc, 3 : 2), $[\alpha]_{\rm D} + 146$ (*c* 1, EtOH) (Ref. 4: +155 (*c* 1, EtOH)). ¹H NMR (600 MHz, CDCl₃), δ : 7.99—7.32 (m, 10 H, Ar); 5.77 (t, 1 H, H(3), J = 9.7 Hz); 5.22 (dd, 1 H, H(2), $J_{2,1} = 3.6$ Hz, $J_{2,3} = 10.1$ Hz); 5.13 (d, 1 H, H(1), $J_{1,2} = 3.6$ Hz); 4.00—3.91 (m, 3 H, H(4), 2 H(6)); 3.89—3.84 (m, 1 H, H(5)); 3.43 (s, 3 H, CH₃O). ¹³C NMR (150 MHz, CDCl₃), δ : 167.3, 166.0 (Ph<u>C</u>O), 133.4, 129.9, 129.8, 128.4 (Ar), 97.1 (C(1)), 74.1 (C(3)), 71.6 (C(2)), 71.3 (C(5)), 69.8 (C(4)), 62.0 (C(6)), 55.4 (CH₃O).

Methyl 6-O-acetyl-2,3-di-*O***-benzoyl**-α-**D-glucopyranoside** (3). A colorless syrup, $R_f = 0.62$ (toluene-EtOAc, 3 : 2), $[α]_D + 134$ (c 1, CHCl₃) (Ref. 25: $[α]_D + 150.8$ (c 1.2, CHCl₃)). ¹H NMR (600 MHz, CDCl₃), δ : 8.01–7.34 (m, 10 H, Ar); 5.76 (t, 1 H, H(3), J = 9.7 Hz); 5.27 (dd, 1 H, H(2), $J_{2,1} = 3.6$ Hz, $J_{2,3} = 10.1$ Hz); 5.13 (d, 1 H, H(1), $J_{1,2} = 3.6$ Hz); 4.54 (dd, 1 H, H(6a), $J_{6a,5} = 4.6$ Hz, $J_{6a,6b} = 12.3$ Hz); 4.40 (dd, 1 H, H(6b), $J_{6b,5} = 2.4$ Hz, $J_{6b,6a} = 12.3$ Hz); 4.40 (dd, 1 H, H(6b), $J_{6b,5} = 2.4$ Hz, $J_{6b,6a} = 12.3$ Hz); 3.44 (s, 3 H, CH₃O); 2.16 (s, 3 H, CH₃CO). ¹³C NMR (150 MHz, CDCl₃), δ : 171.4 (CH₃<u>C</u>O), 167.3, 165.9 (Ph<u>C</u>O), 133.4, 133.3, 129.8, 128.4 (Ar), 97.1 (C(1)), 73.8 (C(3)), 71.2 (C(2)), 69.7 (C(5)), 69.5 (C(4)), 62.9 (C(6)), 55.4 (CH₃O), 20.8 (<u>C</u>H₃CO). The NMR spectroscopy data for compound **3** are in good agreement with the data reported in the work.²⁵

Synthesis of compounds 3, 4, and 5. Method *A*. A solution of diol 2 (134 mg, 0.33 mmol) in glacial AcOH (2.5 mL) was heated at 100 °C for 36 h, AcOH was evaporated and coevapo-

rated with toluene ($3 \times 5 \text{ mL}$). The residue was chromatographed (toluene—EtOAc, $85: 15 \rightarrow 80: 20 \rightarrow 70: 30$) to obtain 6-acetate **3** (106 mg, 72%) identical to that described above, diacetate **4** (25 mg, 15%), and 4-acetate **5** (9 mg, 6%).

Methyl 4,6-di-*O*-acetyl-2,3-di-*O*-benzoyl-α-D-glucopyranoside (4). A colorless syrup, $R_{\rm f} = 0.69$ (toluene—EtOAc, 3 : 2), $[\alpha]_{\rm D} + 132$ (*c* 1, CHCl₃) (Ref. 25: $[\alpha]_{\rm D} + 127.9$ (*c* 1, CHCl₃)). ¹H NMR (600 MHz, CDCl₃), δ: 7.98–7.34 (m, 10 H, Ar); 5.99–5.92 (m, 1 H, H(3)); 5.35 (t, 1 H, H(4), J = 10.1 Hz); 5.23–5.18 (m, 2 H, H(1), H(2)); 4.34 (dd, 1 H, H(6a), $J_{6a,5} =$ = 4.6 Hz, $J_{6a,6b} = 12.3$ Hz); 4.18 (dd, 1 H, H(6b), $J_{6b,5} = 2.2$ Hz, $J_{6b,6a} = 12.3$ Hz); 4.16–4.11 (m, 1 H, H(5)); 3.44 (s, 3 H, CH₃O); 2.14, 1.95 (both s, 6 H, 2 CH₃CO). ¹³C NMR (150 MHz, CDCl₃), δ: 170.7, 169.5 (2 CH₃<u>C</u>O), 165.8 (Ph<u>C</u>O), 133.4, 133.3, 129.9, 129,7, 128.4 (Ar), 97.0 (C(1)), 71.8 (C(2)), 70.5 (C(3)), 68.3 (C(4)), 67.4 (C(5)), 62.0 (C(6)), 55.6 (CH₃O), 20.8, 20.5 (2 <u>C</u>H₃CO). The NMR spectroscopy data for compound **4** are in good agreement with the data reported in the work.²⁶

Methyl 4-*O*-acetyl-2,3-di-*O*-benzoyl-α-D-glucopyranoside (5). A colorless syrup, $R_f = 0.34$ (toluene—EtOAc, 3:2), $[α]_D + 144$ (*c* 1, CHCl₃). ¹H NMR (600 MHz, CDCl₃), δ: 7.99–7.35 (m, 10 H, Ar); 6.03 (t, 1 H, H(3), J = 9.6 Hz); 5.30 (t, 1 H, H(4), J = 9.9 Hz); 5.22 (d, 1 H, H(1), $J_{1,2} = 3.6$ Hz); 5.19 (dd, 1 H, H(2), $J_{2,3} = 9.6$ Hz); 3.96–3.91 (m, 1 H, H(5)); 3.80 (dd, 1 H, H(6a), $J_{6a,5} = 2.2$ Hz, $J_{6a,6b} = 12.7$ Hz); 3.69 (dd, 1 H, H(6b), $J_{6b,5} = 4.1$ Hz, $J_{6b,6a} = 12.7$ Hz); 3.45 (s, 3 H, CH₃O); 2.00 (s, 3 H, CH₃CO). ¹³C NMR (150 MHz, CDCl₃), δ: 170.6 (CH₃<u>C</u>O), 166.1, 165.5 (2 Ph<u>C</u>O), 133.4, 133.3, 129.9, 129.7, 128.4 (Ar), 97.0 (C(1)), 72.0 (C(2)), 70.2 (C(3)), 69.5 (C(5)), 68.8 (C(4)), 61.1 (C(6)), 55.6 (CH₃O), 20.6 (<u>C</u>H₃CO). MS (ESI), found *m/z*: 467.1304 [M + Na]⁺; calculated for C₂₃H₂₄NaO₉ 467.1313.

Method B. A solution of diol **2** (152 mg, 0.38 mmol) in Ac₂O (3 mL) was heated at 60 °C for 15 h, Ac₂O was evaporated and coevaporated with toluene (3×5 mL). Column chromatography of the residue (toluene—EtOAc, $85 : 15 \rightarrow 80 : 20$) gave 6-acetate **3** (140 mg, 83%) and diacetate **4** (27 mg, 15%) identical to those described above.

Method C. Pyridine (64 μ L, 0.68 mmol) and Ac₂O (42 μ L, 0.44 mmol) were added to a solution of diol 2 (137 mg, 0.34 mmol) in CH₂Cl₂ (3 mL) cooled with ice. The mixture was stirred at 4 °C for 2 h, then the temperature was raised to ambient within 3 h. After 16 h, MeOH (50 μ L) was added, the reaction mixture was diluted with chloroform (50 mL), washed with 1 *M* HCl and water, and concentrated. Column chromatography of the residue (toluene—EtOAc, 85 : 15 \rightarrow 80 : 20 \rightarrow 70 : 30) gave 6-acetate 3 (96 mg, 64%), 4,6-diacetate 4 (35 mg, 21%), and 4-acetate 5 (13 mg, 9%) identical to those described above.

This work was financially supported by the Russian Science Foundation (Project No. 19-43-02023).

References

- T. W. Greene, P. G. M. Wuts, *Protective Groups in Organic Synthesis*, 3rd ed., John Wiley & Sons, Inc., New York, 1999, p. 217.
- 2. P. J. Kocieński, *Protecting Groups*, 3rd ed., Georg Thieme Verlag, Stuttgart, 2005, p. 137.
- 3. E. B. Rodriguez, R. V. Stick, Austr. J. Chem., 1990, 43, 665.
- 4. M. von Itzstein, I. D. Jenkins, J. Chem. Soc., Perkin Trans. 1, 1986, 437.

- P.-E. Jansson, J. Lindberg, G. Widmalm, *Acta Chem. Scand.*, 1993, **47**, 711.
- 6. R. W. Jeanloz, D. A. Jeanloz, J. Am. Chem. Soc., 1957, 79, 2579.
- S. Wu, L. Yang, W. Sun, L. Si, S. Xiao, Q. Wang, L. Dechoux, S. Thorimbert, M. Sollogoub, D. Zhou, Y. Zhang, *Eur. J. Med. Chem.*, 2017, 130, 308.
- M. L. Gening, D. V. Titov, A. A. Grachev, A. G. Gerbst, O. N. Yudina, A. S. Shashkov, A. O. Chizhov, Y. E. Tsvetkov, N. E. Nifantiev, *Eur. J. Org. Chem.*, 2010, 2465.
- M. L. Gening, D. V. Titov, S. Cecioni, A. Audfray, A. G. Gerbst, Y. E. Tsvetkov, V. B. Krylov, A. Imberty, N. E. Nifantiev, S. Vidal, *Chem. Eur. J.*, 2013, **19**, 9272.
- T. Saha, A. Roy, M. L. Gening, D. V. Titov, A. G. Gerbst, Y. E. Tsvetkov, N. E. Nifantiev, P. Talukdar, *Chem. Commun.*, 2014, **50**, 5514.
- A. Roy, T. Saha, M. L. Gening, D. V. Titov, A. G. Gerbst, Y. E. Tsvetkov, N. E. Nifantiev, P. Talukdar, *Chem. Eur. J.*, 2015, **21**, 17445.
- V. P. Ananikov, D. B. Eremin, S. A. Yakukhnov, A. D. Dilman, V. V. Levin, M. P. Egorov, S. S. Karlov, L. M. Kustov, A. L. Tarasov, A. A. Greish, A. A. Shesterkina, A. M. Sakharov, Z. N. Nysenko, A. B. Sheremetev, A. Yu. Stakheev, I. S. Mashkovsky, A. Yu. Sukhorukov, S. L. Ioffe, A. O. Terent'ev, V. A. Vil', Y. V. Tomilov, R. A. Novikov, S. G. Zlotin, A. S. Kucherenko, N. E. Ustyuzhanina, V. B. Krylov, Y. E. Tsvetkov, M. L. Gening, N. E. Nifantiev, *Mendeleev Commun.*, 2017, **27**, 425.
- D. V. Yashunsky, A. A. Karelin, Y. E. Tsvetkov, N. E. Nifantiev, *Carbohydr. Res.*, 2018, 455, 18.
- D. V. Yashunsky, Y. E. Tsvetkov, N. E. Nifantiev, *Russ. Chem. Bull.*, 2015, 64, 2922.
- D. V. Yashunsky, Y. E. Tsvetkov, N. E. Nifantiev, *Carbohydr. Res.*, 2016, 436, 25.
- Yu. E. Tsvetkov, E. A. Khatuntseva, D. V. Yashunsky, N. E. Nifantiev, *Russ. Chem. Bull.*, 2015, 64, 990.
- A. A. Karelin, Y. E. Tsvetkov, N. E. Nifantiev, *Russ. Chem. Rev.*, 2017, 86, 1073.
- 18. P. Tiwari, A. K. Misra, *Carbohydr. Res.*, 2006, **341**, 339 and references cited therein.
- M. Adinolfi, G. Barone, A. Iadonisi, M. Schiattarella, *Tetrahedron Lett.*, 2003, 44, 4661 and references cited therein.
- L. Greffe, M. T. Jensen, F. Chang-Pi-Hin, S. Fruchard, M. J. O'Donohue, B. Svensson, H. Driguez, *Chem. Eur. J.*, 2002, 8, 5447.
- 21. H.-M. Chen, S. G. Withers, Carbohydr. Res., 2018, 467, 33.
- 22. M. G. Tilbrook, R. V. Stick, S. J. Williams, Aust. J. Chem., 1999, 52, 885.
- 23. Q.-W. Liu, H.-C. Bin, J.-S. Yang, Org. Lett., 2013, 15, 3974.
- 24. S. Singh, Z. Su, M. Grossutti, F.-I. Auzanneau, *Carbohydr. Res.*, 2014, **390**, 50.
- 25. T. Ziegler, M. Vollmer, S. Oberhoffner, E. Eckhardt, *Liebigs* Ann. Chem., 1993, 255.
- K.-i. Sato, N. Kubo, R. Takada, S. Sakuma, *Bull. Chem. Soc. Jpn*, 1993, 66, 1156.

Received June 15, 2020; in revised form July 16, 2020; accepted July 27, 2020