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Abstract: A short total synthesis of the neosesquilignan dunnianol
which features a double Suzuki cross-coupling as a key step is de-
scribed.
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A wide variety of neolignans has been isolated during the
last two decades from Illicium plants.' For example, dun-
nianol (1, Figure 1), an ortho-linked neolignan derived
from chavicol (4),> was isolated from the bark of Illicium
dunnianum in 19913
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o &
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magnolol (3)

chavicol (4)

Figure 1

Whilst no biological investigations on dunnianol have
been reported to date, isodunnianol (2),? a co-metabolite,
has been reported to promote neurite outgrowth in vitro in
primary cultured rat cortical neurons.* Given the structur-
al similarity between these two natural products, and the
fact that the C-ortho-linked dimer magnolol (3) is also re-
ported to promote neurite outgrowth® we developed a
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short synthesis of dunnianol’ with a view to investigating
its potential to stimulate neurite outgrowth and protect
neurons. Our synthesis plan involved formation of the two
biaryl bonds via a double Suzuki coupling reaction.

The synthesis began with the preparation of dibromide 6
and boronic acid 7 (Scheme 1). Commercially available
estragole (5)® was demethylated (BCl;-SMe, in refluxing
dichloroethane)’ and brominated'® with NBS to afford
coupling partner 6,'' with the remainder of the mass bal-
ance being estragole and the monobromide, respectively.
The boronic acid cross-coupling partner 7'? was then ob-
tained in a single step via lithiation'? of estragole followed
by treatment with trimethylboronate and hydrolysis of the
derived intermediate boronate ester. With both coupling
partners available we investigated the key double Suzuki
coupling reaction.

1. BCl3-SMe»
DCE OH
reflux, 18 h
63%

2. NBS, t+BuNH»
CHxCly, 0°C, 1 h
61%
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B(OH),

5

Scheme 1

A range of iodophenols undergo cross-coupling reac-
tions;'* however, Suzuki reactions of para-bromophenols
are known to be difficult'® and ortho-bromophenols are
more difficult still.'"® Limited literature precedent was
available for double coupling of bis-ortho-bromophe-
nols.!” In the event double coupling to produce bismethyl-
dunnianol 8'"® (Scheme 2) proceeded in good yield and
with no detectable alkene isomerisation.'” Lewis acid me-
diated deprotection then afforded the natural product®
along with 5% of monomethyldunnianol;*! again with no
detectable isomerisation of the allyl groups.
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Br B(OH)2 reflux, 48 h
T 0%
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i-PrOH, H,0

BCl3-SMe»
DCE
relux, 48 h

70%

Scheme 2

In summary dunnianol has been prepared from estragole
in four steps and 17% overall yield in the longest linear se-
quence. Conditions for double Suzuki cross-couplings of
bis-ortho-bromophenols and methylether cleavage with-
out alkene isomerisation have been identified. These con-
ditions should find application in the synthesis of other
more complex oligomeric chavicol-derived natural prod-

ucts.
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Solid; mp 134-135 °C; R,= 0.41 (PE-EtOAc, 4:1). IR
(neat): v,,,, = 3690 (OH), 3604 (OH), 3011 (CH), 2926
(CH), 2854 (CH), 1602 (C=C). 'H NMR (500 MHz, CDCl,):
§=3.40(4H,d,J=6.7Hz, ArtCH,CHCH,, H;), 3.44 2 H,
d, J = 6.8 Hz, ArCH,CHCH,, H), 5.09 (2 H, dd, J = 10.8,
1.5 Hz, ArCH,CHCHH_;,, Hy), 5.11 2 H, dd, J=17.0, 1.5
Hz, ArCH,CHCHH,,,,,, Hy), 5.14 (1 H,dd, J = 18.2, 1.8 Hz,
ArCH,CHCHH,,,,,, Hy), 5.15 (1 H,dd, J=11.4, 1.8 Hz,
ArCH,CHCHH_;,, Hy), 5.72 (3 H, br s, ArOH), 5.95-6.04 (3

@n

H, m, ArCH,CHCH,, Hg, Hy), 6.99 (2H, d,J = 8.1 Hz, ArH,
H;), 7.15 (2 H, dd, J=8.1, 2.2 Hz, ArH, Hy,), 7.17 (2 H, d,
J=2.2Hz, ArH, Hy), 7.19 2 H, s, ArH, H;). 3C NMR (125
MHz, CDCly): 8 = 39.4 (CH,, C,, C;), 115.9 (CH,, Cy),
116.2 (Cq, Cy), 117.2 (Cq, Cy), 124.4 (Cq, C5), 125.4 (Cq,
C,), 130.0 (CH, Cy), 131.3 (CH, C5), 131.6 (CH, C5), 133.2
(Cq, Cy), 134.0 (Cq, C,), 137.2 (CH, Cy), 137.5 (CH, Cy),
147.6 (Cq, C)), 151.4 (Cq, C,). HRMS (ESI*): m/z calcd for
C,,H,c0;Na: 421.1774; found: 421.1768.

Analytical Data

Oil; R;= 0.41 (PE-EtOAc, 4:1). IR (CHCL;): v, = 3690
(OH), 3412 (OH), 3011 (CH), 2928 (CH), 2855 (CH), 1663
(C=0), 1547 (C=C). '"H NMR (500 MHz, CDCl;): § = 3.36—
3.45 (6 H, m, ArCH,CHCH,), 3.88 (3 H, s, ArOCH,), 5.06—
5.17 (6 H, m, ArCH,CHCH,), 5.92-6.06 (3 H, m,
ArCH,CHCH,), 6.41 (2 H, br s, ArOH), 7.00 (1 H, dd,
J=8.5,2.5Hz, ArH), 7.13 (1 H,d,J=2.5Hz, ArH), 7.15 (1
H,d,J=2.5Hz, ArH), 7.16 (1 H, d, J = 2.5 Hz, ArH), 7.18
(1H,d,J=2.0Hz, ArH), 7.19 (1 H, d, J = 2.0 Hz, ArH),
7.23(1H,d,J=2.0Hz, ArH), 7.25(1 H, dd, J = 8.5,2.0 Hz,
ArH). ®C NMR (125 MHz, CDCl,): § = 39.3, 39.5, 54.6,
111.6, 115.6, 116.0, 116.1, 116.4, 116.6, 117.8, 126.6,
127.0, 129.3, 129.6, 130.0, 131.0, 131.3, 132.5, 132.8,
133.6, 134.1, 137.3, 137.4, 137.6, 137.9, 147.8, 152.1,
153.6. HRMS (ESI"): m/z calcd for C,3H,505: 412.2044;
found: 412.2038.
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