# Some Transition Metal Complexes of the Diacetylenic Diphosphine Ph<sub>2</sub>PC<sub>2</sub>C<sub>2</sub>PPh<sub>2</sub>: Synthesis and Crystal Structures<sup>†</sup>

Chris J. Adams, Michael I. Bruce,\* Ernst Horn and Edward R. T. Tiekink

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

Several complexes of the acetylenic ditertiary phosphine,  $Ph_2PC_2C_2PPh_2$ , containing Mo, W, Fe, Ru or Au have been prepared; one C=C triple bond in the Mo, W or Fe derivatives has been co-ordinated to  $Co_2(CO)_6$  or  $Pt(PPh_3)_2$  groups. Crystal structure determinations of  $[\{Fe(CO)_4\}_2(\mu-PPh_2C_2C_2PPh_2)\}$  **3** and  $[Co_2\{\mu-\eta^2-[(OC)_5W(PPh_2)]C=C[C_2(PPh_2)W(CO)_5]\}(CO)_6]$  **7** show that the *P*-bonded M(CO)<sub>n</sub> groups take up transoid positions; in **3**, the PCCCCP chain, which is situated about a centre of inversion, is nearly linear [P-C-C, 173.2(5); C-C-C 179.7(6) for molecule a and 174.7(5) and 177.6(6)°, respectively, for molecule b] with C=C distances of 1.192(7) Å [1.201(6) Å, molecule b]. In **7**, co-ordination of the  $Co_2(CO)_6$  group to one C=C bond lengthens that bond by 0.13 Å, compared with the unco-ordinated C=C bond, and induces bend-back of the substituents of 141–143(1)° (PPh\_2) and 145–146(1)° (C\_2PPh\_2). Crystals of **3** are triclinic, space group  $P\overline{1}$ , a = 11.261(1), b = 12.456(2), c = 13.061(2) Å, x = 79.23(2),  $\beta = 75.73(1)$ ,  $\gamma = 78.75(2)°$ , Z = 2; 2870 data were refined to R = 0.042, R' = 0.046. Crystals of **7** are triclinic, space group  $P\overline{1}$ , a = 17.940(4), b = 19.695(4), c = 16.449(2) Å, x = 111.92(1),  $\beta = 108.83(1)$ ,  $\gamma = 100.29(2)°$ , Z = 4; 5942 data were refined to R = 0.055, R' = 0.056.

The acetylenic ditertiary phosphine bis(diphenylphosphino)ethyne,  $C_2(PPh_2)_2$  (dppa), has been employed extensively in transition metal chemistry.<sup>1</sup> In particular, its reactions on cluster complexes of the iron triad have produced some unusual compounds, including cluster-bound  $C_2$  ligands, as in [Ru<sub>5</sub>( $\mu_5$ - $C_2$ )( $\mu$ -SMe)<sub>2</sub>( $\mu$ -PPh<sub>2</sub>)<sub>2</sub>(CO)<sub>11</sub>],<sup>2</sup> dicarbido clusters, as in  $[Fe_{3}Ru_{5}(\mu_{6}-C)(\mu_{5}-C)(\mu-PPh_{2})_{2}(CO)_{17}]^{3}$  and high nuclearity clusters, such as  $[Co_{4}Ru_{5}(\mu_{8}-C_{2})(\mu-PPh_{2})_{2}(\mu_{3}-SMe)_{2}(\mu-CO)_{7} (CO)_{11}$ ].<sup>4</sup> A limited number of simple complexes is known; the C=C triple bond is seldom involved in these derivatives, probably because of steric protection by the P-phenyl groups. However, prior co-ordination of the triple bond to a W(CO)<sub>3</sub>-(S<sub>2</sub>CNEt<sub>2</sub>) group induced sufficient bending of the PPh<sub>2</sub> groups for them to chelate to molybdenum or to bridge a Co-Co bond;<sup>5</sup> an example of uncomplexed dppa bridging a Re-Re bond in  $[Re_3(\mu-H)_3(\mu-dppa)(CO)_{10}]$  has also been found.<sup>4</sup> The crystal structure of dppa has been determined.<sup>6</sup>

Our success in making complexes of  $C_2$  using dppa-derived clusters<sup>2</sup> suggested an extension to the four-carbon analogue, which might be obtained similarly from the corresponding butadiyne, (Ph<sub>2</sub>P)C=CC=C(PPh<sub>2</sub>) (bdpp). This compound was described in 1965,<sup>7</sup> but there seem to be no reports of any complexes containing this ligand. We have commenced a study of suitable transition metal derivatives of bdpp, which might then be able to co-ordinate another metal moiety to the C=C triple bond, thus affording likely precursors for mixed-metal clusters. This paper describes some complex chemistry of bdpp, including the molecular structures of a binuclear iron complex, and of a related ditungsten complex containing a Co<sub>2</sub>(CO)<sub>6</sub> unit attached to one of the C=C triple bonds.

## **Results and Discussion**

The ligand bdpp was readily prepared by the method described in the literature,<sup>7</sup> in which the di-Grignard reagent from buta-

1,3-divne reacts with chlorodiphenylphosphine (25%); better yields (33%) were obtained from 1,4-dilithiobuta-1,3-diyne. The compound forms white crystals which slowly turn brown in air at ambient temperatures; solutions darken considerably over 2 hours. We normally keep the solid ligand at -10 °C. It is soluble in toluene and polar organic solvents such as dichloromethane, but not in methanol. The compound has a simple IR spectrum, containing a v(CC) absorption at 2072 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum contains multiplets centred at 8 7.45 and 7.73, while the <sup>13</sup>C NMR spectrum contains phenyl multiplets between  $\delta$  128.71 and 132.86; the *ipso* carbons resonate at  $\delta$ 134.34 (d,  $J_{CP}$  5.7 Hz). The two types of acetylenic carbons are found at 8 80.97 (d, J<sub>CP</sub> 15.8 Hz) and 91.36 (dd, J<sub>CP</sub> 5.2, 2.2 Hz). In the fast atom bombardment (FAB) mass spectrum, a molecular ion at m/z 418 fragments by loss of a PPh<sub>2</sub> group; ions at m/z 434 and 450 assigned to the mono- and di-oxygen adducts, respectively, are also prominent.

Several derivatives containing transition metals were prepared by the simple expedient of adding two equivalents of a metal complex to one equivalent of the diphosphine. There was no difficulty in isolation, standard methods being employed to crystallise and characterise the new complexes. All were identified by the usual analytical and spectroscopic techniques, and in the following discussion only those features used to confirm their identities will be highlighted. Full details are given in the Experimental section.

Complexes containing bdpp.—(a) Molybdenum and tungsten. The complex  $[{Mo(CO)_5}_2(\mu-bdpp)]$  1 was prepared by the reaction between dppb and  $[Mo(CO)_5(NCMe)]$  as pale yellow crystals in 62% yield. The IR spectrum contained a v(CO) pattern characteristic of the M(CO)\_5 group; the ligand v(CC) was not evident, probably being obscured by the v(CO) peak at 2077 cm<sup>-1</sup>. The FAB mass spectrum contained a molecular ion at m/z 891, which decomposed by loss of up to ten CO groups, a phenyl group and one of the metal atoms to give  $[Mo(bdpp)]^+$ .

The pale yellow tungsten analogue of 1 was prepared from  $[W(CO)_5(thf)]$  (thf = tetrahydrofuran) in a similar manner

<sup>\*</sup> Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1992, Issue 1, pp. xx-xxv.

|                 | Molecule a | Molecule b |                    | Molecule a | Molecule b |
|-----------------|------------|------------|--------------------|------------|------------|
| $Fe \sim P(1)$  | 2 215(2)   | 2 221(1)   | P(1) = C(11)       | 1 764(6)   | 1 770(6)   |
| Fe-C(1)         | 1.786(7)   | 1.787(8)   | C(1)-C(12)         | 1.192(7)   | 1.201(6)   |
| Fe-C(2)         | 1.786(7)   | 1.783(8)   | C(12) - C(12')     | 1.37(1)    | 1.36(1)    |
| Fe-C(3)         | 1.789(7)   | 1.779(8)   | P(1)C(Ph)          | 1.801(4),  | 1.802(4),  |
| Fe-C(4)         | 1.800(7)   | 1.792(7)   |                    | 1.814(4)   | 1.810(4)   |
| P(1)-Fe- $C(1)$ | 89.5(2)    | 89.3(2)    | Fe-P(1)-C(11)      | 110.0(2)   | 111.4(2)   |
| P(1)-Fe- $C(2)$ | 179.5(2)   | 178.2(2)   | P(1)-C(11)-C(12)   | 173.2(5)   | 174.7(5)   |
| P(1)-Fe-C(3)    | 89.4(2)    | 91.2(2)    | C(11)-C(12)-C(12') | 179.7(6)   | 177.6(6)   |
| P(1)-Fe-C(4)    | 89.4(2)    | 86.6(2)    |                    |            |            |
|                 |            |            |                    |            |            |

**Table 1** Selected bond lengths (Å) and angles (°) for [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] 3

Primed atom related to unprimed atom by centre of inversion.



Fig. 1 Crystallographic numbering scheme for [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] 3

and yield and has properties entirely consistent with the binuclear formulation [{W(CO)<sub>5</sub>}( $\mu$ -bdpp)] 2. The IR spectrum is almost identical with that of 1 and the FAB mass spectrum contains the molecular ion at m/z 1066. Both complexes are stable in air and soluble in polar organic solvents.

(b) *Iron.* The reaction between  $[Fe_2(CO)_9]$  and bdpp was carried out in thf and gave yellow  $[{Fe(CO)_4}_2(\mu-bdpp)]$  3 in 70% yield. The expected four-band v(CO) pattern in the IR spectrum was present. The FAB mass spectrum contained a molecular ion at m/z 755, which fragmented by the expected loss of up to eight CO groups. This complex gave well-formed crystals, which were used for an X-ray structural determination to establish the geometry of the bridging diphosphine ligand.

Molecular structure of [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] 3. The unit cell of 3 contains two independent molecules, each disposed about a crystallographic centre of inversion, which do not differ significantly in their interatomic parameters. Fig. 1 depicts the structure of molecule b of 3, the molecular structure and numbering scheme being identical for both molecules, and selected bond parameters are given in Table 1. There is a centre of symmetry in the molecule, which consists of the ligand bdpp containing two Fe(CO)<sub>4</sub> groups, one co-ordinated to each phosphorus atom {Fe(1)-P(1), 2.215(2), 2.221(1) Å (the two values refer to molecules a and b, respectively); cf. 2.244(1) Å in  $[Fe(CO)_4(PPh_3)]$ .<sup>8</sup> The two metal groups are positioned as far apart as possible, in a mutually transoid arrangement. The geometry around the iron atoms is trigonal pyramidal, as expected from earlier studies on [Fe(CO)<sub>4</sub>(PPh<sub>3</sub>)].<sup>8</sup> The P atoms occupy axial co-ordinating positions. Within the ligand, most interest centres on the diyne linkages. The P-C(sp) bond lengths are 1.764(6) Å [cf. 1.765(4) Å in dppa<sup>6</sup>], while the  $C_4$ chain shows the expected alternation of short-long-short bonds [C(11)-C(12) 1.192(7), C(12)-C(12') 1.37(1) Å for molecule a and 1.201(6) and 1.36(1) Å, respectively for molecule b], i.e., there is only little delocalization of  $\pi$ -electron density along the chain. The PC<sub>4</sub>P chain is almost but not exactly linear, with angles at the carbon atoms between 173.2(5) and  $179.7(6)^{\circ}$ 

(c) Ruthenium. We chose to prepare the bridged complex  $[{RuCl(PPh_3)(\eta-C_5H_5)}_2(\mu-bdpp)]$  4, as it would be used in other studies of this system. Heating a mixture of bdpp and  $[RuCl(PPh_3)_2(\eta-C_5H_5)]$  in toluene readily afforded complex 4 in 53% isolated yield. It forms orange crystals, which gave a molecular ion in the FAB mass spectrum at m/z 1346. Fragmentation of this ion is complex, involving elimination of Cl, PPh<sub>3</sub> and intact  $RuCl(PPh_3)(C_5H_5)$  groups. Only the ions  $[\operatorname{RuCl}_n(\operatorname{bdpp})]^+$  (n = 0 or 1) did not contain the C<sub>5</sub>H<sub>5</sub> group. (d) Gold. The complex  $[(AuCl)_2(\mu-bdpp)]$  5 was obtained from the reaction between  $[AuCl{S(CH_2CH_2OH)_2}]$  and dppb as white crystals. The complex was characterised by elemental microanalysis; the IR spectrum contained v(CC) at 2102 cm<sup>-1</sup>. In the FAB mass spectrum, the highest ion at m/z 848 corresponds to  $[M - Cl]^+$ , while the only other strong ion, at m/z 614, can be assigned to [Au(bdpp)]<sup>+</sup>

In all of the complexes 1–5, two metal-ligand moieties are coordinated to the ligand bdpp via phosphorus-metal bonds. The ligand reacts preferentially by attack of the phosphorus centre on the metal system, although it must be acknowledged that in the examples chosen, with the exception perhaps of  $[Fe_2(CO)_9]$ , the reactivity of the metal towards *P*-donor ligands exceeds that towards alkynes. It was next of interest to establish the reactivity of the complexed ligand (in which the P atom is effectively 'protected' from further reaction) with substrates which are known to react readily with C=C triple bonds. In the following section, we describe reactions of selected complexes with  $[Co_2(CO)_8]$  and with  $[Pt(\eta-C_2H_4)(PPh_3)_2]$ .

Reactions of the C=C Bond in Complexes of bdpp.---(a) Reactions with  $[Co_2(CO)_8]$ . Complexes 1-3 all reacted readily with  $[Co_2(CO)_8]$  in this solution at room temperature to give black crystalline complexes formulated as  $[CO_2{\mu-\eta^2-[(OC)_5-M(PPh_2)]C=C[C_2(PPh_2)M(CO)_5]}(CO)_6]$  (M = Mo 6 or W 7) and  $[Co_2{\mu-\eta^2-[(OC)_4Fe(PPh_2)]C=C[C_2(PPh_2)Fe (CO)_4]}(CO)_6]$  8, respectively. Again, these complexes were characterised by the usual analytical and spectroscopic techniques. Their IR spectra were essentially a superimposition of the spectra of the original complexes 1–3 on that of a typical  $[Co_2(\mu-\eta^2-alkyne)(CO)_6]$  derivative. There is thus little effect of the co-ordinated  $Co_2(CO)_6$  moiety on the v(CO) frequencies of the *P*-co-ordinated fragment. The v(CC) bands are obscured by



|   | ML <sub>n</sub>     |
|---|---------------------|
| 6 | Mo(CO) <sub>5</sub> |
| 7 | W(CO)5              |
| 8 | Fe(CO)              |

the v(CO) absorptions of the  $Co_2(CO)_6$  fragment. The FAB mass spectra showed the expected molecular ions, together with ions formed by loss of the CO groups. Not all of these were present, but the carbonyl-free ion was prominent in all spectra. The molecular structure of 7 was determined by an X-ray study as the first example of a complex of this type.

Molecular structure of  $[Co_2{\mu-\eta^2-[(OC)_5W(PPh_2)]C\equiv C_2(PPh_2)W(CO)_5]}(CO)_6]$  7. The triclinic unit cell of 7 contains four molecules, two of which comprise the crystallographic asymmetric unit. The two independent molecules, a and b, differ non-trivially as can be seen from Fig. 2. Briefly, in molecule a the two W(CO)\_5 entities lie to the same side of the molecule and further, W(2)(CO)\_5 is orientated in the general direction of the Co(2) atom. Molecule b may be related to molecule a by two simple rotations: (i) about the C(12)–C(11) axis such that the two W(CO)\_5 entities now lie on opposite sides of the PC<sub>2</sub>C<sub>2</sub>P backbone and (ii) about the C(41)–P(2) bond which now has the W(2)(CO)\_5 group directed away from the Co(2) atom. There are no significant differences in interatomic



Molecule b

Fig. 2 Crystallographic numbering scheme for the independent molecules (a and b) of  $[Co_2\{\mu-\eta^2-[(OC)_5W(PPh_2)]C\equiv C[C_2(PPh_2)W(CO)_5]\}$ -(CO)<sub>6</sub>]

| Table 2 | Selected bond lengths (Å) | and angles (°) for [Co <sub>2</sub> {µ- | $\eta^2 - [(OC)_5 W(PPh_2)]C$ | $=C[C_2(PPh_2)W(CO)_5]\}(CO)_6]7$ |
|---------|---------------------------|-----------------------------------------|-------------------------------|-----------------------------------|
|---------|---------------------------|-----------------------------------------|-------------------------------|-----------------------------------|

|                     | molecule a                                                                                                                                                                                                                                                                                                                              | Molecule b                                           |                                                      | Molecule a                                           | Molecule b                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| W(1) - P(1)         | 2.499(5)                                                                                                                                                                                                                                                                                                                                | 2.492(6)                                             | Co(2)-C(41)                                          | 1.96(2)                                              | 1.98(2)                                              |
| W(2) - P(2)         | 2.526(5)                                                                                                                                                                                                                                                                                                                                | 2.528(4)                                             | $C_{0}(2) - C(42)$                                   | 1.94(2)                                              | 1.95(2)                                              |
| W(1) - C(5)         | 1.97(3)                                                                                                                                                                                                                                                                                                                                 | 1.86(3)                                              | P(1)-C(11)                                           | 1.72(3)                                              | 1.77(3)                                              |
| W(2) - C(10)        | 1.96(2)                                                                                                                                                                                                                                                                                                                                 | 1.95(2)                                              | C(11) - C(12)                                        | 1.23(4)                                              | 1.19(4)                                              |
| Co(1) - Co(2)       | 2.453(4)                                                                                                                                                                                                                                                                                                                                | 2.458(4)                                             | C(12) - C(42)                                        | 1.44(3)                                              | 1.46(3)                                              |
| Co(1)-C(41)         | 1.97(2)                                                                                                                                                                                                                                                                                                                                 | 1.97(2)                                              | C(41) - C(42)                                        | 1.36(3)                                              | 1.32(4)                                              |
| Co(1)-C(42)         | 1.93(2)                                                                                                                                                                                                                                                                                                                                 | 1.94(2)                                              | P(2)-C(41)                                           | 1.79(2)                                              | 1.80(2)                                              |
| W(1) - P(1) - C(11) | 113.3(7)                                                                                                                                                                                                                                                                                                                                | 115.5(6)                                             | P(2)-C(41)-C(42)                                     | 141(1)                                               | 143(1)                                               |
| W(2)-P(2)-C(41)     | 119.9(7)                                                                                                                                                                                                                                                                                                                                | 117.4(7)                                             | C(41) - C(42) - C(12)                                | 146(1)                                               | 145(1)                                               |
| P(1)-C(11)-C(12)    | 179(2)                                                                                                                                                                                                                                                                                                                                  | 177(2)                                               | C(11) - C(12) - C(42)                                | 175(2)                                               | 177(2)                                               |
| Co-CO               | 1.72(3)-1.82(3) Å                                                                                                                                                                                                                                                                                                                       | . av. 1.77 Å                                         |                                                      |                                                      |                                                      |
| W-CO(ea)            | 1.95(2)-2.04(3) Å                                                                                                                                                                                                                                                                                                                       | . av. 2.00 Å                                         |                                                      |                                                      |                                                      |
| C-O(Co)             | 1.13(3)-1.22(4) Å                                                                                                                                                                                                                                                                                                                       | . av. 1.17 Å                                         |                                                      |                                                      |                                                      |
| C-O(W)              | 1.10(3)-1.22(4) Å                                                                                                                                                                                                                                                                                                                       | . av. 1.17 Å                                         |                                                      |                                                      |                                                      |
| P-C(Ph)             | 1.81(1)-1.85(1) Å                                                                                                                                                                                                                                                                                                                       | . av. 1.83 Å                                         |                                                      |                                                      |                                                      |
| P-W-CO(ax)          | 176.4(8)-177.7(7                                                                                                                                                                                                                                                                                                                        | )°. av. 176.9°                                       |                                                      |                                                      |                                                      |
| P-W-CO(ea)          | 86.0(9)-95.2(9)°.                                                                                                                                                                                                                                                                                                                       | av. 90.6°                                            |                                                      |                                                      |                                                      |
|                     | $ \begin{array}{l} w(2)-P(2) \\ w(1)-C(5) \\ w(2)-C(10) \\ Co(1)-Co(2) \\ Co(1)-Co(2) \\ Co(1)-C(41) \\ Co(1)-C(42) \\ \end{array} \\ \hline \\ w(1)-P(1)-C(11) \\ w(2)-P(2)-C(41) \\ P(1)-C(11)-C(12) \\ \hline \\ co-CO \\ w-CO(eq) \\ C-O(Co) \\ C-O(Co) \\ C-O(W) \\ P-C(Ph) \\ P-W-CO(eq) \\ \hline \\ P-W-CO(eq) \\ \end{array} $ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |



bond distances and angles describing comparable parameters in the two molecules; important geometric parameters are listed in Table 2.

As can be seen, the structure affords no surprises, with one of the C $\equiv$ C triple bonds of the original complex 2 being attached in an  $\eta^2$  manner to the Co<sub>2</sub>(CO)<sub>6</sub> fragment. Only in molecule b do the two W(CO)<sub>5</sub> moieties take up mutually transoid positions to minimise steric interactions. Each tungsten atom is octahedrally co-ordinated by five CO ligands and a P atom of the diphosphine [W-P 2.499(5), 2.526(5) Å for molecule a; 2.492(6), 2.528(4) Å for molecule b]. Individual distances and angles are similar to those found in a host of previous examples of structures of this type. The same comment can be made about the co-ordination of the alkyne to the  $Co_2(CO)_6$  moiety, where the Co-Co separation [2.453(4), 2.458(4) Å] is similar to the range [2.460(1)-2.476(1) Å] found in five  $[Co_2(\mu-alkyne)(CO)_6]$ complexes<sup>9</sup> and the Co-C(alkyne) bonds range between 1.93(2) and 1.98(2) Å. The molecule offers an interesting case of adjacent co-ordinated [1.36(3), 1.32(4) Å] and unco-ordinated C=C triple bonds [1.23(4), 1.19(4) Å]. Comparison of the two shows the expected lengthening of the co-ordinated C=C bond by 0.13 Å, together with the bending back (from the  $Co_2$  system) of the adjacent atoms C and P [C-C-C 146(1), 145(1)°, C-C-P 141(1), 143(1)°] compared with the unco-ordinated C-C-P system [174.6(17) and  $178.8(15)^{\circ}$ ]. The C<sub>2</sub>Co<sub>2</sub> tetragonal pyramid has C<sub>2</sub>Co dihedral angles of 95.7 and 96.4° for molecules a and b, respectively.

(b) Reactions with  $[Pt(\eta-C_2H_4)(PPh_3)_2]$ . We have prepared the three complexes  $[Pt\{\eta^2-[(OC)_5M(PPh_2)]C\equiv C[C_2(PPh_2)-M(CO)_5]\}(PPh_3)_2]$  (M = Mo 9 or W 10) and  $[Pt\{\eta^2-[(OC)_4-Fe(PPh_2)]C\equiv C[C_2(PPh_2)Fe(CO)_4]\}(PPh_3)_2]$  11 by reactions between  $[Pt(\eta-C_2H_4)(PPh_3)_2]$  and complexes 1-3 respectively. These compounds were obtained as white solids which afforded satisfactory analytical and spectroscopic data. As found for the dicobalt complexes, the v(CO) spectra are hardly affected by the presence of the Pt(PPh<sub>3</sub>)<sub>2</sub> group. The FAB mass spectra contain an intense ion  $[Pt(PPh_3)_2]^+$  at m/z 719, but only the iron derivative contained ions at higher mass numbers, commencing with  $[M - CO]^+$  at m/z 1446.

The above reactions have provided a route into novel complexes containing different transition metals attached to the P atoms and C=C bonds of the ligand dppb. Such complexes offer the possibility of studying co-operative effects between the two types of metal-ligand groups, and by using well-established methods, of synthesising condensed systems containing heterometallic bonds or clusters.

#### Experimental

General Conditions.—All reactions were carried out under nitrogen; no special precautions were taken to exclude air during work-up, since most complexes proved to be stable in air as solids, and for short times in solution. Photochemical reactions were performed using a 400 W mercury lamp (Applied Photophysics). Melting points were measured in sealed capillaries using a Gallenkamp melting point apparatus and are uncorrected. Preparative thin layer chromatography (TLC) was performed on  $20 \times 20$  cm glass plates using a 0.5 mm thick adsorbent (60 silica gel GF<sub>254</sub>, Merck). Microanalyses were performed by the Canadian Microanalytical Service, Delta, British Columbia V4G 1G7, Canada.

Instrumentation.—IR: Perkin-Elmer 1720X FT spectrometer, NaCl optics, calibrated using polystyrene absorption at 1601.4 cm<sup>-1</sup>. NMR: Bruker CXP300 or ACP300 (<sup>1</sup>H NMR at 300.13 MHz, <sup>13</sup>C NMR at 75.47 MHz) spectrometers. The internal reference was SiMe<sub>4</sub> (<sup>1</sup>H and <sup>13</sup>C NMR). Mass spectra: FAB mass spectra were obtained on a VG ZAB 2HF instrument equipped with a FAB source. Argon was used as the exciting gas, with source pressure typically  $10^{-5}$  kg m<sup>-2</sup>; the FAB voltage was 7 kV and current 1 mA. The ion accelerating potential was 8 kV. The matrix was 3-nitrobenzyl alcohol. The complexes were made up as *ca*. 0.5 mol dm<sup>-3</sup> solutions in dichloromethane; a drop was added to a drop of matrix and the mixture was applied to the FAB probe tip.

Starting Materials.—The compounds  $[Fe_2(CO)_9]$ ,<sup>10</sup> [RuCl-(PPh\_3)<sub>2</sub>( $\eta$ -C<sub>5</sub>H<sub>5</sub>)]<sup>11</sup> and [AuCl{S(CH<sub>2</sub>CH<sub>2</sub>OH)<sub>2</sub>}]<sup>12</sup> were prepared by literature procedures; [Mo(CO)<sub>6</sub>] (Climax Molybdenum) and [W(CO)<sub>6</sub>] (Strem) were used as received; Me<sub>3</sub>NO was prepared by sublimation of the dihydrate (Aldrich) in vacuum. Light petroleum was a fraction of b.p. 60–80 °C.

Preparation of 1,4-Bis(diphenylphosphino)buta-1,3-diyne, (Ph<sub>2</sub>P)C=CC=C(PPh<sub>2</sub>) (bdpp).—(i) From PClPh<sub>2</sub> and BrMgC= CC=CMgBr. This reaction was carried out as described in the original paper <sup>7</sup> to give bdpp in 25% yield.

(ii) From LiC=CC=CLi. A solution of HC<sub>2</sub>C<sub>2</sub>H<sup>13</sup> (1.3 g, 26 mmol) in Et<sub>2</sub>O (15 cm<sup>3</sup>) at -64 °C was added to a solution of LiBu (35 cm<sup>3</sup> of a 1.6 mol dm<sup>-3</sup> solution in hexane, 54 mmol) at -64 °C over 15 min. After stirring for 45 min, a solution of PClPh<sub>2</sub> (13.3 g, 60 mmol) in Et<sub>2</sub>O (30 cm<sup>3</sup>) was added over 15 min, and the mixture warmed to room temperature over 30 min. The solution was washed with water (2 × 40 cm<sup>3</sup>), dried over MgSO<sub>4</sub>, filtered and the solvent was removed (rotary evaporator). The residue was recrystallised (CH<sub>2</sub>Cl<sub>2</sub>–MeOH) to give pure bdpp (6.2 g, 33%), m.p. 105 °C (lit.<sup>7</sup> 105 °C). IR: v/cm<sup>-1</sup>(C=C) (Nujol) 2072. <sup>1</sup>H NMR:  $\delta$ (CDCl<sub>3</sub>) 7.45–7.73 (Ph). <sup>13</sup>C NMR:  $\delta$ (CDCl<sub>3</sub>) 80.97 (d, J<sub>CP</sub> 15.8, PCC), 91.36 (dd, J<sub>CP</sub> 5.2, 2.2, PCC), 128.71 (d, J<sub>CP</sub> 8.1, C<sup>3.5</sup>), 129.35 (s, C<sup>4</sup>), 132.72 (d, J<sub>CP</sub> 21.5, C<sup>2.6</sup>), 134.34 (d, J<sub>CP</sub> 5.7, *ipso* C). FAB MS: 450, [M + 2O]<sup>+</sup>; 434, [M + O]<sup>+</sup>; 418, [M]<sup>+</sup>; 232, [M - PPh<sub>2</sub>]<sup>+</sup>.

Preparation of [ $\{Mo(CO)_5\}_2(\mu-bdpp)$ ] 1.—The compound  $[Mo(CO)_6]$  (500 mg, 1.89 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (30 cm<sup>3</sup>) and MeCN (1 cm<sup>3</sup>). Then Me<sub>3</sub>NO (165 mg, 2.2 mmol) in MeCN (5 cm<sup>3</sup>) and CH<sub>2</sub>Cl<sub>2</sub> (30 cm<sup>3</sup>) was added dropwise over ca. 20 min. After 3 h the solution was filtered through a silica plug and the volume reduced to 5 cm<sup>3</sup>. After filtration {to remove any precipitated [Mo(CO)<sub>6</sub>]} the filtrate was purified by preparative TLC (silica, 20:2.5:2.5:1 light petroleumacetone-CH2Cl2-MeCN) to yield [Mo(CO)5(NCMe)] (300 mg, 59%) as a yellow oil. To a solution of [Mo(CO)<sub>5</sub>(NCMe)] (300 mg, 1.12 mmol) in  $CH_2Cl_2$  (40 cm<sup>3</sup>) and MeCN (5 cm<sup>3</sup>) was added a solution of bdpp (225 mg, 0.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 cm<sup>3</sup>), dropwise over 20 min. After stirring for 16 h the solvents were removed and the residue purified by preparative TLC [light petroleum-acetone (5:1)]. The major band ( $R_{\rm f}$  0.6) was crystallised (CH<sub>2</sub>Cl<sub>2</sub>-MeOH) to give pale yellow crystals of  $[\{Mo(CO)_{s}\}_{2}(\mu-bdpp)]$  1 (310 mg, 62%), m.p. 151–152 °C (decomp.) (Found: C, 51.25; H, 2.50%;  $[M + H]^{+}$ , 891. C<sub>38</sub>H<sub>20</sub>Mo<sub>2</sub>O<sub>10</sub>P<sub>2</sub> requires C, 51.25; H, 2.25%; *M*, 890). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2077w, 1994vw, 1958s. FAB MS: 891  $[M + H]^+$ ; 862–610,  $[M - nCO]^+$  (n = 1–10); 533,  $[M - nCO]^+$  $10CO - Ph]^+; 514, [Mo(bdpp)]^+.$ 

Preparation of  $[{W(CO)_5}_2(\mu-bdpp)]$  2.—The compound  $[W(CO)_6]$  (250 mg, 0.71 mmol) was dissolved in thf (60 cm<sup>3</sup>) and irradiated (400 W) for 45 min. Then bdpp (150 mg, 0.36 mmol) in thf (20 cm<sup>3</sup>) was added dropwise (20 min) and the reaction mixture stirred for a further 15 min. After removal of the solvent the residue was recrystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield pale yellow crystals of  $[{W(CO)_5}_2(\mu-bdpp)]$  2 (190 mg), m.p. 171-173 °C (decomp.). The filtrate yielded a further 38 mg (total yield = 60%) after preparative TLC [light petroleum-CH<sub>2</sub>Cl<sub>2</sub> (4:1)] and recrystallisation (CH<sub>2</sub>Cl<sub>2</sub>-MeOH) (Found: C, 42.90; H, 2.10%; M<sup>+</sup>, 1066. C<sub>38</sub>H<sub>20</sub>O<sub>10</sub>P<sub>2</sub>W<sub>2</sub> requires C, 42.80; H, 1.90%; M, 1066). IR: v/cm<sup>-1</sup>(CO) (hexane) 2076w, 1990vw, 1953s, 1945 (sh). <sup>1</sup>H NMR: δ(CDCl<sub>3</sub>) 7.50 [s (br), Ph], 7.72 (m, Ph). <sup>13</sup>C NMR:  $\delta$ (CDCl<sub>3</sub>) 80.44 (d,  $J_{CP}$  68.9, PCC), 90.87 (dd,  $J_{CP}$  13.6, 4.4, PCC), 129.1 (d,  $J_{CP}$  11.0, C<sup>3.5</sup>), 131.0 (s, C<sup>4</sup>), 131.4 (d, J<sub>CP</sub> 14.4, C<sup>2.6</sup>), 133.3 (d, J<sub>CP</sub> 49.2, *ipso* C), 195.20 (d,  $J_{CP}$  6.2, CO), 196.04 (d,  $J_{CP}$  6.9, CO), 196.87 (d,  $J_{CP}$  7.0, CO), 198.69 (d, J<sub>CP</sub> 23.2, CO). FAB MS: 1066, M<sup>+</sup>, 1038–709, [M –  $nCO]^+$  (n = 2, 4–10); 709, [M – 10CO – Ph]<sup>+</sup>; 630, [W(CO)-(bdpp)]<sup>+</sup>; 602, [W(bdpp)]<sup>+</sup>; 369, [W(PPh<sub>2</sub>)]<sup>+</sup>

Preparation of [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] **3**.—The compound [Fe<sub>2</sub>(CO)<sub>9</sub>] (500 mg, 1.37 mmol) was added to a solution of bdpp (556 mg, 1.33 mmol) in thf (100 cm<sup>3</sup>) and the mixture was stirred for 1 h. Column chromatography [light petroleum-acetone (5:1)] eluted a yellow band, which was recrystallised from CH<sub>2</sub>Cl<sub>2</sub>–MeOH, yielding [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] **3** (700 mg, 70%), m.p. 190–191 °C (decomp.) (Found: C, 57.45; H,

2.60%,  $[M + H]^+$ , 755.  $C_{36}H_{20}Fe_2O_8P_2$  requires C, 57.35; H, 2.65%; *M*, 754). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2091w, 2056m, 1987m, 1958s, 1949s, 1920vw. <sup>13</sup>C NMR:  $\delta$ (CDCl<sub>3</sub>): 80.21 (d,  $J_{CP}$  79.9, PCC), 91.37 (dd,  $J_{CP}$  14.6, 4.6, PCC), 129.03 (d,  $J_{CP}$  11.9, C<sup>3.5</sup>), 131.56 (s, C<sup>4</sup>), 131.92 (d,  $J_{CP}$  12.8, C<sup>2.6</sup>), 132.57 [s (high field branch of doublet obscured by C<sup>2.4.6</sup> peaks], *ipso* C), 212.06 (d,  $J_{CP}$  19.0 Hz, CO). FAB MS: 755,  $[M + H]^+$ ; 726–530,  $[M - nCO]^+$  (n = 1-8); 474,  $[Fe(bdpp)]^+$ .

Preparation of [{RuCl(η-C<sub>5</sub>H<sub>5</sub>)(PPh<sub>3</sub>)}<sub>2</sub>(μ-bdpp)] **4**.—The compounds [RuCl(PPh<sub>3</sub>)<sub>2</sub>(η-C<sub>5</sub>H<sub>5</sub>)] (291 mg, 0.401 mmmol) and bdpp (84 mg, 0.200 mmol) were heated in toluene (20 cm<sup>3</sup>) at 80 °C for 3 h. After the solvent was removed column chromatography [Florisil; light petroleum–acetone (4:1)] yielded a yellow band, which was crystallised from CH<sub>2</sub>Cl<sub>2</sub>–MeOH, yielding orange crystals of [{RuCl(PPh<sub>3</sub>)(η-C<sub>5</sub>H<sub>5</sub>)}<sub>2</sub>(μ-bdpp)] **4** (143 mg, 53%), m.p. 202–206 °C (decomp.) (Found: C, 65.20; H, 4.30%; M, 1346. C<sub>74</sub>H<sub>40</sub>Cl<sub>2</sub>P<sub>4</sub>Ru<sub>2</sub> requires C, 66.00; H, 4.50%; M, 1346). IR: ν/cm<sup>-1</sup>(C≡C) (Nujol) 2102. FAB MS: 1346, M<sup>+</sup>; 1310, [M − Cl]<sup>+</sup>; 1084, [M − PPh<sub>3</sub>]<sup>+</sup>; 1048, [M − PPh<sub>3</sub> − Cl]<sup>+</sup>; 882, [M − RuCl(C<sub>5</sub>H<sub>5</sub>)(PPh<sub>3</sub>)]<sup>+</sup>; 847, [M − Cl − RuCl(C<sub>5</sub>H<sub>5</sub>)(PPh<sub>3</sub>)]<sup>+</sup>; 787, [M − Cl − 2PPh<sub>3</sub>]<sup>+</sup>; 620, [RuCl(bdpp)]<sup>+</sup>; 613, [Ru(PPh<sub>2</sub>)(PPh<sub>3</sub>)(C<sub>5</sub>-H<sub>5</sub>)]<sup>+</sup>; 584, [Ru(bdpp)]<sup>+</sup>; 464, [RuCl(PPh<sub>3</sub>)(C<sub>5</sub>-H<sub>5</sub>)]<sup>+</sup>; 262, [PPh<sub>3</sub>]<sup>+</sup>.

Preparation of [(AuCl)<sub>2</sub>( $\mu$ -bdpp)] 5.—Gold (300 mg, 1.52 mg atom) was dissolved in aqua regia [HCl (conc., 7.5 cm<sup>3</sup>)–HNO<sub>3</sub> (conc., 2.5 cm<sup>3</sup>)], then evaporated to dryness over a steam-bath. Concentrated HCl (10 cm<sup>3</sup>) was added and the solution again evaporated to dryness. The residue was dissolved in water (15 cm<sup>3</sup>), filtered and cooled in an ice-bath. After the dropwise addition of 2,2'-thiodiethanol (560 mg, 2.8 mmol), bdpp (112 mg, 0.75 mmol) in CHCl<sub>3</sub> (15 cm<sup>3</sup>) was also added dropwise. Compound [(AuCl)<sub>2</sub>( $\mu$ -bdpp)] 5 precipitated as a white solid and was collected by filtration (275 mg, 41%), m.p. 205–207 °C (decomp.) (Found: C, 37.65; H, 2.20%; M - Cl, 848. C<sub>28</sub>H<sub>20</sub>Au<sub>2</sub>-Cl<sub>2</sub>P<sub>2</sub> requires C, 38.10; H, 2.30%; M, 883). IR: v/cm<sup>-1</sup>(C $\equiv$ C) (Nujol) 2102. FAB MS: [M - Cl]<sup>+</sup>, 848; [Au(bdpp)]<sup>+</sup>, 614.

Reactions of  $[\{Mo(CO)_5\}_2(\mu-bdpp)]$  1.—(a) With  $[Co_2-(CO)_8]$ . An excess of  $[Co_2(CO)_8]$  was added to a solution of  $[\{Mo(CO)_5\}_2(\mu-bdpp)]$  1 (69 mg, 0.077 mmol) in diethyl ether (35 cm<sup>3</sup>). After stirring for 7–8 h at room temperature the solvent was removed and the residue purified on a chromatotron [light petroleum–acetone (5:1)]. The major product was recrystallised from CH<sub>2</sub>Cl<sub>2</sub>–MeOH to yield black crystals of  $[Co\{\mu-\eta^2-[(OC)_5Mo(PPh_2)]C\equiv C[C_2(PPh_2)Mo(CO)_5]\}$ -(CO)<sub>6</sub>] 6 (78 mg, 86%), m.p. 155–157 °C (decomp.) (Found: C, 44.85; H, 1.70%; [M - 3CO]<sup>+</sup>, 1092. C<sub>44</sub>H<sub>20</sub>Co<sub>2</sub>Mo<sub>2</sub>O<sub>16</sub>P<sub>2</sub> requires C, 44.95; H, 1.70%; M, 1176). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2102m, 2073m, 2044m, 2031w, 1991w, 1951vs. FAB MS: 1092–728 [M - nCO]<sup>+</sup> (n = 3-16).

(b) With [Pt( $\eta$ -C<sub>2</sub>H<sub>4</sub>)(PPh<sub>3</sub>)<sub>2</sub>]. Complex 1 (30 mg, 0.034 mmol) and [Pt( $\eta$ -C<sub>2</sub>H<sub>4</sub>)(PPh<sub>3</sub>)<sub>2</sub>] (30 mg, 0.040 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>). After 10 min, the solvent was removed and the residue crystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield [Pt{ $\eta^{2}$ -[(OC)<sub>5</sub>Mo(PPh<sub>2</sub>)]C=C[C<sub>2</sub>(PPh<sub>2</sub>)Mo(CO)<sub>5</sub>]}-(PPh<sub>3</sub>)<sub>2</sub>] 9 (50 mg, 100%) as a white powder, m.p. > 180 °C (decomp.) (Found: C, 54.80; H, 3.20%. C<sub>74</sub>H<sub>50</sub>Mo<sub>2</sub>O<sub>10</sub>P<sub>4</sub>Pt requires C, 55.20; H, 3.15%). IR: v/cm<sup>-1</sup>(CO) (cyclohexane) 2072w, 2018w, 1992w, 1951vs, 1943vs. FAB MS: 719, [Pt(PPh<sub>3</sub>)<sub>2</sub>]<sup>+</sup>.

Reactions of [{W(CO)<sub>5</sub>}<sub>2</sub>( $\mu$ -bdpp)] **2**.—(a) With [Co<sub>2</sub>(CO)<sub>8</sub>]. An excess of [Co<sub>2</sub>(CO)<sub>8</sub>] was added to a solution of [{W-(CO)<sub>5</sub>}<sub>2</sub>( $\mu$ -bdpp)] **2** (57 mg, 0.053 mmol) in diethyl ether (30 cm<sup>3</sup>). After stirring for 6 h at room temperature the solvent was removed and the residue purified on a chromatotron [light petroleum-acetone (5:1)]. The major product was recrystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield black crystals of [Co<sub>2</sub>{ $\mu$ - $\eta$ <sup>2</sup>-

| Table 3 | Fractional atomic coordinates ( | $\times 10^5$ for Fe, $\times 1$ | 10 <sup>4</sup> for remaining atoms | ) for complex 3 |
|---------|---------------------------------|----------------------------------|-------------------------------------|-----------------|
|---------|---------------------------------|----------------------------------|-------------------------------------|-----------------|

| Atom   | X         | у         | z         | Atom   | Y.        | у        | Ζ        |
|--------|-----------|-----------|-----------|--------|-----------|----------|----------|
| Fe(1a) | 7 110(7)  | 60 864(6) | 12 314(6) | C(36a) | -2957(3)  | 7 419(3) | 3 666(3) |
| Fe(1b) | 30 405(7) | 25 270(7) | 30 334(6) | C(31a) | -2.187(3) | 7 043(3) | 2 749(3) |
| P(1a)  | -517(1)   | 6 852(1)  | 2 596(1)  | C(1b)  | 2 983(5)  | 3 777(6) | 3 541(5) |
| P(1b)  | 4 973(1)  | 2 654(1)  | 2 141(1)  | O(1b)  | 2 939(4)  | 4 571(4) | 3 885(4) |
| C(1a)  | 2 030(6)  | 6 287(5)  | 1 661(5)  | C(2b)  | 1 472(6)  | 2 445(5) | 3 712(5) |
| O(1a)  | 2 908(4)  | 6 422(5)  | 1 886(4)  | O(2b)  | 481(4)    | 2 378(5) | 4 147(4) |
| C(2a)  | 1 704(5)  | 5 458(5)  | 139(5)    | C(3b)  | 3 551(6)  | 1 271(6) | 3 817(6) |
| O(2a)  | 2 342(4)  | 5 073(4)  | -556(4)   | O(3b)  | 3 845(5)  | 465(5)   | 4 347(5) |
| C(3a)  | 82(5)     | 7 193(5)  | 333(5)    | C(4b)  | 2 678(5)  | 2 579(5) | 1 762(6) |
| O(3a)  | -286(4)   | 7 901(4)  | -256(4)   | O(4b)  | 2 472(4)  | 2 609(5) | 952(4)   |
| C(4a)  | 62(5)     | 4 831(6)  | 1 742(5)  | C(11b) | 5 025(5)  | 3 815(4) | 1 125(5) |
| O(4a)  | -316(4)   | 4 020(4)  | 2 051(4)  | C(12b) | 4 993(5)  | 4 571(4) | 406(4)   |
| C(11a) | -309(5)   | 6 021(5)  | 3 808(5)  | C(22b) | 6 674(4)  | 1 944(2) | 3 433(3) |
| C(12a) | -114(5)   | 5 373(5)  | 4 567(5)  | C(23b) | 7 380(4)  | 2 091(2) | 4 122(3) |
| C(22a) | -828(3)   | 9 129(3)  | 2 219(3)  | C(24b) | 7 408(4)  | 3 153(2) | 4 305(3) |
| C(23a) | - 517(3)  | 10 162(3) | 2 210(3)  | C(25b) | 6 730(4)  | 4 068(2) | 3 799(3) |
| C(24a) | 420(3)    | 10 245(3) | 2 706(3)  | C(26b) | 6 024(4)  | 3 921(2) | 3 111(3) |
| C(25a) | 1 046(3)  | 9 294(3)  | 3 210(3)  | C(21b) | 5 996(4)  | 2 860(2) | 2 927(3) |
| C(26a) | 736(3)    | 8 261(3)  | 3 220(3)  | C(32b) | 5 355(3)  | 582(3)   | 1 469(3) |
| C(21a) | -201(3)   | 8 179(3)  | 2 724(3)  | C(33b) | 6 010(3)  | -232(3)  | 850(3)   |
| C(32a) | -2703(3)  | 6 782(3)  | 1 977(3)  | C(34b) | 7 128(3)  | -64(3)   | 139(3)   |
| C(33a) | -3 989(3) | 6 896(3)  | 2 122(3)  | C(35b) | 7 591(3)  | 919(3)   | 47(3)    |
| C(34a) | -4758(3)  | 7 272(3)  | 3 039(3)  | C(36b) | 6 936(3)  | 1 733(3) | 665(3)   |
| C(35a) | -4 243(3) | 7 534(3)  | 3 811(3)  | C(31b) | 5 818(3)  | 1 565(3) | 1 376(3) |

 $[(OC)_{5}W(PPh_{2})]C \equiv C[C_{2}(PPh_{2})W(CO)_{5}] (CO)_{6}] 7 (52 mg, 72\%), m.p. 173–174 °C (decomp.) (Found: C, 38.40; H, 1.65\%; M, 1352. C_{44}H_{20}Co_{2}O_{16}P_{2}W_{2} requires C, 49.10; H, 1.50\%; M, 1352. IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2102m, 2073s, 2048m, 2031w, 1984w, 1949s, 1942vs. <sup>13</sup>C NMR: <math>\delta$ (CDCl<sub>3</sub>) 74.45 (d,  $J_{CP}$  9.5, PCC), 90.30 {s, PCC[Co<sub>2</sub> (CO)<sub>6</sub>]}, 94.22 (d,  $J_{CP}$  97.6, PCC), 106.72 {d,  $J_{CP}$  14.1, PCC[Co<sub>2</sub>(CO)<sub>6</sub>]}, 128.67 (d,  $J_{CP}$  9.7, C<sup>3.5</sup>), 128.94 (d,  $J_{CP}$  10.9, C<sup>3',5'</sup>), 130.83 (d,  $J_{CP}$  9.3, C<sup>2',6'</sup>), 131.23, 131.41 (2 × s, C<sup>4.4'</sup>), 132.51 (d,  $J_{CP}$  12.2, C<sup>2.6</sup>), 134.38 (d,  $J_{CP}$  49.0, C<sup>1</sup>), 137.06 (d,  $J_{CP}$  44.8, C<sup>1'</sup>), 196.06 (d,  $J_{CP}$  6.1, CO), 196.46 (d,  $J_{CP}$  6.4, CO), 196.89 (d,  $J_{CP}$  5.9, CO), 197.73 (d,  $J_{CP}$  6.1, CO), 198.94 (d,  $J_{CP}$  14.1, CO), 199.24 (d,  $J_{CP}$  14.0, CO), 200.40 (d,  $J_{CP}$  6.1, CO). FAB MS: 1352,  $M^+$ , 1324–904,  $[M - nCO]^+$  (n = 1-16); 827,  $[M - 16CO - Ph]^+$ .

(b) With  $[Pt(\eta-C_2H_4)(PPh_3)_2]$ . Complex 2 (30 mg, 0.028 mmol) and  $[Pt(\eta-C_2H_4)(PPh_3)_2]$  (26 mg, 0.035 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>). After 10 min, the solvent was removed and the residue recrystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield yellow crystals of  $[Pt\{\eta^2-[(OC)_5W(PPh_2)]C\equiv C[C_2-(PPh_2)W(CO)_5]\}(PPh_3)_2]$  10 (45 mg, 90%), m.p. 197-198 °C (decomp.) (Found: C, 49.95; H, 2.90.  $C_{74}H_{50}O_{10}P_4PtW_2$  requires C, 49.70; H, 2.80%). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2070w, 2017vw, 1985vw, 1942 (sh), 1938vs. FAB MS: 719,  $[Pt(PPh_3)_2]^+$ .

Reactions of [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bdpp)] 3.—(a) With [Co<sub>2</sub>-(CO)<sub>8</sub>]. An excess of [Co<sub>2</sub>(CO)<sub>8</sub>] was added to a solution of [{Fe(CO)<sub>4</sub>}<sub>2</sub>( $\mu$ -bppd)] 3 (350 mg, 0.46 mmol) in diethyl ether (60 cm<sup>3</sup>). After stirring for 20 h at room temperature the solvent was removed and the residue purified on a chromatotron [light petroleum-acetone (10:1)]. The major product was recrystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield black crystals of [Co<sub>2</sub>{ $\mu$ -n<sup>2</sup>-[(OC)<sub>4</sub>Fe(PPh<sub>2</sub>)]C=C[C<sub>2</sub>(PPh<sub>2</sub>)Fe(CO)<sub>4</sub>]{(CO)<sub>6</sub>] 8 (310 mg, 64%), m.p. 143-146 °C (decomp.) (Found: C, 48.50; H, 1.90%; [M + H]<sup>+</sup> 1041. C<sub>4</sub><sub>2</sub>H<sub>20</sub>Co<sub>2</sub>Fe<sub>2</sub>O<sub>14</sub>P<sub>2</sub> requires C, 48.50; H, 1.95%; M, 1040). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2104m, 2057s, 2052vs, 2032w, 1982m, 1946vs, 1936 (sh), 1911vw. FAB MS: 1041, [M + H]<sup>+</sup>; 1012-648, [M - nCO]<sup>+</sup> (n = 1-14); 592, [M - 14CO - Fe]<sup>+</sup>; 571. [M - 14CO - Ph]<sup>+</sup>

 $[M - 14CO - Fe]^+$ ; 571,  $[M - 14CO - Ph]^+$ . (b) With  $[Pt(\eta-C_2H_4)(PPh_3)_2]$ . Complex 3 (10 mg, 0.013 mmol) and  $[Pt(\eta-C_2H_4)(PPh_3)_2]$  (9.9 mg, 0.013 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 cm<sup>3</sup>). The solvent was removed and the residue crystallised from CH<sub>2</sub>Cl<sub>2</sub>-MeOH to yield yellow crystals of  $[Pt{\eta^2-[(OC)_4Fe(PPh_2)]C \equiv C[C_2(PPh_2)Fe(CO)_4]}-(PPh_3)_2]$  **11** (11 mg, 57%), m.p. 174–178 °C (decomp.) (Found: C, 57.80; H, 3.50%;  $[M - CO]^+$  1446.  $C_{72}H_{50}Fe_2O_8P_4Pt$  requires C, 58.65; H, 3.40%; M, 1474). IR: v/cm<sup>-1</sup>(CO)(cyclohexane) 2050m, 2045 (sh), 1974m, 1951 (sh), 1942vs, 1937 (sh). FAB MS: 1446–1250,  $[M - nCO]^+$  (n = 1–8); 988,  $[M - 8CO - PPh_3]^+$ ; 932,  $[M - 8CO - PPh_3 - Fe]^+$ ; 719,  $[Pt(PPh_3)_2]^+$ .

Crystallography.—Intensity data for a crystal of 3 0.04 × 0.10 × 0.34 mm (details for 7 follow in parentheses: 0.18 × 0.26 × 0.60 mm) were measured at room temperature on an Enraf–Nonius CAD4 diffractometer with graphite-monochromatized Mo-K<sub>x</sub> radiation  $\lambda = 0.7107$  Å. The  $\omega$ -20 scan technique was employed to measure the intensities of 5372 (11 280) reflections to a maximum Bragg angle of 22.5 (21.0°) which were corrected for Lorentz and polarization effects and for absorption effects; maximum and minimum transmission factors 0.928 and 0.801, respectively (0.406 and 0.087).<sup>14</sup> A total of 4506 (10 310) reflections were unique ( $R_{merge}$  0.016 and 0.045, respectively) and of these 2870 (5942) satisfied the  $I \ge 2.5\sigma(I)$  criterion of observability and were used in the subsequent analysis.

Crystal data for 3.  $C_{36}H_{20}Fe_2O_8P_2$ , M = 754.2, triclinic, space group  $P\overline{1}$ , a = 11.261(1), b = 12.456(2), c = 13.061(2) Å,  $\alpha = 79.23(2)$ ,  $\beta = 75.73(1)$ ,  $\gamma = 78.75(2)^\circ$ , U = 1722.7 Å<sup>3</sup>, Z = 2,  $D_c = 1.454$  g cm<sup>-3</sup>, F(000) = 764,  $\mu = 9.47$  cm<sup>-1</sup>. Crystal data for 7.0.5CH<sub>2</sub>Cl<sub>2</sub>.  $C_{44.5}H_{21}ClCo_2O_{16}P_2W_2$ ,

Crystal data for 7.0.5CH<sub>2</sub>Cl<sub>2</sub>. C<sub>44.5</sub>H<sub>21</sub>ClCo<sub>2</sub>O<sub>16</sub>P<sub>2</sub>W<sub>2</sub>, M = 1394.6, triclinic, space group  $P\overline{1}$ , a = 17.940(4), b = 19.695(4), c = 16.449(2) Å,  $\alpha = 111.92(1)$ ,  $\beta = 108.83(1)$ ,  $\gamma = 100.29(2)^{\circ}$ , U = 4798.4 Å<sup>3</sup>, Z = 4,  $D_c = 1.930$  g cm<sup>-3</sup>, F(000) = 2620,  $\mu = 57.14$  cm<sup>-1</sup>.

Solution and refinement of the structures. The structures were each solved by direct-methods<sup>15</sup> and refined by a full-matrix (block-matrix) least-squares procedure based on F.<sup>14</sup> For **3** non-H and non-phenyl atoms were refined with anisotropic thermal parameters and for 7 the W, Co, P, O and C atoms of the C<sub>4</sub> unit were refined anisotropically. Phenyl rings were modelled as hexagonal rigid groups and H atoms were included in the model of **3** in their calculated positions. After the inclusion of a weighting scheme of the form  $w = k/[\sigma^2(F) + |g|F^2]$ , the refinements were continued until convergence where R = 0.042, k = 2.9, g =0.0003 and R' = 0.046 (0.055, 1.0, 0.0072 and 0.056). The analysis of variance showed no special feature in either case and Table 4 Fractional atomic coordinates ( $\times 10^5$  for W and Co;  $\times 10^4$  for remaining atoms) for complex 7

| $ \begin{array}{cccc} \mathbf{y}_{(2a)} & 1 \ 466(1) & 6 \ 641(1) & -4 \ 278(1) & Co(b) \ 60 \ 554(15) & 90 \ 811(7) & 54 \ 167(9) \\ Co(a) & 4 \ 404(15) \ 65 \ 258(16) & 70 \ 15(5) & 6 \ 458(18) & P(1b) \ 7 \ 593(3) & 8 \ 371(3) & 8 \ 528(4) \\ P(1a) & 2 \ 90(3) & 6 \ 771(3) & -1 \ 278(3) & O(1b) \ 5 \ 5714(10) & 774(10) & 6 \ 771(0) \\ P(1a) & 2 \ 90(3) & 6 \ 777(3) & -2 \ 278(3) & O(1b) \ 5 \ 5714(10) & 7 \ 7618(9) & 7 \ 6718(9) \\ O(1a) & 1 \ 377(13) & 5 \ 258(13) & -3 \ 258(15) & O(4b) \ 5 \ 558(11) & 8 \ 11(11) & 9 \ 177(4) \\ O(1a) & 1 \ 377(13) & 5 \ 2776(13) & -3 \ 277(15) & O(4b) \ 5 \ 558(11) & 8 \ 11(11) & 9 \ 177(4) \\ O(2a) & 1 \ 378(12) & 2 \ 276(13) & -3 \ 389(15) & O(4b) \ 5 \ 558(11) & 8 \ 11(11) & 9 \ 177(4) \\ O(2a) & 1 \ 378(12) & 3 \ 2776(13) & -3 \ 487(15) & O(7b) & 0 \ 410(12) & 11 \ 086(11) & 5 \ 588(14) \\ O(3a) & -3 \ 558(10) & -3 \ 589(11) & -4 \ 487(17) & O(7b) & 9 \ 478(11) & 11 \ 838(11) & 8 \ 88(13) \\ O(5b) & -3 \ 95(12) & -3 \ 590(10) & -3 \ 437(13) & O(7b) & 9 \ 438(11) & 12 \ 836(11) & 8 \ 88(14) \\ O(5b) & -3 \ 551(10) & 3 \ 590(10) & -3 \ 437(13) & O(7b) & 9 \ 438(11) & 12 \ 836(11) & 8 \ 587(14) \\ O(5a) & 2 \ 260(10) & 4 \ 599(10) & -3 \ 437(13) & O(7b) & 9 \ 438(11) & 12 \ 836(11) & 8 \ 88(14) \\ O(5a) & 2 \ 260(10) & 4 \ 599(10) & -3 \ 437(13) & O(7b) & 9 \ 438(11) & 12 \ 836(11) & 8 \ 448(14) \\ O(5a) & 2 \ 206(10) & 4 \ 599(10) & -2 \ 438(12) & O(7b) & 9 \ 438(11) & 12 \ 836(11) & 8 \ 448(11) \\ O(5a) & 4 \ 403(10) & 7 \ 599(10) & -3 \ 437(13) & O(7b) & 7 \ 599(11) & 12 \ 836(11) & 6 \ 590(11) & 12 \ 836(11) & 12 \ 836(11) & 13 \ 836(16) \\ O(5a) & 4 \ 403(10) & 7 \ 599(10) & -1 \ 406(12) & C(7b) & 7 \ 738(12) & 6 \ 608(11) & 4 \ 408(12) & 790(15) \\ O(5a) & 4 \ 402(10) & 7 \ 599(10) & -1 \ 406(12) & C(7b) & 7 \ 738(12) & 6 \ 408(11) & 4 \ 308(12) & -7 \ 590(11) & 7 \ 738(12) & 6 \ 408(12) & 7 \ 738(12) & 6 \ 408(12) & 7 \ 738(12) & 6 \ 408(11) & 7 \ 738(12) & 6 \ 408(12) & 7 \ 738(12) & 6 \ 408(12) & 7 \ 738(12) & 6 \ 408(12) & 7 \ 738(14) & 7 \ 738(12) & 7 \ 738(12) & 7 \ 738(12) & 7 \ 738(12) & 7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Atom         | X                    | у                      | Z                      | Atom             | x                      | У                       | Z                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|------------------------|------------------------|------------------|------------------------|-------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W(1a)        | 1 466(1)             | 6 641(1)               | -4 278(1)              | Co(1b)           | 60 554(15)             | 90 831(17)              | 54 167(19)              |
| $ \begin{array}{cccc} c_{12} & i = 4805(15) & 73015(15) & 6458(18) & P(1b) & 7.993(3) & 8.578(1b) \\ c_{12} & 2.908(3) & 6.747(3) & -3.278(3) & O(1b) & 5.757(1b) & 6.779(3) & 6.218(12) \\ O(1a) & 1.208(12) & 5.276(13) & -3.394(2) & O(2b) & 7.6641(16) & 6.076(10) & 7.601(12) \\ O(1a) & 1.208(12) & 5.276(13) & -3.394(2) & O(2b) & 7.6641(16) & 6.076(10) & 7.671(10) & 7.671(10) & 7.781(3) & -2.377(15) & O(4b) & 5.557(14) & 5.6837(14) & 5.290(16) & 0.101(12) & 0.101(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.117(14) & 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W(2a)        | 1 781(1)             | 4 016(1)               | -1 505(1)              | Co(2b)           | 64 663(16)             | 80 108(16)              | 45 432(18)              |
| $ \begin{array}{c} co(2.a) & 44.00(15) & 63.266(16) & 14.25(18) & P(2b) & 8.103(3) & 9.76(3) & 5.71(00) \\ P(2a) & 2.072(3) & 5.423(3) & -3.94(3) & O(2b) & 7.664(10) & 6.077(10) & 7.61(10) \\ P(2a) & 2.072(3) & 5.423(3) & -3.94(3) & O(2b) & 7.664(10) & 6.07(10) & 7.601(12) \\ O(1a) & 1.267(13) & 5.045(13) & -2.57(11) & O(3b) & 5.57(14) & 5.65(14) & 1.263(14) \\ O(4a) & 2.36(14) & 7.58(13) & -2.57(11) & O(3b) & 5.51(14) & 5.65(14) & 1.263(14) \\ O(4a) & 2.36(14) & 7.58(13) & -2.57(15) & O(7b) & 0.410(12) & 11.083(14) & 1.230(16) \\ O(5a) & -2.95(12) & 6.624(11) & -5.445(15) & O(7b) & 0.410(12) & 11.083(10) & 6.346(12) \\ O(5a) & -2.95(12) & 6.624(11) & -5.445(15) & O(7b) & 0.410(12) & 11.083(11) & 7.58(14) \\ O(5a) & 1.320(10) & 3.500(10) &83(12) & O(9b) & 6.937(11) & 11.454(10) & 6.342(12) \\ O(7a) & 1.320(10) & 3.500(10) &83(12) & O(9b) & 6.937(11) & 11.454(10) & 6.342(12) \\ O(7a) & 1.320(10) & 4.596(10) &474(12) & O(7b) & 4.422(11) & 8.030(10) & 4.998(12) \\ O(7a) & 1.401(11) & 2.592(12) & 2.090(14) & O(2b) & 5.535(11) & 10.283(11) & 7.283(13) \\ O(7a) & 4.031(11) & 7.592(12) & 2.690(13) & O(7b) & 5.535(10) & 10.283(11) & 7.283(13) \\ O(7a) & 4.031(11) & 7.592(10) & 7.592(12) & C(7b) & 5.935(10) & 8.898(10) & 4.92(11) \\ O(5a) & 7.390(10) & 4.931(10) & -1.406(22) & C(7b) & 5.936(14) & 8.804(14) & 4.157(14) \\ O(5a) & 7.390(15) & 7.383(16) & -1.538(20) & C(7b) & 5.935(14) & 7.283(13) \\ O(5a) & 4.402(17) & 7.443(17) & -4.405(22) & C(3b) & 5.935(14) & 7.283(13) & 6.861(10) \\ O(5a) & 1.476(13) & 3.905(13) &931(10) & C(7b) & 5.935(14) & 1.283(11) & 4.022(17) \\ O(5a) & 1.496(13) & 3.096(13) &931(16) & C(7b) & 5.935(14) & 1.293(11) & 4.022(14) \\ O(5a) & 1.496(13) & 3.096(13) &931(16) & C(7b) & 5.935(14) & 1.293(13) & 4.643(17) \\ C(5a) & 1.496(13) & 3.096(13) &931(16) & C(7b) & 9.086(13) & 7.484(12) & 7.17(13) \\ C(5a) & 2.091(17) & 7.483(17) &240(15) & C(7b) & 9.086(13) & 7.384(14) & 5.116(17) \\ C(5a) & 2.091(17) & 7.483(17) &240(15) & C(1b) & 7.091(14) & 7.284(13) & 8.641(16) \\ C(7a) & 1.496(13) & 3.096(13) &93$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co(1a)       | 34 805(15)           | 73 015(15)             | 6 458(18)              | P(1b)            | 7 595(3)               | 8 317(3)                | 8 528(3)                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co(2a)       | 41 404(15)           | 63 286(16)             | 1 425(18)              | P(2b)            | 8 105(3)               | 9 766(3)                | 5 710(3)                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>P(1a)</b> | 2 908(3)             | 6 747(3)               | -3278(3)               | O(1b)            | 5 578(10)              | 6 772(9)                | 6 213(12)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P(2a)        | 2 072(3)             | 5 423(3)               | 394(3)                 | O(2b)            | 7 664(10)              | 6 076(10)               | 7 601(12)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O(1a)        | 1 367(13)            | 5 405(13)              | -6263(10)              | O(30)            | 7 691(9)               | / 018(9)                | 0 117(14)               |
| $ \begin{array}{c} C(a) & 2 34(13) & 7 98(14) & -4 687(17) & C(a) & 9 274(11) & 11 34(10) & 5 848(13) \\ C(a) & 2 95(12) & 6 624(1) & -2 645(15) & C(7b) & 10 40(12) & 11 006(11) & 7 98(14) \\ O(a) & -108(12) & 3 770(11) & -2 68(14) & O(8b) & 8 113(10) & 11 42(10) & 6 334(21) \\ O(a) & 1 300(10) & 3 99(10) & -474(12) & O(1b) & 4 942(11) & 8 030(10) & 6 397(14) \\ O(a) & 2 263(10) & 4 95(10) & -2 999(12) & O(1b) & 4 422(11) & 8 030(11) & 4 299(12) \\ O(1a) & 1 301(10) & 2 560(12) & -2 990(14) & O(2b) & 5 534(11) & 9 784(11) & 4 136(14) \\ O(2a) & 2 263(10) & 4 05(10) & -2 990(14) & O(2b) & 5 534(11) & 9 784(11) & 4 136(14) \\ O(2a) & 2 263(10) & 4 05(10) & -2 990(12) & O(1b) & 5 536(11) & 9 784(11) & 4 136(14) \\ O(2a) & 2 073(12) & 7 002(12) & 470(14) & O(4b) & 5 235(11) & 6 610(11) & 4 137(14) \\ O(2a) & 2 073(12) & 7 002(12) & 470(14) & O(4b) & 5 380(10) & 8089(10) & 2 717(13) \\ O(5a) & 4 644(12) & 8 674(12) & 883(14) & O(5b) & 5 806(10) & 8089(10) & 2 717(13) \\ O(5a) & 4 646(9) & 5 436(10) & 1 806(12) & O(1b) & 7 334(12) & 6 486(12) & 7 944(15) \\ O(5a) & 4 981(7) & 7 440(18) & -3 066(22) & C(3b) & 7 334(12) & 6 748(13) & 7 946(15) \\ C(2a) & 984(17) & 7 7440(18) & -3 066(22) & C(5b) & 5 957(16) & 6 258(16) & 8 283(19) \\ C(5a) & 338(15) & 6 12(14) & -5 013(18) & C(7b) & 9 735(15) & 11 013(14) & 7 68(16) \\ C(5a) & 1 456(15) & 3 380(15) & -5 233(17) & C(1b) & 7 357(15) & 11 013(14) & 7 68(16) \\ C(7a) & 1 476(13) & 3 00(15) & -5 42(13) & C(1b) & 9 108(14) & 12 73(14) & 6 56(17) \\ C(7a) & 1 476(13) & 3 00(15) & -2 42(18) & C(2b) & 5 77(14) & 9 393(14) & 7 657(14) \\ C(5a) & 2 03(11) & 6 656(11) & -1 500(15) & C(4b) & 5 179(14) & 1277(14) & 6 387(17) \\ C(7a) & 1 476(13) & 3 00(15) & -2 42(18) & C(7b) & 6 77(14) & 9 393(14) & 6 66(17) \\ C(7a) & 1 476(13) & 3 00(15) & -2 42(18) & C(7b) & 6 77(14) & 9 393(14) & 6 66(17) \\ C(7a) & 1 476(13) & 3 00(15) & -2 42(18) & C(7b) & 6 77(14) & 9 393(14) & 6 597(19) \\ C(7a) & 1 476(13) & 3 00(15) & -2 42(18) & C(7b) & 6 77(14) & 9 393(14) & 6 597(19) \\ C(7a) & 1 476(13) & 6 59(11) & -1 500(15) & C(7b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O(2a)        | /88(12)              | $\frac{52}{758(13)}$   | -3809(13)              | O(40)            | 5 511(14)              | 5 683(14)               | 8 230(16)               |
| $ \begin{array}{c} 0(z_{0}) & -398(12) & 6.624(11) & -5.48(15) & 0(7b) & 10.407(12) & 11.096(11) & 7.987(14) \\ 0(z_{0}) & -1.320(10) & 3.500(10) & -3.3(12) & 0(9b) & 6.937(11) & 11.412(10) & 6.342(12) \\ 0(z_{0}) & 2.531(10) & 3.500(10) & -3.3(12) & 0(9b) & 4.422(11) & 8.030(10) & 4.959(12) \\ 0(z_{0}) & 2.531(10) & 4.505(10) & -2.939(12) & 0(1b^{5}) & 4.422(11) & 8.030(10) & 4.959(12) \\ 0(1b_{0}) & 2.631(10) & 7.539(10) & 2.659(13) & 0(3b^{5}) & 5.43(11) & 9.784(11) & 4.136(14) \\ 0(z_{0}) & 2.073(12) & 7.902(12) & 4.76(14) & 0(4b^{5}) & 5.533(11) & 6.100(11) & 4.187(14) \\ 0(z_{0}) & 4.020(10) & 6.087(10) & 1.873(13) & 0(6b^{5}) & 7.591(11) & 7.232(13) \\ 0(z_{0}) & 4.020(10) & 6.087(10) & 1.873(13) & 0(6b^{5}) & 7.591(11) & 7.232(13) & 0.992(14) \\ 0(z_{0}) & 4.402(10) & 6.087(10) & 1.873(13) & 0(6b^{5}) & 7.591(11) & 7.232(13) & 0.992(14) \\ 0(z_{0}) & 4.402(10) & 6.087(10) & -1.408(12) & C(1b) & 5.930(14) & 6.400(13) & 6.971(16) \\ 0(z_{0}) & 4.449(1) & 9.91(10) & -1.408(12) & C(1b) & 5.930(14) & 6.400(13) & 6.971(16) \\ 0(z_{0}) & 1.449(1) & 9.401(10) & -1.408(12) & C(b) & 5.930(14) & 6.400(13) & 6.971(16) \\ 0(z_{0}) & 1.449(1) & 9.81(17) & -4.0992(1) & C(b) & 5.930(14) & 7.45(13) & 8.84(16) \\ C(3a) & 1.489(17) & 5.791(17) & -4.0992(12) & C(b) & 5.937(16) & 6.260(16) & 8.283(19) \\ C(z_{0}) & 3.98(15) & 6.612(14) & -2.523(17) & C(b) & 5.937(16) & 6.260(15) & 8.283(19) \\ C(z_{0}) & 5.66(15) & 3.880(14) & -2.253(17) & C(b) & 7.973(15) & 11.013(14) & 7.618(18) \\ C(a) & 5.66(15) & 3.880(14) & -2.230(15) & C(1b) & 9.108(14) & 11.273(14) & 8.115(17) \\ C(z_{0}) & 3.68(11) & 6.566(11) & -3.60(15) & C(1b) & 5.971(14) & 1.293(13) & 6.690(13) & 3.464(17) \\ C(z_{0}) & 3.68(11) & 6.566(11) & -2.400(15) & C(1b) & 5.797(14) & 1.936(13) & 3.630(13) & 3.468(17) \\ C(z_{0}) & 3.68(11) & 6.566(11) & -2.209(13) & C(1b) & 5.797(14) & 1.237(15) & 6.238(17) \\ C(z_{0}) & 3.68(13) & 3.696(13) & 3.391(6) & C(2b) & 5.797(14) & 9.853(14) & 5.115(17) \\ C(1a) & 3.68(11) & 6.566(11) & -2.209(13) & C(3b) & 6.678(13) & 3.696(13) & 3.464(17) \\ C(z_{0}) & 3.298$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O(3a)        | 2346(14)             | 7 956(14)              | -4.687(17)             | O(50)            | 9.274(11)              | 11.834(10)              | 5 848(13)               |
| $ \begin{array}{c} \widehat{O}(a_0) & -108(12) & 3770(11) & -2648(14) & O(bb) & 8113(10) & 10480(10) & 8309(13) \\ O(7a_0) & 1320(10) & 390(10) & -434(12) & O(1b) & 9408(11) & 11412(10) & 6342(12) \\ O(8a_0) & 3581(10) & 3906(10) & -2392(12) & O(1b) & 9408(11) & 11836(11) \\ O(7a_0) & 1309(11) & 2260(12) & -2999(14) & O(2b') & 6223(10) & 10283(11) & 7288(13) \\ O(1a_0) & 1309(11) & 2260(12) & -2999(14) & O(2b') & 533(11) & 0788(11) & 4136(14) \\ O(2a_1) & 2073(12) & 7902(12) & 476(14) & O(2b') & 506(10) & 8089(10) & 2771(13) \\ O(3a_1) & 4644(12) & 8674(12) & 2659(13) & O(2b') & 7528(11) & 7232(11) & 4092(14) \\ O(3a_1) & 4644(12) & 8674(12) & 253(13) & O(6b') & 7629(11) & 7232(11) & 4092(14) \\ O(3a_1) & 4404(10) & 6087(10) & 1773(13) & O(6b') & 7629(11) & 7232(11) & 4092(14) \\ O(5a_1) & 7091(10) & 7426(10) & 506(12) & C(2b) & 7318(12) & 745(13) & 8641(16) \\ O(5a_1) & 4146(9) & 4981(10) & -1406(12) & C(2b) & 7318(12) & 745(13) & 8641(16) \\ O(5a_1) & 4146(9) & 4981(10) & -1406(12) & C(2b) & 7318(12) & 745(13) & 8641(16) \\ O(5a_1) & 4146(9) & 4981(17) & -4093(20) & C(4b) & 9202(14) & 6157(16) & 2509(17) \\ C(1a) & 1398(15) & 5791(17) & -4093(20) & C(bb) & 9021(14) & 6157(16) & 2509(17) \\ C(5a_1) & 2078(13) & 7591(16) & -2231(7) & C(6b) & 9202(14) & 6137(16) & 2509(17) \\ C(5a_1) & 2078(13) & 705(13) & -991(6) & C(7b) & 9202(14) & 1031(12) & 7618(15) \\ C(5a_1) & 2078(13) & 705(13) & -991(6) & C(7b) & 9209(14) & 12123(14) & 8178(17) \\ C(1a_1) & 2078(13) & 430(17) & -2203(13) & C(7b) & 708(14) & 12123(14) & 8178(17) \\ C(1a_2) & 2078(13) & 430(17) & -2203(15) & C(1b) & 7504(14) & 1213(14) & 8178(17) \\ C(1a_2) & 2078(13) & 430(17) & -2203(15) & C(1b) & 7504(14) & 1213(14) & 8178(17) \\ C(1a_2) & 2078(13) & 430(15) & -991(16) & C(1b') & 519(14) & 7197(14) & 430(17) \\ C(1a_3) & 2078(13) & 430(15) & -291(15) & C(1b) & 7504(14) & 933(13) & 4644(17) \\ C(1a_3) & 2078(13) & 6656(11) & -2203(17) & C(1b) & 7608(13) & 2358(13) & 3458(17) \\ C(1a_3) & 4708(13) & 6656(11) & -2203(15) & C(1b) & 7508(16) & 9376(15) & 3438(14) & 6758(17) \\ C(1a_3) & 4708(13) & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(5a)        | -295(12)             | 6 624(11)              | -5445(15)              | O(7b)            | 10 410(12)             | 11 006(11)              | 7 989(14)               |
| $\begin{array}{ccccc} 0(7a) & 1 20(10) & 3 500(10) &83(12) & O(9b) & 6 937(11) & 11 412(10) & 6 342(12) \\ O(8a) & 2 53(10) & 4 505(10) & -2 399(12) & O(1b) & 4 422(11) & 8 030(10) & 4 959(12) \\ O(1a) & 1 309(11) & 2 260(12) & -2 399(14) & O(2b') & 6 223(10) & 10 235(11) & 7 228(13) \\ O(1a) & 4 031(10) & 7 539(10) & 2 659(13) & O(2b') & 5 543(11) & 6 730(11) & 4 135(14) \\ O(3a) & 4 044(12) & 8 674(12) & 8 353(14) & O(2b') & 5 535(11) & 6 610(11) & 4 187(14) \\ O(3a) & 4 044(12) & 8 674(12) & 8 353(14) & O(5b') & 5 506(10) & 8 089(10) & 2 717(13) \\ O(4a) & 4 042(10) & 6 087(10) & 1873(13) & O(6b') & 7 529(11) & 7 232(12) & 6 490(12) & 7 092(14) \\ O(5a) & 5 705(10) & 7 426(10) & 506(12) & C(1b) & 5 930(14) & 6 900(13) & 6 971(15) \\ O(5a) & 1 446(9) & 4 981(10) & -1 406(12) & C(2b) & 7 318(12) & 6 490(12) & 7 044(15) \\ C(2a) & 1 398(15) & 5 838(16) & -5 538(20) & C(3b) & 7 234(12) & 7 451(12) & 9 700(15) \\ C(2a) & 1 981(17) & 7 404(18) & -3 066(22) & C(5b) & 5 557(16) & 6 200(16) & 8 223(19) \\ C(5a) & 3 38(15) & 6 6 12(14) & -5 013(18) & C(7b) & 9 735(15) & 11 013(14) & 7 618(18) \\ C(5a) & 3 66(15) & 3 380(14) & -2 223(17) & C(8b) & 8 299(12) & 10 703(12) & 7 875(15) \\ C(7a) & 1 476(13) & 3 705(13) & -991(16) & C(9b) & 7 351(14) & 11 257(14) & 8 178(17) \\ C(7a) & 1 476(13) & 3 705(13) & -991(16) & C(9b) & 7 351(14) & 11 254(13) & 8 6470(17) \\ C(1a) & 2 638(11) & 6 656(11) & -1 220(15) & C(1b) & 5 477(14) & 9 833(13) & 6 619(17) \\ C(1a) & 1 487(14) & 4 232(15) & -2 42(18) & C(1b) & 7 30(13) & 8 0097(1) & 7 439(14) \\ C(1a) & 1 487(14) & 4 232(15) & -2 42(13) & C(7b) & 5 739(14) & 12 756(13) & 4 549(17) \\ C(1a) & 2 628(14) & 6 530(17) & -2 290(15) & C(4b) & 5 739(14) & 9 533(13) & 6 590(17) \\ C(1a) & 1 487(14) & 4 532(17) & C(12b) & 7 190(13) & 7 197(14) & 4 543(17) \\ C(1a) & 2 628(14) & 6 530(17) & -1280(15) & C(4b) & 7 186(10) & 9 038(14) & 6 530(17) \\ C(1a) & 2 638(13) & 6 109(13) & 1133(17) & C(22b) & 9 077(6) & 8 458(14) & 5 537(17) \\ C(1a) & 2 638(13) & 6 1397(13) & -1397(16) & C(23b) & 9 108(10) & 9 057(1) & 438(16) \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(6a)        | -108(12)             | 3 770(11)              | -2648(14)              | O(8b)            | 8 113(10)              | 10 480(10)              | 8 369(13)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(7a)        | 1 320(10)            | 3 500(10)              | -83(12)                | O(9b)            | 6 937(11)              | 11 412(10)              | 6 342(12)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(8a)        | 3 581(10)            | 3 996(10)              | -474(12)               | O(10b)           | 9 408(11)              | 12 836(11)              | 8 790(14)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O(9a)        | 2 263(10)            | 4 505(10)              | -2 939(12)             | O(1b')           | 4 422(11)              | 8 030(10)               | 4 959(12)               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O(10a)       | 1 309(11)            | 2 260(12)              | -2909(14)              | O(2b')           | 6 225(10)              | 10 283(11)              | 7 228(13)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $O(1a^2)$    | 4031(10)             | 7 539(10)              | 2 659(13)              | $O(3b^2)$        | 5,343(11)<br>5,225(11) | 9 /84(11)               | 4 130(14)               |
| $ \begin{array}{ccccc} 0.6a_1 & - 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(14) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) & 0.92(16) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O(2a')       | 2073(12)             | 7 902(12)<br>8 674(12) | 470(14)<br>853(14)     | O(40)            | 5 806(10)              | 8 089(10)               | 2717(13)                |
| $ \begin{array}{ccccc} O(5a) & 5 \ 705(10) & 7 \ 202(10) & 5 \ 506(12) & C(1b) & 5 \ 501(4b) & 6 \ 500(13) & 6 \ 971(18) \\ O(5a) & 41 \ 46(9) & 4 \ 501(10) & -1 \ 400(12) & C(2b) & 7 \ 204(12) & 7 \ 451(12) & 9 \ 700(15) \\ C(1a) & 980(17) & 5 \ 791(17) & -4 \ 059(21) & C(4b) & 5 \ 604(13) & 7 \ 745(13) & 8 \ 841(16) \\ C(3a) & 1 \ 456(17) & 7 \ 404(1b) & -3 \ 066(22) & C(5b) & 9 \ 571(1b) & 6 \ 260(16) & 8 \ 285(17) \\ C(4a) & 2 \ 029(17) & 7 \ 483(17) & -4 \ 488(20) & C(6b) & 9 \ 022(14) & 11 \ 573(14) & 6 \ 298(17) \\ C(5a) & 338(15) & 6 \ 612(14) & -5 \ 013(18) & C(7b) & 9 \ 735(15) & 10 \ 13(14) & 6 \ 298(17) \\ C(7a) & 5 \ 66(15) & 3 \ 800(14) & -2 \ 253(17) & C(8b) & 8 \ 299(12) & 10 \ 030(12) & 7 \ 875(15) \\ C(7a) & 1 \ 476(13) & 3 \ 705(15) & -5 \ 91(16) & C(7b) & 9 \ 108(14) & 12 \ 173(14) & 8 \ 178(17) \\ C(8a) & 2 \ 91(13) & 4 \ 026(12) & -862(15) & C(10b) & 9 \ 108(14) & 12 \ 173(14) & 8 \ 178(17) \\ C(1a) & 1 \ 476(13) & 3 \ 705(13) & -2 \ 400(16) & C(1b) & 5 \ 045(15) & 8 \ 434(14) & 5 \ 118(17) \\ C(1a) & 1 \ 487(14) & 2 \ 921(15) & -2 \ 412(18) & C(2b) & 5 \ 747(14) & 9 \ 930(13) & 4 \ 644(17) \\ C(1a) & 2 \ 991(10) & 6 \ 156(11) & -1 \ 500(15) & C(4b) & 5 \ 719(14) & 71 \ 97(14) & 4 \ 340(17) \\ C(1a) & 2 \ 991(10) & 6 \ 156(10) & -1 \ 85(11) & C(5b) & 6 \ 082(21) & 8 \ 440(10) & 6 \ 775(14) \\ C(1a) & 2 \ 025(10) & 6 \ 157(10) & -1 \ 85(11) & C(5b) & 7 \ 100(11) & 8 \ 756(13) & 4 \ 301(16) \\ C(4a) & 2 \ 025(10) & 6 \ 157(10) & -1 \ 85(10) & C(2b) & 7 \ 115(10) & 8 \ 440(10) & 6 \ 775(14) \\ C(3a) & 4 \ 130(13) & 1 \ 175(17) & C(12b) \ 7 \ 115(10) & 8 \ 440(10) & 6 \ 775(14) \\ C(3a) & 4 \ 130(12) & 5 \ 493(12) & -777(15) & C(22b) & 9 \ 977(6) & 8 \ 027(8) & 9 \ 202(16) \\ C(4a) & 4 \ 500(13) & 7 \ 303(13) & 6 \ 1303(1) & -1 \ 755(18) & 10 \ 307(6) & 8 \ 953(10) & 027(7) & 9 \ 943(8) \\ C(5a) & 4 \ 503(13) & 5 \ 507(7) & -3 \ 376(9) & C(3b) & 7 \ 508(8) & 9 \ 907(7) & 0 \ 908(12) & 2554(21) \\ C(5a) & 4 \ 503(13) & 5 \ 90(8) & C(3b) & 7 \ 751(8) & 10 \ 307(7) & 15 \ 828(9) \\ C(5a) & 4 \ 220(8) & 5 \ 307(7) & -3 \ 377(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(4a')       | 4 802(10)            | 6.087(10)              | 1 873(13)              | O(6b')           | 7 629(11)              | 7232(11)                | 4 092(14)               |
| $ \begin{array}{ccccc} \hline O(a^{-1}) & 4146(9) & 4981(10) & -1406(12) & C(2b) & 7318(12) & 6480(12) & 7904(15) \\ \hline C(1a) & 1388(15) & 5838(16) & -5538(20) & C(3b) & 7324(12) & 7451(12) & 8784(16) \\ \hline C(3a) & 1426(17) & 7404(15) & -3066(22) & C(5b) & 5957(16) & 6260(16) & 8238(19) \\ \hline C(3a) & 1260(17) & 7483(17) & -4488(20) & C(6b) & 9022(14) & 11575(14) & 6298(17) \\ \hline C(3a) & 338(15) & 6612(14) & -5013(18) & C(7b) & 9735(15) & 11034(14) & 7688(18) \\ \hline C(3a) & 566(15) & 3880(14) & -2233(17) & C(8b) & 8299(12) & 10703(12) & 7857(15) \\ \hline C(7a) & 1476(13) & 4026(12) & -862(15) & C(10b) & 9108(14) & 1235(13) & 6616(17) \\ \hline C(7a) & 1476(13) & 4026(12) & -862(15) & C(10b) & 9108(14) & 12373(14) & 8178(17) \\ \hline C(7a) & 1476(13) & 4026(12) & -2412(18) & C(2b) & 5749(15) & 9430(13) & 4644(17) \\ \hline C(7a) & 1477(14) & 2321(15) & -2412(18) & C(2b) & 5749(15) & 9430(13) & 4644(17) \\ \hline C(1a) & 1487(14) & 2321(15) & -2412(18) & C(2b) & 5749(15) & 9330(13) & 4548(16) \\ \hline C(1a) & 1487(14) & 2321(15) & -2412(18) & C(2b) & 5749(15) & 9330(13) & 4548(16) \\ \hline C(1a) & 1487(14) & 656(11) & -1540(15) & C(4b) & 6178(14) & 9330(13) & 4548(17) \\ \hline C(1a) & 2989(11) & 656(11) & -1540(15) & C(4b) & 6178(14) & 9330(13) & 4548(17) \\ \hline C(1a) & 2989(11) & 656(11) & -1540(15) & C(4b) & 6178(14) & 9330(13) & 4548(17) \\ \hline C(1a) & 2980(11) & 656(11) & -1540(15) & C(4b) & 6178(14) & 9330(13) & 3458(17) \\ \hline C(1a) & 2980(11) & 656(11) & -1540(15) & C(2b) & 609(13) & 8500(13) & 3458(17) \\ \hline C(1a) & 2080(13) & 7444(13) & 1848(17) & C(11b) & 730(13) & 8400(10) & 7548(13) & 3458(17) \\ \hline C(4a) & 419(15) & 8100(15) & 789(18) & C(4b) & 7184(10) & 908(12) & 554(13) & 430(11) & 7495(14) \\ \hline C(3a) & 227(10) & 6530(11) & -642(13) & C(4b) & 7184(10) & 908(12) & 5548(13) & 848(10) \\ \hline C(4a) & 4190(15) & 8100(15) & 789(18) & C(21b) & 809(9) & 8452(11) & 7354(13) & 839(16) \\ \hline C(4a) & 163(12) & 7430(12) & -777(15) & C(22b) & 1016(6) & 9119(8) & 8957(10) \\ \hline C(2a) & 4209(8) & 7316(8) & 2037(7) & -337(9) & C(33b) & 7994(8) & 10227(7) & 1138(7) & 936(13) \\ \hline C(2a) & 2200(8) & 508(18) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(5a')       | 5 705(10)            | 7 426(10)              | 506(12)                | C(1b)            | 5 930(14)              | 6 900(13)               | 6 971(18)               |
| $ \begin{array}{c c a  \\ C(a) \\ C(a) \\ C(a) \\ S(a) \\ S($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(6a')       | 4 146(9)             | 4 981(10)              | -1406(12)              | C(2b)            | 7 318(12)              | 6 480(12)               | 7 904(15)               |
| $\begin{array}{ccccc} C(2a) & 988(17) & 579(17) & -4059(21) & C(4b) & 596(13) & 7745(13) & 884(16) \\ C(3a) & 1220(217) & 7483(17) & -4488(20) & C(4b) & 9022(14) & 11575(14) & 6298(17) \\ C(5a) & 338(15) & 6612(14) & -5013(18) & C(7b) & 9738(15) & 1013(14) & 7618(18) \\ C(6a) & 566(15) & 3880(14) & -2233(17) & C(8b) & 8299(12) & 10738(12) & 7878(15) \\ C(7a) & 1476(13) & 4026(12) & -862(15) & C(10b) & 9108(14) & 12173(14) & 8178(17) \\ C(8a) & 2911(13) & 4026(12) & -862(15) & C(10b) & 9108(14) & 12173(14) & 8178(17) \\ C(9a) & 2078(13) & 4317(13) & -2400(16) & C(1b) & 5043(15) & 8434(14) & 5118(17) \\ C(10a) & 1487(14) & 2921(15) & -2412(18) & C(2b) & 5747(14) & 9303(13) & 4644(17) \\ C(11a) & 2989(11) & 6556(11) & -1240(15) & C(4b) & 5719(14) & 9303(13) & 4644(17) \\ C(11a) & 2989(11) & 6556(11) & -1240(15) & C(4b) & 5719(14) & 9303(13) & 4348(17) \\ C(14a) & 2951(10) & 6167(10) & -188(11) & C(5b) & 6082(13) & 8050(13) & 3458(17) \\ C(4a) & 3227(10) & 6153(11) & -642(13) & C(4b) & 7190(13) & 7556(13) & 430(16) \\ C(1a') & 3784(13) & 7444(13) & 1848(17) & C(11b) & 730(11) & 8470(11) & 7495(14) \\ C(3a') & 4230(13) & 6139(13) & 1175(17) & C(42b) & 6096(6) & 8682(1) & 5932(12) \\ C(5a') & 5033(13) & 6386(13) & 329(16) & C(21b) & 8077(6) & 8627(8) & 932(12) \\ C(5a') & 5033(13) & 6386(13) & 329(16) & C(21b) & 8077(6) & 8627(8) & 932(12) \\ C(5a') & 4520(13) & 6396(13) & 329(16) & C(22b) & 9077(6) & 8645(8) & 932(12) \\ C(5a') & 4520(13) & 6396(13) & 329(16) & C(22b) & 9077(6) & 8697(8) & 9367(7) & 0428(15) \\ C(22a) & 3690(8) & 7115(6) & -2728(10) & C(23b) & 9077(6) & 8697(8) & 9367(7) & 948(14) \\ C(22a) & 3690(8) & 7115(6) & -2728(10) & C(23b) & 9077(6) & 8697(8) & 9367(7) & 0428(15) \\ C(2a) & 429(8) & 9082(6) & -1385(10) & C(23b) & 10016(6) & 9119(8) & 857(10) \\ C(22a) & 3690(8) & 7315(6) & -2728(10) & C(23b) & 9077(6) & 8697(8) & 9367(7) & 0428(8) \\ C(24a) & 4290(8) & 9317(6) & -2738(9) & C(33b) & 7048(8) & 9367(7) & 0428(8) \\ C(33a) & 409(8) & 5977(7) & -3405(9) & C(23b) & 707(6) & 8077(8) & 9367(7) & 0428(8) \\ C(33a) & 409(8) & 5948(7) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(1a)        | 1 398(15)            | 5 838(16)              | - 5 538(20)            | C(3b)            | 7 324(12)              | 7 451(12)               | 9 760(15)               |
| $\begin{array}{ccccc} C(3a) & 1 426(17) & 7 494(18) & -3 066(22) & C(3b) & 5 97(16) & 6 260(16) & 8 228(17) \\ C(3a) & 338(15) & 6 612(14) & -5 013(18) & C(7b) & 9 735(15) & 11 013(14) & 7 618(18) \\ C(5a) & 566(15) & 3 880(14) & -2 253(17) & C(7b) & 9 735(15) & 11 013(14) & 7 618(18) \\ C(7a) & 1 476(13) & 3 705(13) & -591(16) & C(7b) & 7 951(14) & 11 295(13) & 6 616(17) \\ C(8a) & 2 011(13) & 4 026(12) & -862(15) & C(10b) & 9 08(14) & 12 173(14) & 8 178(17) \\ C(8a) & 2 078(13) & 4 026(12) & -862(15) & C(10b) & 5 045(15) & 8 434(14) & 5 115(17) \\ C(1a) & 1 487(14) & 2 921(15) & -2 412(18) & C(2b) & 5 747(14) & 9 803(13) & 4 644(17) \\ C(1a) & 1 487(14) & 2 921(15) & -2 412(18) & C(2b) & 6 176(14) & 9 836(14) & 6 520(17) \\ C(12a) & 0 63(11) & 6 565(11) & -1 250(15) & C(4b) & 5 719(14) & 7 197(14) & 4 340(17) \\ C(4a) & 3 227(10) & 6 535(11) & -642(13) & C(4b) & 5 719(14) & 7 197(14) & 4 340(17) \\ C(4a) & 3 227(10) & 6 535(11) & -642(13) & C(4b) & 7 301(11) & 8 470(11) & 7 495(14) \\ C(3a) & 2 638(14) & 7 543(14) & 1 848(17) & C(11b) & 7 301(11) & 8 470(11) & 7 495(14) \\ C(3a) & 2 638(14) & 7 543(14) & 1552(17) & C(12b) & 7 118(10) & 9 088(12) & 542(13) \\ C(4a) & 4 520(13) & 6 139(13) & 1175(17) & C(42b) & 6 906(9) & 8 682(11) & 5 932(12) \\ C(5a) & 4 09(08) & 7 715(6) & -2 728(10) & C(21b) & 8 907(6) & 8 27(8) & 9 254(12) \\ C(5a) & 4 09(08) & 7 715(6) & -2 728(10) & C(21b) & 9 077(6) & 8 027(8) & 9 253(12) \\ C(5a) & 4 09(18) & 8 331(6) & -1 96(10) & C(24b) & 10 397(6) & 8 691(8) & 9 360(10) \\ C(23a) & 4 229(8) & 9 082(6) & -1 385(10) & C(22b) & 10 016(6) & 9 101(8) & 8 708(10) \\ C(23a) & 4 292(8) & 9 082(6) & -1 385(10) & C(22b) & 10 016(6) & 9 101(8) & 8 708(10) \\ C(25a) & 4 801(8) & 8 600(6) & -2 473(10) & C(23b) & 9 707(6) & 8 027(8) & 9 265(10) \\ C(24a) & 4 790(8) & 5 943(7) & -3 837(9) & C(33b) & 8 049(8) & 10 0207(7) & 11 70(8) \\ C(33a) & 3 73(8) & 6 060(7) & -3 837(9) & C(33b) & 7 06(8) & 9 203(7) & 9 483(8) \\ C(35a) & 3 400(8) & 5 943(7) & -3 837(9) & C(33b) & 7 10(8) & 9 63(7) & 7 377(7) \\ C(33a) & 4 018(8) & 5 948(7) & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(2a)        | 988(17)              | 5 791(17)              | -4 059(21)             | C(4b)            | 5 960(13)              | 7 745(13)               | 8 841(16)               |
| $\begin{array}{ccccc} C(4a) & 2 0 29(17) & 7 483(17) & -4 488(20) & C(6b) & 9 0 22(14) & 11 575(14) & 6 298(17) \\ C(5a) & 338(15) & 6 612(14) & -5 013(18) & C(7b) & 9 735(15) & 11 013(14) & 7 618(18) \\ C(6a) & 566(15) & 3880(14) & -2 233(17) & C(8b) & 8 299(12) & 10 703(12) & 7 875(15) \\ C(7a) & 1 476(13) & 4 026(12) & -862(15) & C(10b) & 9 108(14) & 11 257(13) & 8 1616(17) \\ C(8a) & 2 911(13) & 4 026(12) & -862(15) & C(10b) & 5 045(15) & 8 434(14) & 5 115(17) \\ C(10a) & 1 487(14) & 2 921(15) & -2 402(16) & C(1b') & 5 045(15) & 8 434(14) & 5 115(17) \\ C(11a) & 2 989(11) & 6 6 56(11) & -2 269(13) & C(3b') & 6 176(14) & 9 836(14) & 6 520(17) \\ C(12a) & 3 063(11) & 6 6 56(11) & -2 180(15) & C(4b') & 5 719(14) & 7 197(14) & 4 340(17) \\ C(14a) & 2 951(10) & 6 167(10) & -185(11) & C(5b') & 6 032(13) & 8 050(13) & 3 458(17) \\ C(4a) & 2 251(10) & 6 153(11) & -6 42(13) & C(6b') & 7 190(13) & 7 556(13) & 4 30(16) \\ C(1a) & 3 784(13) & 7 444(13) & 1 848(17) & C(11b) & 7 115(10) & 8 544(10) & 6 775(14) \\ C(3a) & 4 191(15) & 8 100(15) & 789(18) & C(41b) & 7 1186(10) & 9 088(12) & 5 542(13) \\ C(5a') & 5 053(13) & 6 986(13) & 329(16) & C(21b) & 8 07(6) & 8 455(8) & 8 862(10) \\ C(21a) & 3 690(8) & 7 715(6) & -2 728(10) & C(22b) & 9 077(6) & 8 127(8) & 9 237(6) \\ C(21a) & 3 690(8) & 7 715(6) & -2 728(10) & C(22b) & 9 077(6) & 8 145(8) & 9 514(10) \\ C(23a) & 4 229(8) & 9 082(6) & -1 585(10) & C(22b) & 9 077(6) & 8 145(8) & 9 514(10) \\ C(23a) & 4 229(8) & 9 082(6) & -1 585(10) & C(22b) & 9 077(6) & 8 145(8) & 9 514(10) \\ C(23a) & 4 229(8) & 9 082(6) & -1 585(10) & C(22b) & 9 166(6) & 9 016(8) & 9 001(8) \\ C(23a) & 4 251(8) & 7 849(6) & -2 173(10) & C(32b) & 7 088(8) & 9 230(7) & 9 463(8) \\ C(24a) & 4 790(8) & 5 577(8) & 2 315(8) & C(52b) & 7 918(7) & 9 657(7) & 4 63(8) \\ C(25a) & 4 299(8) & 9 082(6) & -1 585(10) & C(23b) & 7 088(8) & 9 230(7) & 9 453(8) \\ C(25a) & 4 299(8) & 5 368(8) & 1 338(8) & C(54b) & 7 218(7) & 9 657(7) & 5 286(10) \\ C(25a) & 4 291(8) & 5 597(7) & -3 340(9) & C(52b) & 7 918(7) & 9 633(7) & 9 288(0) \\ C(55a) & -273(6) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(3a)        | 1 426(17)            | 7 404(18)              | -3 066(22)             | C(5b)            | 5 957(16)              | 6 260(16)               | 8 283(19)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(4a)        | 2 029(17)            | 7 483(17)              | -4488(20)              | C(6b)            | 9 022(14)              | 11 575(14)              | 6 298(17)               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(5a)        | 338(15)              | 6 612(14)              | -5013(18)              | C(7b)            | 9 /35(15)              | 11 013(14)              | / 618(18)               |
| $\begin{array}{ccccc} C(3a) & 1 \rightarrow 0(15) & 5 \rightarrow 0(15) & - \rightarrow 5(16) & C(50) & 1 \rightarrow 5(16) & 11 \rightarrow 2(15) & 0(16) \\ C(8a) & 2 \rightarrow 0(15) & 4 \rightarrow 0(15) & - 2 \rightarrow 0(16) & C(1b) & 5 \rightarrow 0(16) & 11 \rightarrow 2(15) & 4 \rightarrow 0(16) \\ C(10a) & 1 + 87(14) & 2 \rightarrow 0(15) & - 2 \rightarrow 0(16) & C(1b) & 5 \rightarrow 0(16) & 9 \rightarrow 0(313) & 4 \rightarrow 0(417) \\ C(11a) & 2 + 89(11) & 6 \rightarrow 0(5(11) & - 1 \rightarrow 0(15) & C(4b) & 5 \rightarrow 19(14) & 7 \rightarrow 197(14) & 4 \rightarrow 0(17) \\ C(11a) & 2 + 89(11) & 6 \rightarrow 0(5(11) & - 1 \rightarrow 0(15) & C(4b) & 5 \rightarrow 19(14) & 7 \rightarrow 197(14) & 4 \rightarrow 0(17) \\ C(11a) & 2 + 89(11) & 6 \rightarrow 0(5(11) & - 1 \rightarrow 0(15) & C(4b) & 5 \rightarrow 19(14) & 7 \rightarrow 197(14) & 4 \rightarrow 0(17) \\ C(14a) & 2 + 51(10) & 6 \rightarrow 167(10) & 185(11) & C(5b) & 6 \rightarrow 082(13) & 8 \rightarrow 050(13) & 3 \rightarrow 458(17) \\ C(42a) & 3 \rightarrow 227(10) & 6 \rightarrow 55(11) & - 1 \rightarrow 0(15) & 7 \rightarrow 01(11) & 8 \rightarrow 00(13) & 7 \rightarrow 556(13) & 4 \rightarrow 01(16) \\ C(1a) & 3 \rightarrow 784(13) & 7 \rightarrow 444(13) & 1 \rightarrow 642(13) & C(4b) & 7 \rightarrow 186(10) & 9 \rightarrow 088(12) & 5 \rightarrow 242(13) \\ C(3a) & 4 \rightarrow 191(15) & 8 \rightarrow 100(15) & 7 \rightarrow 90(18) & C(4b) & 7 \rightarrow 186(10) & 9 \rightarrow 088(12) & 5 \rightarrow 242(13) \\ C(4a) & 4 \rightarrow 200(13) & 6 \rightarrow 139(13) & 1 \rightarrow 175(17) & C(12b) & 7 \rightarrow 115(10) & 8 \rightarrow 44(10) & 6 \rightarrow 755(14) \\ C(5a) & 4 \rightarrow 191(15) & 8 \rightarrow 100(15) & 7 \rightarrow 90(18) & C(22b) & 9 \rightarrow 907(6) & 8 \rightarrow 028(12) & 5 \rightarrow 232(12) \\ C(5a) & 5 \rightarrow 053(13) & 6 \rightarrow 86(13) & 329(16) & C(22b) & 9 \rightarrow 907(6) & 8 \rightarrow 028(18) & 9 \rightarrow 306(10) \\ C(22a) & 3 \rightarrow 90(8) & 7 \rightarrow 15(6) & - 2 \rightarrow 77(15) & C(22b) & 9 \rightarrow 907(6) & 8 \rightarrow 618(8) & 9 \rightarrow 54(10) \\ C(22a) & 3 \rightarrow 79(8) & 9 \rightarrow 217(6) & -1 \rightarrow 78(10) & C(25b) & 10 \rightarrow 106(6) & 9 \rightarrow 108(8) & 8 \rightarrow 98(10) \\ C(22a) & 4 \rightarrow 290(8) & 9 \rightarrow 217(6) & -1 \rightarrow 96(10) & C(24b) & 9 \rightarrow 166(6) & 9 \rightarrow 001(8) & 8 \rightarrow 78(10) \\ C(22a) & 4 \rightarrow 90(8) & 9 \rightarrow 217(6) & -1 \rightarrow 78(10) & C(23b) & 8 \rightarrow 78(8) & 9 \rightarrow 96(7) & 1 \rightarrow 288(8) \\ C(23a) & 4 \rightarrow 290(8) & 9 \rightarrow 217(6) & -1 \rightarrow 78(10) & C(23b) & 8 \rightarrow 78(8) & 9 \rightarrow 96(7) & 1 \rightarrow 280(8) \\ C(25a) & 4 \rightarrow 801(8) & 5 \rightarrow 908(7) & -3 \rightarrow 37(9) & C(33b) & 7 \rightarrow 108(8) & 10 \rightarrow 207(7) & 9 \rightarrow 809(7) \\ C(23a) & 4 \rightarrow 292(8) & 5 \rightarrow 798(8) & 7 \rightarrow 198(8) & 2 \rightarrow 798(8) & 7 \rightarrow 198(8) & 10 \rightarrow 207(7) & 9 \rightarrow 208(8) \\ C(25a) & 3 \rightarrow 79(8) & 5 \rightarrow 798(8) & 2 \rightarrow 79(7) & 2 \rightarrow 798(8) & 7 \rightarrow 198(8) & 10 \rightarrow 207(7) & 9 \rightarrow 208(8) \\ C($ | C(6a)        | 200(12)<br>1.476(13) | 3 705(13)              | -2233(17)              | C(8b)            | 8 299(12)              | 10/03(12)<br>11/205(13) | 6 616(17)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(7a)        | 2 911(13)            | 4026(12)               | -862(15)               | C(10b)           | 9108(14)               | 12 173(14)              | 8 178(17)               |
| $\begin{array}{cccccc} C(10a) & 1 487(14) & 2 921(15) & -2 412(18) & C(2b') & 5 747(14) & 9 503(13) & 4 644(17) \\ C(11a) & 2 989(11) & 6 636(11) & -2 269(13) & C(3b') & 6 176(14) & 9 836(14) & 6 520(17) \\ C(12a) & 3 053(11) & 6 565(11) & -1 1540(15) & C(4b') & 5 719(14) & 7 197(14) & 4 340(17) \\ C(41a) & 2 951(10) & 6 167(10) & -185(11) & C(5b') & 6 082(13) & 8 050(13) & 3 458(17) \\ C(42a) & 3 227(10) & 6 153(14) & -642(13) & C(6b') & 7 190(13) & 7 556(13) & 4 301(16) \\ C(1a') & 3 784(13) & 7 444(13) & 1 848(17) & C(11b) & 7 301(11) & 8 704(11) & 7 495(14) \\ C(2a') & 2 628(14) & 7 653(14) & 552(17) & C(12b) & 7 115(10) & 8 544(10) & 6 775(14) \\ C(3a') & 4 191(15) & 8 100(15) & 789(18) & C(41b) & 7 1186(10) & 9 088(12) & 5 542(13) \\ C(4a') & 4 520(13) & 6 139(13) & 1 175(17) & C(42b) & 6 906(9) & 8 682(11) & 5 922(12) \\ C(5a') & 5 053(13) & 6 986(13) & 329(16) & C(23b) & 9 9077(6) & 8 027(8) & 9 265(10) \\ C(21a) & 3 690(8) & 7 715(6) & -2 728(10) & C(23b) & 9 9077(6) & 8 691(8) & 9 360(10) \\ C(22a) & 3 690(8) & 7 715(6) & -1 961(10) & C(24b) & 10 397(6) & 8 691(8) & 9 360(10) \\ C(22a) & 3 690(8) & 7 715(6) & -1 975(10) & C(23b) & 9 907(6) & 8 691(8) & 9 360(10) \\ C(22a) & 3 690(8) & 7 715(6) & -1 975(10) & C(23b) & 9 016(6) & 9 119(8) & 8 708(10) \\ C(22a) & 4 259(8) & 9 082(6) & -1 885(10) & C(23b) & 10 016(6) & 9 119(8) & 8 708(10) \\ C(22a) & 4 250(8) & 5 637(7) & -3 307(9) & C(33b) & 8 049(8) & 10 020(7) & 11 170(8) \\ C(24a) & 4 01(8) & 5 637(7) & -3 307(9) & C(33b) & 8 049(8) & 10 020(7) & 11 170(8) \\ C(23a) & 3 375(8) & 6 060(7) & -3 837(9) & C(33b) & 7 618(8) & 0 233(7) & 9 982(8) \\ C(24a) & 4 016(8) & 4 984(7) & -4 779(9) & C(35b) & 7 018(8) & 10 233(7) & 9 982(8) \\ C(24a) & 3 401(8) & 5 945(7) & -4 740(9) & C(53b) & 7 618(8) & 10 237(7) & 9 982(8) \\ C(24a) & 3 400(8) & 5 945(7) & -4 740(9) & C(53b) & 7 618(8) & 10 237(7) & 9 82(8) \\ C(25a) & 3 340(8) & 5 945(7) & -4 730(9) & C(53b) & 7 618(7) & 8 964(7) & 2 289(7) \\ C(55a) & 2 20(18) & 6 430(8) & 2 381(8) & C(63b) & 7 710(8) & 8 708(7) & 6 258(9) \\ C(54a) & 1 280(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(9a)        | 2.078(13)            | 4 317(13)              | -2400(16)              | C(160)           | 5 045(15)              | 8 434(14)               | 5 115(17)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(10a)       | 1 487(14)            | 2 921(15)              | -2412(18)              | C(2b')           | 5 747(14)              | 9 503(13)               | 4 644(17)               |
| $\begin{array}{c} C(12a) & 3063(11) & 6555(11) & -1540(15) & C(4b^{\circ}) & 5719(14) & 7197(14) & 4340(17) \\ C(41a) & 2951(10) & 6157(10) & -185(11) & C(5b^{\circ}) & 6082(13) & 8050(13) & 3458(17) \\ C(42a) & 3227(10) & 6535(11) & -642(13) & C(6b^{\circ}) & 7190(13) & 7556(13) & 430(16) \\ C(1a^{\circ}) & 3784(13) & 7444(13) & 1848(17) & C(11b) & 730(11) & 8470(11) & 7495(14) \\ C(2a^{\circ}) & 2628(14) & 7653(14) & 552(17) & C(12b) & 7115(10) & 9484(10) & 6775(14) \\ C(3a^{\circ}) & 419(15) & 8100(15) & 789(18) & C(41b) & 7186(10) & 9088(12) & 5542(13) \\ C(4a^{\circ}) & 4520(13) & 6139(13) & 1175(17) & C(42b) & 6906(9) & 8682(11) & 5932(12) \\ C(5a^{\circ}) & 5053(13) & 6986(13) & 329(16) & C(21b) & 8697(6) & 8455(8) & 862(10) \\ C(21a) & 3690(8) & 7715(6) & -2728(10) & C(22b) & 9077(6) & 8027(8) & 9256(10) \\ C(22a) & 3679(8) & 8331(6) & -196(10) & C(24b) & 10397(6) & 8691(8) & 9360(10) \\ C(22a) & 3679(8) & 8331(6) & -196(10) & C(22b) & 10016(6) & 9119(8) & 8757(10) \\ C(22a) & 4229(8) & 9082(6) & -1585(10) & C(25b) & 10016(6) & 9011(8) & 8708(10) \\ C(22a) & 4259(8) & 9217(6) & -1976(10) & C(23b) & 9078(6) & 9203(7) & 9463(8) \\ C(25a) & 4801(8) & 8600(6) & -2473(10) & C(33b) & 8049(8) & 10020(7) & 11170(8) \\ C(23a) & 4251(8) & 7849(6) & -3119(10) & C(32b) & 8078(8) & 9203(7) & 9463(8) \\ C(23a) & 373(8) & 6606(7) & -3837(9) & C(33b) & 7081(8) & 10257(7) & 9982(8) \\ C(33a) & 3051(8) & 5099(7) & -3876(9) & C(35b) & 7081(8) & 10257(7) & 9982(8) \\ C(34a) & 4016(8) & 4984(7) & -4779(9) & C(35b) & 7081(8) & 10257(7) & 9982(8) \\ C(35a) & 3661(8) & 508(7) & -5211(9) & C(55b) & 7121(7) & 9052(7) & 3303(7) \\ C(54a) & 3304(8) & 5945(7) & -4740(9) & C(52b) & 7918(7) & 9667(7) & 4490(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(55b) & 7121(7) & 9052(7) & 3303(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(55b) & 7121(7) & 1058(7) & 2591(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(55b) & 7121(7) & 1058(7) & 258(9) \\ C(54a) & -275(6) & 559(7) & -1189(9) & C(66b) & 9585(6) & 9576(7) & 588(9) \\ C(56a) & -275(6) & 559(7) & -1180(9) & C(65b) & 9579(6) & 8512(7) & 628(9) \\ C($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(11a)       | 2 989(11)            | 6 636(11)              | -2269(13)              | C(3b')           | 6 176(14)              | 9 836(14)               | 6 520(17)               |
| $\begin{array}{c} C(41a) & 2951(10) & 6157(10) & -185(11) \\ C(42a) & 3227(10) & 6535(11) & -642(13) \\ C(1a) & 3784(13) & 7444(13) & 1848(17) \\ C(2a) & 2628(14) & 7653(14) & 552(17) \\ C(2a) & 2628(14) & 7653(14) & 552(17) \\ C(3a) & 419(15) & 8100(15) & 789(18) \\ C(3a) & 419(15) & 8100(15) & 789(18) \\ C(4a) & 4520(13) & 6139(13) & 1175(17) \\ C(42b) & 6906(9) & 8682(11) & 593(12) \\ C(5a) & 5053(13) & 6986(13) & 329(16) \\ C(2a) & 4163(12) & 543(12) & -777(15) \\ C(2a) & 3690(8) & 7715(6) & -2728(10) \\ C(2a) & 3690(8) & 7715(6) & -2728(10) \\ C(2a) & 3690(8) & 7715(6) & -2728(10) \\ C(2a) & 3690(8) & 7715(6) & -1967(10) \\ C(2a) & 3690(8) & 7715(6) & -1967(10) \\ C(2a) & 3690(8) & 7715(6) & -2728(10) \\ C(2a) & 3679(8) & 8331(6) & -1961(10) \\ C(2a) & 3679(8) & 8331(6) & -1961(10) \\ C(2a) & 429(8) & 9082(6) & -1585(10) \\ C(2a) & 429(8) & 9082(6) & -1585(10) \\ C(2a) & 429(8) & 9082(6) & -1585(10) \\ C(2a) & 429(8) & 9082(6) & -1387(9) \\ C(2a) & 4251(8) & 7849(6) & -3119(10) \\ C(2a) & 4375(8) & 6060(7) & -3437(9) \\ C(3a) & 4357(8) & 6060(7) & -3437(9) \\ C(3a) & 3378(8) & 6060(7) & -3837(9) \\ C(3a) & 3378(8) & 5637(7) & -3405(9) \\ C(3a) & 337(8) & 5637(7) & -3405(9) \\ C(3a) & 3061(8) & 599(7) & -1387(9) \\ C(3a) & 3061(8) & 599(7) & -1387(9) \\ C(3a) & 3061(8) & 5948(7) & -5211(9) \\ C(3a) & 306(8) & 5948(7) & -5211(9) \\ C(3a) & 304(8) & 5948(7) & -5211(9) \\ C(3a) & 304(8) & 5948(7) & -5211(9) \\ C(3a) & 304(8) & 5948(7) & -5211(9) \\ C(5a) & 220(8) & 5690(8) & 882(8) \\ C(5a) & 718(7) & 9070(7) & 3777(7) \\ C(5a) & 220(8) & 5690(8) & 231(8) \\ C(5ab) & 7428(7) & 9667(7) & 4490(7) \\ C(5aa) & 304(8) & 5945(7) & -5211(9) \\ C(5ab) & 718(7) & 9066(7) & 248(7) \\ C(5aa) & 304(8) & 5945(7) & -5211(9) \\ C(5ab) & 7212(7) & 9455(7) & 2591(7) \\ C(5aa) & 304(8) & 5945(7) & -5211(9) \\ C(5ab) & 729(8) & 518(8) & 236(8) \\ C(5ab) & 7429(7) & 10158(7) & 240(8) \\ C(5ab) & 729(8) & 6108(8) & 238(8) \\ C(5ab) & 7429(7) & 10158(7) & 2591(7) \\ C(5aa) & 220(8) & 5690(8) & 882(8) \\ C(5ab) & 7429(7) & 10158(7) & 2591(7) \\ C(5aa) & 220(8) & 5690(8) & 231(8) \\ C(5ab) & 742$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(12a)       | 3 063(11)            | 6 565(11)              | -1 540(15)             | C(4b')           | 5 719(14)              | 7 197(14)               | 4 340(17)               |
| $\begin{array}{c} C(42a) & 322/(10) & 6535(11) & -642(13) & C(6b) & 7190(13) & 7556(13) & 4301(16) \\ C(1a) & 3784(13) & 7444(13) & 1848(17) & C(11b) & 7301(11) & 8470(11) & 7495(14) \\ C(3a) & 4191(15) & 8100(15) & 789(18) & C(41b) & 7186(10) & 9088(12) & 5542(13) \\ C(4a') & 4520(13) & 6139(13) & 1175(17) & C(42b) & 6906(9) & 8682(11) & 5932(12) \\ C(5a') & 5053(13) & 6986(13) & 329(16) & C(21b) & 8697(6) & 8455(8) & 8862(10) \\ C(2a) & 4163(12) & 5493(12) & -777(15) & C(22b) & 9077(6) & 8027(8) & 9265(10) \\ C(2a) & 3690(8) & 7715(6) & -2728(10) & C(23b) & 9927(6) & 8145(8) & 9514(10) \\ C(22a) & 3690(8) & 7715(6) & -1976(10) & C(24b) & 1097(6) & 8691(8) & 9360(10) \\ C(22a) & 3679(8) & 8331(6) & -196(10) & C(24b) & 1097(6) & 8691(8) & 9360(10) \\ C(22a) & 4229(8) & 902(6) & -1585(10) & C(25b) & 9166(6) & 910(8) & 8708(10) \\ C(24a) & 4290(8) & 9217(6) & -1976(10) & C(23b) & 7608(8) & 9203(7) & 9463(8) \\ C(25a) & 4251(8) & 7849(6) & -2473(10) & C(33b) & 7608(8) & 9203(7) & 9463(8) \\ C(24a) & 4251(8) & 7849(6) & -3119(10) & C(33b) & 7081(8) & 10020(7) & 11070(8) \\ C(33a) & 4051(8) & 5099(7) & -3876(9) & C(33b) & 7081(8) & 10020(7) & 11070(8) \\ C(33a) & 4051(8) & 5099(7) & -3876(9) & C(33b) & 7081(8) & 10027(7) & 982(8) \\ C(34a) & 373(8) & 5637(7) & -3405(9) & C(33b) & 7081(8) & 10027(7) & 982(8) \\ C(34a) & 340(8) & 5945(7) & -4740(9) & C(53b) & 7081(8) & 10027(7) & 982(8) \\ C(35a) & 3661(8) & 5408(7) & -4740(9) & C(53b) & 7611(7) & 8964(7) & 2828(7) \\ C(53a) & 3661(8) & 5408(7) & -4740(9) & C(53b) & 7611(7) & 8964(7) & 2828(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(54b) & 7212(7) & 9455(7) & 2591(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(54b) & 7212(7) & 9455(7) & 2591(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(54b) & 7212(7) & 9455(7) & 2591(7) \\ C(55a) & 2201(8) & 6430(8) & 2381(8) & C(64b) & 920(6) & 9330(7) & 5888(9) \\ C(45a) & -292(6) & 6017(7) & -1330(9) & C(66b) & 9585(6) & 9576(7) & 548(9) \\ C(45a) & -292(6) & 6017(7) & -1533(9) & C(66b) & 9585(6) & 9576(7) & 588(9) \\ C(46a) & -292(6) & 6017(7) & -169(9) & C(16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(41a)       | 2 951(10)            | 6 167(10)              | -185(11)               | C(5b')           | 6 082(13)              | 8 050(13)               | 3 458(17)               |
| $\begin{array}{c} C(1a) & 3 \ (34(13) & 7 \ (444(13) & 1 \ (348(17) & C(11b) & 7 \ (301(11) & 8 \ (301(11) & 7 \ (495(14) \\ C(3a') & 4 \ (191(15) & 8 \ (100(15) & 789(18) & C(12b) & 7 \ (15(10) & 8 \ (544(10) & 9 \ (755(14) \\ C(3a') & 4 \ (520(13) & 6 \ (139(13) & 1 \ (175(17) & C(42b) & 6 \ (906(9) & 8 \ (622(11) & 5 \ (932(13) \\ C(5a') & 5 \ (153(13) & 6 \ (986(13) & 329(16) & C(21b) & 8 \ (97(6) & 8 \ (627(8) & 9 \ (256(13) & 9 \ (256(13) & 9 \ (256(13) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 7 \ (276(16) & 9 \ (276(16) & 7 \ (276(16) & 9 \ (276(16) & 7 \ (276(16) & 9 \ (276(16) & 7 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 8 \ (276(16) & 9 \ (276(16) & 9 \ (276(16) & 9 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(42a)       | 3 227(10)            | 6 535(11)              | 642(13)                | C(6b')           | 7 190(13)              | 7 556(13)               | 4 301(16)               |
| $\begin{array}{c} C(3a) & 2 \ (25a) & 7 \ (25a) & 9 \ (27c) & 8 \ (27c) & 10 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1a)        | 3 /84(13)            | 7 444(13)              | 1 848(17)              | C(11b)           | 7 301(11)              | 8 4 /0(11)<br>8 544(10) | / 495(14)               |
| $\begin{array}{c} C(4a') & + 17(C) & + 137(C) & + 137(C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(2a)        | 2 028(14)            | 8 100(15)              | 789(18)                | C(120)           | 7 186(10)              | 0.088(12)               | 5542(13)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(4a')       | 4 520(13)            | 6 139(13)              | 1 175(17)              | C(410)<br>C(42b) | 6 906(9)               | 8 682(11)               | 5932(12)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(5a')       | 5 053(13)            | 6 986(13)              | 329(16)                | C(21b)           | 8 697(6)               | 8 455(8)                | 8 862(10)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(6a')       | 4 163(12)            | 5 493(12)              | -777(15)               | C(22b)           | 9 077(6)               | 8 027(8)                | 9 265(10)               |
| $\begin{array}{ccccccc} C(22a) & 3 \ 679(8) & 8 \ 331(6) & -1 \ 961(10) & C(24b) & 10 \ 397(6) & 8 \ 691(8) & 9 \ 360(10) \\ C(23a) & 4 \ 229(8) & 9 \ 082(6) & -1 \ 585(10) & C(25b) & 10 \ 016(6) & 9 \ 119(8) & 8 \ 957(10) \\ C(24a) & 4 \ 790(8) & 9 \ 217(6) & -1 \ 976(10) & C(25b) & 9 \ 166(6) & 9 \ 001(8) & 8 \ 708(10) \\ C(25a) & 4 \ 801(8) & 8 \ 600(6) & -2 \ 473(10) & C(31b) & 7 \ 608(8) & 9 \ 203(7) & 9 \ 463(8) \\ C(25a) & 4 \ 801(8) & 8 \ 600(6) & -2 \ 473(10) & C(31b) & 7 \ 608(8) & 9 \ 399(7) & 10 \ 428(8) \\ C(31a) & 3 \ 375(8) & 6 \ 060(7) & -3 \ 837(9) & C(33b) & 8 \ 049(8) & 10 \ 020(7) & 11 \ 170(8) \\ C(32a) & 3 \ 731(8) & 5 \ 637(7) & -3 \ 405(9) & C(33b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(33a) & 4 \ 051(8) & 5 \ 099(7) & -3 \ 876(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(33a) & 4 \ 051(8) & 5 \ 099(7) & -3 \ 876(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(34a) & 4 \ 016(8) & 4 \ 984(7) & -4 \ 779(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(35a) & 3 \ 36(18) & 5 \ 408(7) & -5 \ 211(9) & C(51b) & 7 \ 828(7) & 9 \ 667(7) & 4 \ 400(7) \\ C(36a) & 3 \ 340(8) & 5 \ 945(7) & -4 \ 740(9) & C(52b) \ 7 \ 918(7) & 9 \ 070(7) & 3 \ 777(7) \\ C(51a) & 2 \ 280(8) & 5 \ 690(8) & \ 882(8) & C(53b) \ 7 \ 611(7) & \ 8 \ 964(7) & 2 \ 828(7) \\ C(52a) & 2 \ 799(8) & 5 \ 368(8) & 1 \ 338(8) & C(54b) \ 7 \ 212(7) & 9 \ 455(7) & 2 \ 591(7) \\ C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 836(8) & C(54b) \ 7 \ 212(7) & 9 \ 455(7) & 2 \ 591(7) \\ C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 836(8) & C(54b) \ 7 \ 212(7) & 10 \ 158(7) & 4 \ 253(7) \\ C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 381(8) & C(61b) \ 8 \ 920(6) & 9 \ 330(7) & 5 \ 888(9) \\ C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 757(7) & 6 \ 218(9) \\ C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(65b) & 9 \ 576(6) & 8 \ 512(7) & 6 \ 423(9) \\ C(55a) & -275(6) & 5 \ 569(7) & -1 \ 138(9) & C(64b) & 10 \ 243(6) & 8 \ 757(7) & 6 \ 218(9) \\ C(65a) & -1 \ 92(6) & 6 \ 017(7) & -1 \ 389(9) & C(65b) & 10 \ 247(6) & 9 \ 289(7) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(21a)       | 3 690(8)             | 7 715(6)               | -2 728(10)             | C(23b)           | 9 927(6)               | 8 145(8)                | 9 514(10)               |
| $\begin{array}{ccccccc} C(24a) & 4 \ 229(8) & 9 \ 082(6) & -1 \ 585(10) & C(25b) & 10 \ 016(6) & 9 \ 119(8) & 8 \ 957(10) \\ C(24a) & 4 \ 790(8) & 9 \ 217(6) & -1 \ 976(10) & C(26b) & 9 \ 166(6) & 9 \ 001(8) & 8 \ 708(10) \\ C(25a) & 4 \ 801(8) & 8 \ 600(6) & -2 \ 473(10) & C(31b) & 7 \ 608(8) & 9 \ 203(7) & 9 \ 463(8) \\ C(25a) & 4 \ 251(8) & 7 \ 849(6) & -3 \ 119(10) & C(32b) & 8 \ 078(8) & 9 \ 3996(7) & 10 \ 428(8) \\ C(31a) & 3 \ 375(8) & 6 \ 060(7) & -3 \ 837(9) & C(33b) & 8 \ 049(8) & 10 \ 020(7) & 11 \ 170(8) \\ C(33a) & 4 \ 051(8) & 5 \ 039(7) & -3 \ 405(9) & C(34b) & 7 \ 051(8) & 10 \ 450(7) & 10 \ 947(8) \\ C(33a) & 4 \ 051(8) & 5 \ 099(7) & -3 \ 876(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(34a) & 4 \ 016(8) & 4 \ 984(7) & -4 \ 779(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(35a) & 3 \ 661(8) & 5 \ 408(7) & -5 \ 211(9) & C(51b) & 7 \ 828(7) & 9 \ 667(7) & 4 \ 490(7) \\ C(35a) & 3 \ 361(8) & 5 \ 408(7) & -5 \ 211(9) & C(51b) & 7 \ 828(7) & 9 \ 667(7) & 4 \ 490(7) \\ C(52a) & 2 \ 799(8) & 5 \ 368(8) & 1 \ 338(8) & C(53b) & 7 \ 611(7) & 8 \ 964(7) & 2 \ 828(7) \\ C(55a) & 2 \ 280(8) & 5 \ 690(8) & 882(8) & C(55b) & 7 \ 121(7) & 10 \ 052(7) & 3 \ 303(7) \\ C(55a) & 2 \ 201(8) & 6 \ 108(8) & 2 \ 336(8) & C(55b) & 7 \ 429(7) & 10 \ 158(7) & 4 \ 253(7) \\ C(55a) & 2 \ 201(8) & 6 \ 108(8) & 2 \ 336(8) & C(55b) & 7 \ 429(7) & 10 \ 158(7) & 4 \ 253(7) \\ C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 381(8) & C(61b) & 8 \ 920(6) & 9 \ 330(7) & 5 \ 888(9) \\ C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 788(7) & 6 \ 258(9) \\ C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 788(7) & 6 \ 288(9) \\ C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(64b) & 10 \ 243(6) & 8 \ 757(7) & 6 \ 218(9) \\ C(54a) & -275(6) & 5 \ 569(7) & -1 \ 138(9) & C(66b) & 9 \ 585(6) & 9 \ 576(7) & 5 \ 682(9) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 138(9) & C(66b) & 9 \ 585(6) & 9 \ 576(7) & 5 \ 682(9) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 138(9) & C(66b) & 9 \ 585(6) & 9 \ 576(7) & 5 \ 682(9) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(22a)       | 3 679(8)             | 8 331(6)               | -1961(10)              | C(24b)           | 10 397(6)              | 8 691(8)                | 9 360(10)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(23a)       | 4 229(8)             | 9 082(6)               | -1585(10)              | C(25b)           | 10 016(6)              | 9 119(8)                | 8 957(10)               |
| $\begin{array}{c} C(25a) & 4 \ 501(6) & 5 \ 500(6) & -2 \ 475(10) & C(31b) & 7 \ 500(6) & 9 \ 205(7) & 9 \ 465(6) \\ \hline C(25a) & 4 \ 251(8) & 7 \ 849(6) & -3 \ 119(10) & C(32b) & 8 \ 078(8) & 9 \ 396(7) & 10 \ 428(8) \\ \hline C(31a) & 3 \ 375(8) & 6 \ 060(7) & -3 \ 837(9) & C(33b) & 8 \ 049(8) & 10 \ 020(7) & 11 \ 170(8) \\ \hline C(32a) & 3 \ 731(8) & 5 \ 637(7) & -3 \ 405(9) & C(34b) & 7 \ 551(8) & 10 \ 450(7) & 10 \ 947(8) \\ \hline C(33a) & 4 \ 051(8) & 5 \ 099(7) & -3 \ 876(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ \hline C(35a) & 3 \ 661(8) & 4 \ 984(7) & -4 \ 779(9) & C(36b) & 7 \ 109(8) & 9 \ 633(7) & 9 \ 240(8) \\ \hline C(35a) & 3 \ 661(8) & 5 \ 408(7) & -5 \ 211(9) & C(51b) & 7 \ 828(7) & 9 \ 667(7) & 4 \ 490(7) \\ \hline C(36a) & 3 \ 340(8) & 5 \ 945(7) & -4 \ 740(9) & C(52b) & 7 \ 918(7) & 9 \ 070(7) & 3 \ 777(7) \\ \hline C(51a) & 2 \ 280(8) & 5 \ 690(8) & 882(8) & C(53b) & 7 \ 611(7) & 8 \ 964(7) & 2 \ 828(7) \\ \hline C(52a) & 2 \ 799(8) & 5 \ 368(8) & 1 \ 338(8) & C(54b) & 7 \ 212(7) & 9 \ 455(7) & 2 \ 591(7) \\ \hline C(53a) & 3 \ 019(8) & 5 \ 577(8) & 2 \ 315(8) & C(55b) & 7 \ 121(7) & 10 \ 052(7) & 3 \ 303(7) \\ \hline C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 381(8) & C(61b) & 8 \ 920(6) & 9 \ 330(7) & 5 \ 888(9) \\ \hline C(55a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 798(7) & 6 \ 258(9) \\ \hline C(56a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 798(7) & 6 \ 258(9) \\ \hline C(61a) & 1 \ 163(6) & 5 \ 707(7) & -8 \ 30(9) & C(64b) \ 10 \ 243(6) & 8 \ 757(7) & 6 \ 218(9) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(66b) & 9 \ 585(6) & 9 \ 576(7) & 5 \ 682(9) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) \ 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) \ 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) \ 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) \ 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ \hline C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) \ 2 \ 334(5) & 3 \ 103$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(24a)       | 4 /90(8)             | 9 21 /(6)              | -19/6(10)<br>2473(10)  | C(26b)           | 9 166(6)               | 9 001(8)                | 8 708(10)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(25a)       | 4 001(0)             | 7 849(6)               | -24/3(10)<br>-3119(10) | C(310)           | 7 008(8)<br>8 078(8)   | 9 203(7)<br>9 396(7)    | 9 403(8)                |
| $\begin{array}{c} C(32a) & 3 \ 731(8) & 5 \ 637(7) & -3 \ 405(9) & C(34b) & 7 \ 551(8) & 10 \ 450(7) & 10 \ 947(8) \\ C(33a) & 4 \ 051(8) & 5 \ 099(7) & -3 \ 876(9) & C(35b) & 7 \ 081(8) & 10 \ 257(7) & 9 \ 982(8) \\ C(34a) & 4 \ 016(8) & 4 \ 984(7) & -4 \ 779(9) & C(36b) & 7 \ 109(8) & 9 \ 633(7) & 9 \ 240(8) \\ C(35a) & 3 \ 661(8) & 5 \ 408(7) & -5 \ 211(9) & C(51b) & 7 \ 828(7) & 9 \ 667(7) & 4 \ 490(7) \\ C(36a) & 3 \ 340(8) & 5 \ 945(7) & -4 \ 740(9) & C(52b) & 7 \ 918(7) & 9 \ 070(7) & 3 \ 777(7) \\ C(51a) & 2 \ 280(8) & 5 \ 690(8) & 882(8) & C(53b) & 7 \ 611(7) & 8 \ 964(7) & 2 \ 828(7) \\ C(52a) & 2 \ 799(8) & 5 \ 368(8) & 1 \ 338(8) & C(54b) & 7 \ 212(7) & 9 \ 455(7) & 2 \ 591(7) \\ C(53a) & 3 \ 019(8) & 5 \ 577(8) & 2 \ 315(8) & C(55b) & 7 \ 121(7) & 10 \ 052(7) & 3 \ 303(7) \\ C(54a) & 2 \ 720(8) & 6 \ 108(8) & 2 \ 836(8) & C(56b) & 7 \ 429(7) & 10 \ 158(7) & 4 \ 253(7) \\ C(55a) & 2 \ 201(8) & 6 \ 430(8) & 2 \ 381(8) & C(61b) & 8 \ 920(6) & 9 \ 330(7) & 5 \ 888(9) \\ C(56a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(61b) & 8 \ 920(6) & 9 \ 330(7) & 5 \ 888(9) \\ C(56a) & 1 \ 981(8) & 6 \ 221(8) & 1 \ 404(8) & C(62b) & 8 \ 917(6) & 8 \ 798(7) & 6 \ 258(9) \\ C(61a) & 1 \ 163(6) & 5 \ 707(7) & -8 \ 30(9) & C(63b) & 9 \ 579(6) & 8 \ 512(7) & 6 \ 423(9) \\ C(65a) & -275(6) & 6 \ 100(7) & -1 \ 699(9) & C(65b) & 10 \ 247(6) & 9 \ 289(7) & 5 \ 848(9) \\ C(64a) & -292(6) & 6 \ 017(7) & -1 \ 593(9) & C(66b) & 9 \ 585(6) & 9 \ 576(7) & 5 \ 682(9) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) & 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) & 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) & 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) & 2 \ 334(5) & 3 \ 103(5) & 3 \ 977(6) \\ C(65a) & -275(6) & 5 \ 569(7) & -1 \ 106(9) & C(1(c) & 1 \ 850(21) & 3 \ 745(20) & 4 \ 505(25) \\ W(1b) & 6 \ 651(1) & 7 \ 128(1) & 8 \ 357(1) & C(1c) & 1 \ 850(21) & 3 \ 745(20) & 4 \ 505(25) \\ W(2b) & 8 \ 638(1) & 11 \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(31a)       | 3 375(8)             | 6 060(7)               | -3.837(9)              | C(32b)           | 8 049(8)               | 10.020(7)               | 11 170(8)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(32a)       | 3 731(8)             | 5 637(7)               | - 3 405(9)             | C(34b)           | 7 551(8)               | 10 450(7)               | 10 947(8)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(33a)       | 4 051(8)             | 5 099(7)               | -3 876(9)              | C(35b)           | 7 081(8)               | 10 257(7)               | 9 982(8)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(34a)       | 4 016(8)             | 4 984(7)               | -4 779(9)              | C(36b)           | 7 109(8)               | 9 633(7)                | 9 240(8)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(35a)       | 3 661(8)             | 5 408(7)               | -5211(9)               | C(51b)           | 7 828(7)               | 9 667(7)                | 4 490(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(36a)       | 3 340(8)             | 5 945(7)               | -4740(9)               | C(52b)           | 7 918(7)               | 9 070(7)                | 3 777(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(51a)       | 2 280(8)             | 5 2690(8)              | 882(8)                 | C(53b)           | 7 611(7)               | 8 964(7)                | 2 828(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(52a)       | 2 799(8)             | 5 577(8)               | 2 315(8)               | C(54b)           | 7212(7)<br>7121(7)     | 9 455(7)                | 2.391(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(54a)       | 2 720(8)             | 6 108(8)               | 2.836(8)               | C(56b)           | 7 429(7)               | 10.052(7)<br>10.158(7)  | 4 253(7)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(55a)       | 2 201(8)             | 6 430(8)               | 2 381(8)               | C(61b)           | 8 920(6)               | 9 330(7)                | 5 888(9)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(56a)       | 1 981(8)             | 6 221(8)               | 1 404(8)               | C(62b)           | 8 917(6)               | 8 798(7)                | 6 258(9)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(61a)       | 1 163(6)             | 5 707(7)               | -830(9)                | C(63b)           | 9 579(6)               | 8 512(7)                | 6 423(9)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(62a)       | 1 147(6)             | 6 156(7)               | -1 318(9)              | C(64b)           | 10 243(6)              | 8 757(7)                | 6 218(9)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(63a)       | 419(6)               | 6 310(7)               | -1 699(9)              | C(65b)           | 10 247(6)              | 9 289(7)                | 5 848(9)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(64a)       | -292(6)              | 6 017(7)               | -1 593(9)              | C(66b)           | 9 585(6)               | 9 576(7)                | 5 682(9)                |
| C(00a) $+32(0)$ $5414(7)$ $-724(9)$ $C(12c)$ $904(6)$ $3621(9)$ $3732(10)$ W(1b) $6651(1)$ $7128(1)$ $8357(1)$ $C(1c)$ $1850(21)$ $3745(20)$ $4505(25)$ W(2b) $8638(1)$ $11133(1)$ $7077(1)$ $7077(1)$ $1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(038)       | - 213(0)             | 5 309(7)<br>5 414(7)   | -1 106(9)              | CI(1c)           | 2 334(5)               | 3 103(5)                | 3 977(6)                |
| W(2b) = 8 638(1) = 11 133(1) = 7 077(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W(1h)        | 6 651(1)             | 7 128(1)               | = 724(9)<br>8 357(1)   | C(2c)            | 904(0)<br>1.850(21)    | 3 745(20)               | 5 / 52(10)<br>4 505(25) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W(2b)        | 8 638(1)             | 11 133(1)              | 7 077(1)               |                  | 1 0 0 (21)             | 5 (40)                  | - 505(25)               |

the maximum residual electron density peak in the final difference map was 0.70 e Å<sup>-3</sup> [2.5 e Å<sup>-3</sup>, near the W(2a) atom]. The scattering factors (corrected for anomalous dispersion) for

neutral Fe, CO and W were from ref. 16 and those for the remaining atoms were incorporated in SHELX 76.<sup>14</sup> Fractional atomic coordinates are listed in Tables 3 and 4 and the

crystallographic numbering schemes are shown in Figs. 1 and 2 which were drawn with ORTEP<sup>17</sup> at 15% probability ellipsoids.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond distances and angles.

#### Acknowledgements

We thank the Australian Research Council for financial support and Johnson Matthey Technology Centre for a generous loan of RuCl<sub>3</sub>.nH<sub>2</sub>O.

### References

- 1 See, for example, M. I. Bruce, M. L. Williams, J. C. Patrick and A. H. White, J. Chem. Soc., Dalton Trans., 1985, 1229; H. C. Clark, G. Ferguson, P. N. Kapoor and M. Pavez, Inorg. Chem., 1985, 24, 3924; J.-C. Daran, O. Kristianssen and Y. Jeannin, C.R. Acad. Sci., 1985, 300, 943; B. Demerseman, P. Le Coupanec and P. H. Dixneuf, J. Organomet. Chem., 1985, 287, C35; O. Orama, J. Organomet. Chem., 1986, 314, 273; J.-C. Daran, E. Cabrera, M. I. Bruce and M. L. Williams, J. Organomet. Chem., 1987, 319, 239; M. J. McGeary, A. S. Gamble and J. L. Templeton, Organometallics, 1988, 7, 271; E. Sappa, J. Organomet. Chem., 1988, 352, 327; B. F. G. Johnson, J. Lewis, A. D. Massey, P. R. Raithby and W. T. Wong, J. Organomet. Chem., 1990, 397, 347.
- 2 M. I. Bruce, M. R. Snow, E. R. T. Tiekink and M. L. Williams, J. Chem. Soc., Chem. Commun., 1986, 701; C. J. Adams, M. I. Bruce, B. W Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1992, 26

- 3 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, Inorg. Chem., submitted.
- 4 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, unpublished work.
- 5 T. M. Nickel, S. Y. W. Yau and M. J. Went, J. Chem. Soc., Chem. Commun., 1989, 775.
- 6 J. C. J. Bart, Acta Crystallogr., Sect. B, 1969, 25, 489. 7 P. Cadiot, C. Charrier and W. Chodkiewicz, Bull. Soc. Chim. Fr., 1965.1002.
- 8 P. E. Riley and R. E. Davis, Inorg. Chem., 1980, 19, 159.
- 9 F. Baert, A. Guelzim and P. Coppens, Acta Crystallogr., Sect. B, 1984, 40, 590.
- 10 E. H. Braye and W. Hübel, Inorg. Synth., 1966, 8, 178.
- 11 M. I. Bruce, C. Hameister, A. G. Swincer and R. C. Wallis, Inorg. Synth., 1982, 21, 78; 1991, 28, 270.
- 12 A. K. Al-Sáady, C. A. McAuliffe, R. V. Parish and J. A. Sandbank, Inorg. Synth., 1985, 23, 191.
- 13 J. B. Armitage, E. R. H. Jones and M. C. Whiting, J. Chem. Soc., 1951, 441.
- 14 G. M. Sheldrick, SHELX 76, Programme for Crystal Structure Determination, University of Cambridge, 1976.
- 15 G. M. Sheldrick, SHELX 86, Program for the Automatic Solution of Crystal Structures, University of Göttingen, 1986.
- 16 International Tables for X-Ray Crystallography, eds. J. A. Ibers and W. C. Hamilton, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99, 149. 17 C. K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge
- National Laboratories, Tennessee, 1976.

Received 4th October 1991; Paper 1/05070B