This article was downloaded by: [Northeastern University] On: 27 December 2014, At: 09:35 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsrt19

Synthesis, Characterisation, Electrochemistry and Biological Activity of Ruthenium(III) Complexes Containing N.S Donor Ligands and Triphenylphosphine or Triphenylarsine

N. Dharmaraj^a & K. Natarajan^a ^a Department of Chemistry, Bharathiar University, Coimbatore, 641 046, India Published online: 22 Aug 2006.

To cite this article: N. Dharmaraj & K. Natarajan (1997) Synthesis, Characterisation, Electrochemistry and Biological Activity of Ruthenium(III) Complexes Containing N.S Donor Ligands and Triphenylphosphine or Triphenylarsine, Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27:4, 601-618, DOI: <u>10.1080/00945719708000213</u>

To link to this article: http://dx.doi.org/10.1080/00945719708000213

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness,

or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS, CHARACTERISATION, ELECTROCHEMISTRY AND BIOLOGICAL ACTIVITY OF RUTHENIUM(III) COMPLEXES CONTAINING N,S DONOR LIGANDS AND TRIPHENYLPHOSPHINE OR TRIPHENYLARSINE

N. Dharmaraj and K. Natarajan^{*} Department of Chemistry Bharathiar University Coimbatore-641 046, India

ABSTRACT

 d^5 hexa-coordinated Several new low-spin ruthenium(III) complexes of the type [RuX₂(TSC)(EPh₃)₂] (where X = Cl or Br; H-TSC = benzaldehyde thiosemicarbazone, cinnamaldehyde thiosemicarbazone, thiophene-2-carboxaldehyde thiosemicarbazone and 2-furaldehyde thiosemicarbazone, E = Por As) have been synthesised by the reactions of [RuX₃(EPh₃)₃] or [RuBr₃(PPh₃)₂(MeOH)] with the various thiosemicarbazones. A11 the new complexes were characterised using various physico-chemical methods such as elemental analysis, spectral (IR, UV-VIS, EPR), magnetic moment and cyclic voltammetry data. In all these complexes, the thiosemicarbazones are bonded to the central ruthenium ion through the thiolato sulphur, after

Copyright © 1997 by Marcel Dekker, Inc.

601

deprotonation, and the azomethine nitrogen. The antibacterial activity of some of the ligands and their complexes were also tested against two species of bacteria.

INTRODUCTION

One interest in the study of compounds containing sulphur and nitrogen is due to their significant antifungal, antibacterial and anticancer activity¹. Tt. is well known that some drugs have increased activity when administered as metal complexes than as free ligands $^{2-4}$. Thiosemicarbazones and semicarbazones are a special class of azomethines⁵ which act as ionic or neutral moieties having an interesting stereochemistry as only the β -nitrogen atom coordinates to the metal, while the *q*-nitrogen remains uncoordinated. On the other hand, the remaining sulphur or oxygen atoms form a strong covalent bond with the metal. Though a large number of reports are available on the chemistry and biocidal activity of thiosemicarbazone/semicarbazone complexes of transition metals, only very few reports on the ruthenium complexes are known^{6,7}. In the present paper, we report the synthesis, characterisation, electrochemistry and antibacterial activity of some mixed ligand ruthenium(III) complexes containing thiosemicarbazones as one of the ligands.

The thiosemicarbazones used in the present study are of the type shown in Fig. 1.

EXPERIMENTAL

All reagents used were Analar grade. Solvents were were purified and dried before use according to standard

$$R = C_6H_5; H-BTSC (H-C_8H_8N_3S)$$

$$= C_6H_5CH=CH; H-CTSC (H-C_{10}H_{10}N_3S)$$

$$= 2-\text{thiophene}; H-TCTSC (H-C_6H_7N_3S_2)$$

$$= 2-\text{furan} ; H-FTSC (H-C_6H_7N_3OS)$$
Fig. 1. Structures of the Ligands

с, H, N analyses were perfomed at the R & procedures. D Laboratory, Hindustan Photo Film Industry, Udhagamandalam, India. Infrared spectra of the complexes were recorded in KBr pellets with a Perkin-Elmer 597 spectrophotometer in the 4000-250 cm^{-1} range. Electronic spectra of the complexes were recorded in dichloromethane with a Hitachi-Perkin Elmer 20/200 spectrophotometer. EPR spectra of the powdered samples were recorded on a Bruker ER-200D-SRC instrument at frequencies, internally calibrated X-band with diphenylpicrylhydrazyl (DPPH) and magnetic moments were measured on a EG & G-PARC vibrating sample magnetometer and diamagnetic corrections are applied. Melting points were determined using a Mettler FP 51 instrument and are uncorrected. The cyclic voltammetric studies were carried out in acetonitrile using a glassy carbon working electrode and all the potentials are referenced to a saturated calomel electrode (SCE).

The starting complexes $^{8-11}$ [RuCl₃(PPh₃)₃],

 $[RuCl_3(AsPh_3)_3]$, $[RuBr_3(PPh_3)_2(MeOH)$ and $[RuBr_3(AsPh_3)_3]$ and the thiosemicarbazones¹²⁻¹⁵ were prepared by the literature methods.

Preparation of the Complexes of the Type $[RuX_2(TSC)(EPh_3)_2]$ (X = Cl or Br; E = P or As; H-TSC = Various Thiosemicarbazones)

To a solution of [RuX₃(EPh₃)₃] or [RuBr₃(PPh₃)₂(MeOH)] (0.150 - 0.170 g, 0.125 mmol) in dry benzene (15 mL), a solution of the respective thiosemicarbazone (0.023-0.033 g, 0.125 mmol) in hot ethanol (5 mL) was added (molar ratio Ru complex : ligand ; 1 : 1). The resulting mixture was refluxed on a water bath for 4 h. After concentrating the solution to about 2 mL the product was separated by the addition of a small quantity of petroleum ether (60-80 c). The complex was then filtered, washed with petroleum ether and recrystallised from CH2Cl2/pet. ether mixture the ratio of which is 20 : 80. Yield: 0.092 g.

RESULTS AND DISCUSSION

The air- and light-stable complexes of the formula $[RuX_2(TSC)(EPh_3)_2]$ (where X = Cl or Br; E = P or As; TSC = thiosemicarbazones of various aldehydes) were synthesised by the reactions of $[RuX_3(EPh_3)_3]$ or $[RuX_3(PPh_3)_2(MeOH)]$ with the appropriate thiosemicarbazones in 1:1 molar ratio as shown by the equation below.

[$RuX_3(EPh_3)_3$] or [$RuX_3(PPh_3)_2(MeOH)$] + R-CH=N-NH-C-NH₂

(X = Cl or Br; E = P or As; $R = C_6H_5$, $C_6H_5CH=CH$, 2-thiophene or 2-furan).

All the new complexes are soluble in benzene, chloroform, dichloromethane, DMSO and DMF. In all reactions, it has been observed that the thiosemicarbazone ligand behaves as a uninegative bidentate N,S-donor by substituting one of the tertiary phosphine, arsine or methanol groups and a halide ion from the starting complex to form a five-membered chelate ring². The analytical data obtained for these complexes are in good agreement with the above molecular formula (Table I).

Infrared Spectra

The infrared spectra of the free ligands when compared with that of the new complexes confirm the coordination of thiosemicarbazones to the ruthenium metal. The infrared spectra of the free thiosemicarbazones display two bands around 3450 cm⁻¹ and 3300 cm⁻¹ which are assigned as due to

s

Table I. Analytical Data of Ru(III) Thiosemicarbazone Complexes

No .	Complex (empirical formula)	Colour	M.P. ^o C	Yield (%)	Analy Carbon	sis % Found Hydrogen	(Calc.) Nitrogen
1.	[RuC12(BTSC)(PPh3)2] (C44H38N3SP2C12Ru)(874.47)	Brown	140	64	60.71 (60.42)	4.35) (4.35)	4.80)
ю. У	[RuCl2(CTSC)(PPh3)2] (C46H40N3SP2Cl2Ru)(900.49)	Yellow Brown	164 ⁸	60	61.64 (61.35)	4.71 (4.44)	4.92 (4.67)
э.	[RuCl2(TCTSC)(PPh3)2] (C42H37N3S2P2Cl2Ru)(881.51)	Brown	156	68	57.61 (57.22)	3.87 (4.19)	4.82 (4.76)
4.	[RuCl2(FTSC)(PPh3)2] (C42H37N30SP2Cl2Ru)(865.45)	Red Brown	192	60	57.91 (58.28)	4.53 (4.28)	5.12 (4.85)
5.	{RuCl2(BTSC)(A\$Ph3)2] (C44H38N35A\$2Cl2Ru)(962.81)	Вгомп	154 ⁸	65	54.62 (54.91)	4.12 (3.95)	4.51 (4.36)
6.	[RuCl2(CTSC)(A\$Ph3)2] (C46H40N3SA\$2C12Ru)(988.31)	Red Brown	196	62	56.21 (55.89)	4.41 (4.05)	4.38 (4.25)
7.	{RuCl2(TCTSC)(AsPh3)2] (C42H37N352As2Cl2Ru)(969.35)	Вгоwп	184	67	51.82 (52.04)	3.52 (3.82)	4.51 (4.33)
θ.	[RuCl2(FTSC)(A\$Ph3)2] (C42H37N30SA\$2Cl2Ru)(953.29)	Brown	125	61	52.62 (52.91)	3.41 (3.88)	4.71 (4.40)
в.	[RUBr2(BTSC)(PPh3)2] (C44H38N3SP2Br2Ru)(964.47)	Вгоwп	140	20	55.41 (55.73)	4.39 (4.01)	4.8] (4.43)
10.	[RuBr2(CTSC)(PPh3)2] (C46H40N3SP2Br2Ru)(989.23)	Red Brown	124 ⁸	64	56.28 (56.74)	3.74 (4.10)	4.02 (4.31)

	[RuBrz(TCTSC)(PPh3)2] (C42H37N3S2P2Br2Ru)(970.25)	Yellow Brown	160	65	53.15 (52.84)	4.21 (3.86)	4.15 (4.39)
ここ	RuBr ₂ (FTSC)(PPh ₃) ₂] C4 ₂ H ₃₇ N ₃ OSP ₂ Br ₂ Ru)(954.19)	Brown	172	67	53.41 (53.77)	3.70 (3.95)	4.12 (4.47)
$\dot{-}$	RuBr ₂ (BTSC)(AsPh ₃) ₂] C44H38N3SAs2Br2Ru)(1051.21)	Brown	1543	62	50.61 (50.22)	3.98 (3.61)	4.28 (3.99)
\sim	RuBr ₂ (CTSC)(AsPh ₃) ₂] C4 ₆ H4 ₀ N3SAs ₂ Br ₂ Ru)(1077.23)	Red Brown	162	64	51.64 (51.28)	3.97 (3.71)	3.47 (3.89)
\sim	RuBr ₂ (TCTSC)(AsPh ₃) ₂] C4 ₂ H ₃₇ N ₃ S ₂ As ₂ Br ₂ Ru)(1058.23)	Yellow Brown	192	60	48.04 (47.66)	3.87 (3.49)	3.65 (3.96)
\sim \sim 1	RuBr ₂ (FTSC)(AsPh ₃) ₂] C4 ₂ H ₃₇ N ₃ OSAs ₂ Br ₂ Ru)(1042.19)	Вгомп	148	62	48.15 (48.40)	3.97 (3.55)	4.49 (4.02)

a - decomposition

 v_{as} and v_{sym} of terminal NH₂ groups. These bands remain more or less unaltered in the spectra of the ruthenium complexes, indicating the non-involvement of this terminal NH2 group in The absorption due to $v_{C=N}$ of the free coordination. thiosemicarbazones appeared in the 1600-1630 $\rm cm^{-1}~region^{16}$ and this band is shifted to lower wave numbers in the spectra of all the complexes, indicating the coordination of the azomethine nitrogen to the metal¹⁷. The absorption due to the secondary NH was found in the spectra of the free ligands around 3120-3200 cm⁻¹ and this band disappeared in the spectra of the complexes which reveals the enolisation of the thione group before coordination. The $v_{C=S}$ band appearing around 820 cm^{-1} in the free ligands was shifted to around \sim 750 cm⁻¹ which indicates a considerable change in bond order and a strong metal-sulphur bond 18-20 (Table II). Further, a medium intensity band at $\sim 1080 \text{ cm}^{-1}$ and due to v_{C-N} or $v_{N-C-N}^{21,22}$, is shifted to higher wave number on complexation. In addition to the above absorptions, bands due to triphenylphosphine, arsine and Ru-Cl/Br were also present in the spectra of all the complexes. From the IR spectral data it is inferred that the thiosemicarbazones are potentially uninegative bidentate ligands and the coordination sites are the β -nitrogen and the thiolato sulphur after deprotonation. The possibility of *a*-nitrogen coordination is ruled out because of considerable strain⁵.

Electronic Spectra

The electronic spectra in Table II of all the complexes in dichloromethane showed two bands in the 360-265 nm region.

Table	e II. IR and Electronic Sp	ectral Data o	f New Ru(III) Co	mplexes	
N0 .	Complex	∨ C=N	∧ <i>N−C−N</i>	v C-S	λ _{max} (nm)
1.	[RuC1 ₂ (BTSC)(PPh ₃) ₂]	1600	1090	760	320, 270
2.	[RuC1 ₂ (CTSC)(PPh ₃) ₂]	1600	1090	740	320, -
ч. С	[RuCl ₂ (TCTSC)(PPh ₃) ₂]	1580	1100	750	345, 270
. 4	[RuC1 ₂ (FTSC)(PPh ₃) ₂]	1600	1090	750	350, 285
5.	[RuCl ₂ (BTSC)(AsPh ₃) ₂]	1590	1110	730	340, 290
6.	[RuCl ₂ (CTSC)(AsPh ₃) ₂]	1590	1100	740	360, 290
7.	[RuCl ₂ (TCTSC)(AsPh ₃) ₂]	1580	1110	750	350, 270
8.	[RuCl ₂ (FTSC)(AsPh ₃) ₂]	1600	1100	740	340, 265
Э	[RuBr ₂ (BTSC)(PPh ₃) ₂]	1600	1090	750	320, 280
10.	[RuBr ₂ (CTSC)(PPh ₃) ₂]	1590	1100	760	330, 280
11.	[RuBr ₂ (TCTSC)(PPh ₃) ₂]	1600	1100	750	340, 270
12.	[RuBr ₂ (FTSC)(PPh ₃) ₂]	1600	1110	740	- , 275
13.	[RuBr ₂ (BTSC)(AsPh ₃) ₂]	1590	1100	750	350, 280
14.	[RuBr ₂ (CTSC)(AsPh ₃) ₂]	1600	1100	760	340, 280
15.	[RuBr ₂ (TCTSC)(AsPh ₃) ₂]	1600	1110	750	325, 270
16.	[RuBr ₂ (FTSC)(AsPh ₃) ₂]	1600	1100	760	350, 285

RUTHENIUM COMPLEXES

In most of the ruthenium(III) complexes, the electronic spectra show only charge transfer transitions²³. The extinction coefficients of the bands around 350 nm (ε , 2126-3480) are less than that of the bands around 280 nm (ε , 3170-4750). In general, the above values are higher than the one expected for a d-d transition. Hence, we assigned these bands as due to charge transfer transitions which are characteristics of Ru(III) octahedral complexes⁶.

Magnetic Moment

The magnetic moments for the complexes $[RuCl_2(CTSC)(PPh_3)_2]$ and $[RuCl_2(TCTSC)(AsPh_3)_2]$ have been measured at room temperature. The values are found to be 1.68 BM and 1.72 BM, respectively, corresponding to one unpaired electron suggesting a low-spin t_{2g}^5 configuration for the ruthenium ion in an octahedral environment.

EPR Studies

The room temperature EPR spectra of powdered samples were recorded at X-band frequencies. All the spectra showed no indication of any hyperfine splitting. Most of the complexes exhibit spectra with g_{\perp} around 2.16-2.31 and g_{\parallel} around 2.09-2.18 (Table III). For an octahedral field with tetragonal distortion $g_x = g_y \neq g_z$ and, hence, the two 'g' values indicate a tetragonal distortion in these complexes²⁴. The presence of two 'g' values also indicate an axial symmetry for these complexes and, hence, the <u>trans</u> positions are assigned for triphenylphosphine, arsine groups^{25,26}. The complexes [RuCl₂(BTSC)(PPh₃)₂], [RuCl₂(CTSC)(PPh₃)₂], and

Table III. EPR Spectral Data of Some Ru(III) Complexes

No.	Complex	g_I	92	<i>63</i>	<9>
1.	[RuC1 ₂ (BTSC)(PPh ₃) ₂]		2.16	1	2.16
2.	[RuC1 ₂ (CTSC) (PPh ₃) ₂]	ł	2.18	ı	2.18
ъ.	[RuC1 ₂ (TCTSC)(PPh ₃) ₂]	2.19	2.19	2.15	2.18
4.	[RuC1 ₂ (TCTSC)(AsPh ₃) ₂]	2.27	2.27	2.15	2.22
5.	[RuCl ₂ (FTSC)(AsPh ₃) ₂]	2.31	2.31	2.18	2.27
6.	[RuBr ₂ (CTSC)(PPh ₃) ₂]	2.22	2.22	2.09	2.18
7.	[RuBr ₂ (TCTSC)(AsPh ₃) ₂]	2.27	2.27	2.12	2.22
в.	[RuBr ₂ (FTSC)(AsPh ₃) ₂]	ı	2.17	ı	2.17
	N				
	, , , , , , , , , , , , , , , , , , ,				
Ň	$g > * = \left[-\frac{1}{2} g_1^2 + \frac{1}{2} g_2^2 + $	$\frac{1}{2} g_3^2 j^{1/2}$			
•	•	•			

ε

ო

ო

 $[RuBr_2(FTSC)(AsPh_3)_2]$ exhibit a single isotropic resonance with 'g' values in the range 2.16-2.18. Such isotropic lines are usually observed either due to the intermolecular spin exchange which can broaden the lines or due to the occupancy of the unpaired electron in a degenerate orbital. The average 'g' values are in the range 2.16-2.27 and the linewidths range from 50 to 170 Gauss. It has been observed that the nature and position of the lines in the EPR spectra of these complexes are similar to that of the other ruthenium(III) complexes^{25,26}.

Electrochemistry

Cyclic voltammetric studies were carried out for some of the ruthenium thiosemicarbazone complexes in acetonitrile solution at a glassy carbon working electrode. The redox potentials of the complexes are characterised by well defined waves in the range 0.57 V to 0.66 V (oxidation) and -0.69 V to -0.91 V (reduction) versus a saturated calomel electrode (SCE). The cyclic voltammetric data are given in Table IV. As the ligands used in this study are not reversibly reduced or oxidised within the potential limits of +1.0 V to -1.0 V, the observed redox processes are metal centered only. A11 the complexes show a reversible oxidation (Ru^{IV} - Ru^{III}) wave with a peak to peak separation (Δ Ep) values ranging from 60 mV to 100 mV indicative of a single step, one-electron transfer process^{27,28}. Most of the complexes show an ireversible reduction wave (Ru^{III}-Ru^{II}) in the -0.69 V to -0.95 V range. A marked difference in the reduction behaviour is seen for $[RuCl_2(BTSC)(PPh_3)_2]$ and $[RuCl_2(CTSC)(AsPh_3)_2]$

4
)]
ล
Ы
ĕ.
E.
S
S
Ц
5
S
$\dot{\mathbf{\omega}}$
6
÷
а
N
ŝit
E.
ž
Ξ.
\Box
Ξ
ē
asi
ğ
÷
<u></u>
\mathbf{Z}
7
َطَ,
g
ď
Оa
Ы
Ā
Ó
Д

Table IV. Cyclic Voltammetric Data for Some Ru(III) Thiosemicarbazone Complexes⁸

		1	Ru ^{IV} -	Ru ^{III}		* 	RuII		
· ON		Epa(V)	Epc(V)	$E_f(V)$	Δ Ep(mV)	Epc(V)	Epa(V)	$E_f(V)$	Δ Ep(mV)
1.	[RuCl ₂ (BTSC)(PPh ₃) ₂]	0.61	0.54	0.58	70	-0.91	-0.83	-0.87	80
2.	[RuCl ₂ (TCTSC)(PPh ₃) ₂]	0.60	0.54	0.57	60	-0.95	ı	1	ı
з.	[RuCl ₂ (FTSC)(PPh ₃) ₂]	0.71	0.61	0.66	100	-0.82	ı	ı	ł
4.	[RuCl ₂ (CTSC)(AsPh ₃) ₂]	0.70	0.62	0.66	80	-0,92	-0.83	-0.87	06
5.	[RuBr ₂ (TCTSC)(PPh ₃) ₂]	0.69	0.60	0.65	06	-0.70	4	ı	ı
6.	[RuBr ₂ (BTSC) (AsPh ₃) ₂]	0.62	0.56	0.59	60	-0.69	1	1	1
^a So.	lvent: acetonitrile; supportin	ig electrol	yte [0.05	5 M] TBAF	; concentr	stion of t	he metal c	complex:	.001 M;
ບ້ິ	an rate 100 mVS ⁻¹ ; all potentia.	ils are rei	erenced t	to satura	ted calome.	l electrod	e (SCE).		

(X = Cl or Br; E = P or As; $R = C_6H_5$, $C_6H_5CH=CH$, 2-thiophene or 2-furan)

Fig. 2. Structure of Ru(III) Thiosemicarbazone Complexes

which reversible showed а reduction with \triangle Ep in the range 80-90 mV. It has also been observed that there is not much variation in the redox potentials due to the substitution of triphenylphosphine by triphenylarsine in the complexes. From the electrochemical data, it is also inferred that the redox process of these thiosemicarbazone complexes occurs at a less positive potential than that of the β -diketonate complexes²⁶, which may be due to the fact that the nitrogen and sulphur donor atoms present in the ligand are better thiosemicarbazone σ-donors than the oxygen atom present in the β -diketone system.

Based on the above discussions, we propose the following tentative octahedral structure for all the new complexes (Fig. 2).

Antibacterial Activity

The <u>in vitro</u> antibacterial screening of the ligands (H-CTSC) and (H-TCTSC) and their ruthenium complexes viz.,

Table	V. Antibacterial Activity	of Ru(III)	Thiosemicarbazone Complexes	
		Diameter	of Inhibition Zone (mm)	1
• ON		S. typhi	(-) E. feacalis(-)	1
1.	(H-CTSC)	7	σ	1
2.	[RuC1 ₂ (CTSC)(PPh ₃) ₂]	12	11	
э.	(H-TCTSC)	15	13	
4.	[RuCl ₂ (TCTSC)(PPh ₃) ₂]	17	16	
Concen	tration of the solution 500	т т т т т т т т т т т т т т т т т т т		1

[RuCl₂(CTSC)(PPh₃)₂] and [RuCl₂(TCTSC)(PPh₃)₂] was carried out against Solemonella typhi (gram -ve) and Eenterobacteria feacalis (gram -ve) using nutrient agar (NA) medium by agarwell diffusion method²⁹ (incubation period 18-24 h at 37°C). The test solutions were prepared in DMF. Of the four compounds tested, the ligand (H-TCTSC) and the ruthenium complex [RuCl₂(TCTSC)(PPh₃)₂] were found to be more toxic against both species of bacteria than the other ligands and complexes. The increased activity of these two compounds may possibly be due to the presence of a thiophene moiety in their structure 30 . It is also been observed from the antibacterial screening studies that the ruthenium chelates have a higher activity than the respective free ligands against the same microorganism under identical experimental conditions (Table V), which is consist with earlier report³¹. The possible mode of increased toxicity of complexes than the free ligands may be explained in terms of Tweedy's chelation theory 32 . Chelation reduces considerably the polarity of the metal ion, because of partial sharing of its positive charge with the ligand, which favour its permeation into the normal cell process of bacteria.

ACKNOWLEDGEMENT

We wish to thank the Council of Scientific and Industrial Research, New Delhi, India, for the award of a Senior Research Fellowship to one of us (N. D).

REFERENCES

 A. Saxena, J. K. Koacher and J. P. Tandon, J. Antibact. Antifung. Agents, <u>9</u>, 435 (1981).

RUTHENIUM COMPLEXES

- M. J. M. Campbell, Coord, Chem. Rev., <u>15</u>, 279 (1975) and references cited therein.
- 3. D. R. Williams, Chem. Rev., 72, 203 (1972).
- A. Furst and R. T. Haro, Prog. Tumour Res., <u>12</u>, 102 (1969).
- M. Das and S. E. Livingston, Coord. Chem. Rev., <u>13</u>, 101 (1974).
- V. Chinnusamy and K. Natarajan, Synth. React. Inorg. Met.-Org. Chem., <u>23</u>, 889 (1993).
- R. C. Saxena, C. L. Jain, R. Benjamin and S. K. Sangal, J. Indian Chem. Soc., <u>63</u>, 435 (1986).
- J. Chatt, G. Leigh, D. M. P. Mingos and R. J. Parke, J. Chem. Soc. (A), 2630 (1968).
- R. K. Poddar, I. P. Khullar and U. Agarwala, Inorg. Nucl. Chem. Lett., <u>10</u>, 221 (1974).
- K. Natarajan, R. K. Poddar and U. Agarwala, J. Inorg. Nucl. Chem., <u>39</u>, 431 (1977).
- 11. T. A. Stephenson and G. J. Wilkinson, J. Inorg. Nucl. Chem., <u>28</u>, 945 (1966).
- H. Ravikumar Varma and C. P. Prabhakaran, Indian J. Chem., <u>28A</u>, 1119 (1989).
- A. Garg and J. P. Tandon, Synth. React. Inorg. Met.-Org. Chem., <u>18</u>, 705 (1988).
- M. S. Raizada and M. N. Srivastava, Synth. React. Inorg. Met.-Org. Chem., <u>22</u>, 393 (1993).
- K. Singh, R. V. Singh and J. P. Tandon, Synth. React. Inorg. Met.-Org. Chem., <u>17</u>, 385 (1987).
- 16. P. W. Sadler, J. Chem. Soc. (A), 957 (1961).
- B. Samuel, R. Smith, C. Sommerfield and K. Wade, J. Chem. Soc. (A), 2019 (1970).
- S. Kato, A. Hori, H. Shiotani and M. Mizutta, J. Organomet. Chem., <u>82</u>, 223 (1974).
- 19. D. M. Wiles, B. A. Gingras and T. Suprunchuk, Can. J. Chem., <u>45</u>, 469 (1967).
- 20. M. Mashima, Bull. Chem. Soc. Japan, 37, 974 (1964).

- 21. A. Yamaguchi, R. B. Penland, S. Mizyshima, T. J. Lane, C. Curran and J. U. Quaglino, J. Amer. Chem. Soc., <u>80</u>, 527 (1958).
- C. K. Jørgenson "Absorption Spectra and Chemical Bonding in Complexes", Pergamon, London, 1964.
- 23. A. B. P. Lever, "Inorganic Electronic Spectroscopy" 2nd Edition, Elsevier, New York, 1984.
- 24. G. Harris, Theoret. Chim. Acta (Berlin), 5, 379 (1966).
- P. T. Manoharan, P. K. Mehrotra, M. M. T. Khan and R. K. Andal, Inorg. Chem., <u>12</u>, 2753 (1973).
- N. Jayakumar and K. Natarajan, Synth. React. Inorg. Met.-Org. Chem., <u>22</u>, 349 (1992).
- 27. Z. Shirin and R. N. Mukherjee, Polyhedron, <u>11</u>, 2625 (1992).
- 28. T. K. Mallick, P. K. Das, S. Sinha and B. K. Ghosh, Polyhedron, <u>13</u>, 1817 (1994).
- 29. C. Perez, M. Pauli and P. Bazerque, Acta Biol. et Med. Exper., <u>15</u>, 113 (1990).
- A. R. Katritzky, "Comprehensive Heterocyclic Chemistry" Vol. 4, Pergamon, New York, 1984.
- 31. R. S. Srivastava, J. Inorg. Nucl. Chem., <u>42</u>, 1526 (1980).
- 32. B. G. Tweedy, Phytopathology, 55, 910 (1964).

Received:	12 September 1996	Referee I:	M. J. Clarke
Accepted:	6 February 1997	Referee II:	M. B. Sponsler