Insight into Rh(I)-catalyzed Cyclization of 6-Octen-1-als with a Chiral Protecting Group

Ichiro Koga, Kazuhisa Funakoshi, Asako Matsuda, and Kiyoshi Sakai*

Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812, Japan

(Received in UK 30 April 1993; accepted 7 June 1993)

Key Words: Rh(I)-catalyzed cyclization; Wilkinson complex; chiral protecting group; Lewis acid; asymmetric cyclization

Abstract: Rh(1) (Wilkinson)[ClRh(PPh3)3]-catalyzed cyclization of 6-octen-1-als with a chiral protecting group at the C_2 -position afforded only cis-cyclohexanol derivatives, and in the case of C_4 -position yielded a mixture of cis and trans cyclohexanol. These findings were remarkably different from the case of the C_3 -position, in which the trans cyclohexanol derivative was obtained. Wilkinson's complex acts as [ClRh(PPh3)3] a Lewis acid, and this bulkier Lewis acid affords higher diastereoselectivity. Rh(1)-catalyzed cyclization of 6-octen-1-al derivatives is not affected by chiral ligands.

Introduction

Stereoselective cyclization reactions using organometallic catalysts have been studied extensively in connection with natural product synthesis.¹ In further studies on a cyclization reaction by Rh(I) complexes developed by our group, we have succeeded in the highly stereocontrolled cyclization of substituted 4-pentenals into substituted cyclopentanones,² which could be widely applied for the synthesis of natural products.³

After our first cyclization^{7a} of 6-octenal (citronellal) with ClRh(PPh₃)₃ (Wilkinson complex) to the mixture of *cis*- and *trans*-cyclohexanol derivatives, Larock and co-workers⁴ reported that Rh(I)-catalyzed cyclization of 5-hexenal afforded 2-methylcyclopentanone but no cyclized product was obtained from 6-heptenal. According to Gable and Benz,⁵ Rh(I)([(Ph₃P)₂RhCl]₂)-catalyzed cyclization of 4-methyl-5-hexenal affords a cyclohexanone derivative rather than methylcyclopentanone, and 5-methyl-5-hexenal gives a cyclohexanol derivative. Recently, we have reported that ClRh(PPh₃)₃-catalyzed cyclizations of 6-octenals with a chiral protecting group, (4R,6R)-dimethyl-1,3-dioxane, at the C₃-position proceed in a highly diastereoselective fashion (99%de) to the *cis* and *trans*-hexanol (Scheme 1),^{6a,7} and that cyclohexanone derivatives were not obtained. On the basis of the above information, we have examined the effect of substituents at the C₂ or C₄-positions on the cyclization.

Cyclization of 6-octen-1-al with chiral acetal at C2-position

It is presumed that the Rh(I)-catalyzed cyclization of the aldehyde (1) with a chiral cyclic acetal group, (4R,6R)-dimethyl-1,3-dioxane (with the C₂ axis), at the C₂-position is sterically hindered by the bulky acetal, compared with the case of C₃-substituent. However, when the aldehyde 1 was heated in CHCl₃ at reflux in the

presence of an equimelar amount of ClRh(PPh₃)₃, the reaction proceeded smoothly to afford diastereomeric mixtures of only the circonfiguration in 62% yield, which could be separated by column chromatography on silica gel into 2 (53%, $[\alpha]_D$ -5.63, c 3.8, CHCl₃) and 3 (9%, $[\alpha]_D$ -25.5, c 1.3, CHCl₃). Previously, we reported findings⁷ that in cyclohexanol derivatives with the hydroxy function adjacent to the isopropenyl group, the two olefinic protons in the cis isomers were observed as separate peaks, while both olefinic protons in the trans isomers were observed as a broad singlet. On the basis of this finding, the relative configuration of each diastereomer was determined to be cis from the analysis of their ¹H-NMR spectroscopy. That is to say, one of the two olefinic protons in each cyclized product was observed upfield (2,3 both; δ 4.83) from the other (2; δ 4.90, 3; δ 4.92), indicating that the relative configuration of each cyclized product is *cis*. In addition, NOE differential experiments of C₂-H and C₃-H in 2 and 3 also supported this conclusion. In this cyclization reaction, the trans isomer was not obtained. The above Rh(I)-catalyzed cyclization was in sharp contrast to the case of the aldehyde with the same cyclic acetal at the C_3 -position,^{6,7b} in which the trans isomer was obtained as the sole cyclized product.

In order to establish the absolute stereochemistry of the two cyclized products, 2 and 3 were hydrogenated by H₂/Pd-C, acetylated with Ac₂O/pyridine, and then deacetalized with aq. AcOH to 6 and 9, respectively. The circular dichroism (CD) spectrum of 6 in CHCl₃ showed negative Cotton effect at 304 nm ($\Delta \epsilon$ =-3.37 x 10⁻³), while 9 showed positive effect at 304 nm ($\Delta \epsilon$ =+3.23 x 10⁻³). From these results, the absolute stereochemistry of 2 and 3 was determined to be (2*S*,3*R*) and (2*R*,3*S*), respectively.

Results and Discussion

The effect of chiral ligands on the Rh(I)-catalyzed cyclization of 6-octenals to the corresponding cyclohexanols was examined, because Rh(I)(chiral ligand)-catalyzed cyclizations of substituted 4-pentenals to the substituted cyclopentanones proceeded in highly diastereoselective or enantioselective fashion.^{2d} Chiral phosphine ligands such as (4S,5S)-(+)-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane (DIOP)⁸ and (1S,2S)-(+)-1,2-bis(diphenylphosphinomethyl)cyclohexane (DIPMC)⁹ were employed. However, the cyclization reaction of the aldehyde 1 proceeded in a similar manner to the case of ClRh(PPh₃)₃, and it was observed that the chiral ligand had no effect on the diastereoselectivity (Table 1).

CHO	s acid HO R main		
Lewis acid	Yield(%)	d.e.	Conditions
ZnBr	27	27	0°C, 5h
RhCl	58	55	0°C, 3h
PtCL	54	70	-78°C, 5h
CIRh(PPh ₃) ₃	60	72	refl., 13h

The above result suggested that ClRh(PPh₃)₃ acts as Lewis acid. Thereupon, the cyclization reaction of 1 by Lewis acids such as ZnBr₂, RhCl₃, and PtCl₄ was examined. As shown in Table 2, the Lewis acid-catalyzed cyclization afforded only the *cis*-cyclohexanol, similarly to the case of ClRh(PPh₃)₃-catalyzed cyclization. The diastereomeric excess (d.e.) of the cyclized products seems to depend on the bulkiness of the Lewis acid. As the Lewis acid becomes bulkier, the diastereoselectivity of cyclization product appears to be higher.

In Rh(I)-catalyzed cyclizations of the aldehyde 1 with a chiral acetal at the C₂-position, two conformations IA and IB as shown in Scheme 3 are assumed. Conformation IA seems to be more favorable than 1B for the cyclization, because, in IB, approach of bulky Rh(I) complex to the axial aldehyde on the 1,3-dioxane ring may be hindered by 4'-axial methyl. There are two possible pathways (path 1 and path 2) for the cyclization from IA. Consideration of a Dreiding stereomodel suggests that, in IA₁, there is slight steric repulsion between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me. On the other hand, in IA₂, C₆-axial Me occupies a sterically more hindered position between C3-H α and C₆-axial Me occupies a favorable IA₁ conformation to afford the

cis-cyclohexanol (25,3*R*) as the main product. In addition, it is likely that conformation IA₁ rather than IA₂ with the aldehyde hindered by the isopropenyl group allows approach of the bulky Lewis acid to afford the cyclized product in a diastereoselective manner. As mentioned above, the trans isomer was not obtained in this cyclization reaction. This finding may be explained as follows. In the Rh(I)-catalyzed cyclization of 6-octenals with chiral

acetal at C_2 , conformation IA₃ seems to be favorable for the cyclization to trans-cyclohexanol. However, the stereoelectronic repulsion between the carbonyl oxygen and the dioxane ring oxygen (3') may interfere with this conformation.

Cyclization of 6-octen-1-al with chiral acetal at C4-position

Our attention was focused on the cyclization of 6-octen-1-al with the chiral acetal group at the C4-position (Scheme 4). When the aldehyde (10) was heated at reflux in CHCl₃ in the presence of ClRh(PPh₃)₃, the *cis*-cyclohexanol (11) and *trans*-cyclohexanol (12) were obtained in 33% yield, accompanied with by-products (13) in 18% yield.¹⁰ The relative configuration of 11 and 12 was determined to be *cis* and *trans*, respectively, from the examination (two olefinic protons in 11; δ 4.97 (s) and 4.78 (d, *J*=16Hz) : 12; δ 4.94-4.89 (br. s)) of their ¹H-NMR spectra. The CD spectra of each keto-alcohol (14) and (15) obtained by deacetalization with aq. AcOH both showed negative Cotton effect (14; 294 nm, $\Delta \epsilon$ =-1.88 x10⁻² and 15; 296 nm, $\Delta \epsilon$ =-6.71 x 10⁻²), indicating 14 to be (3*S*,4*S*) and 15 to be (3*S*,4*R*).

Results and Discussion

The optical purities of 14 and 15 were determined to be 80% and 76% e.e, respectively, by examination of their ¹II-NMR spectra after conversion to the esters of $(+)-\alpha$ -methoxy- α -trifluoromethylphenylacetic acid (MTPA). The diastereoselectivity in this cyclization may be explained by two conformations IIA and IIB, in which there is no real difference in the approach of the Rh(I) complex. Each conformation allows four possible cyclization pathways from IIA₁ and IIA₂, and from IIB₁ and IIB₂ to be assumed (Scheme 5).

Consideration of a Dreiding stereomodel suggests that IIA_1 is preferable conformation to IIA_2 , because an undesired steric repulsion between C_4 -Me and C_5 -H2 is observed in IIA_2 . Similarly, IIB_1 is preferable to IIB_2 , because of steric repulsion between C_6 -Me and $C_{2,3}\beta$ -H in IIB_2 . As a result, IIB_1 conformation was diastereoselectively cyclized to the *trans* (35,4*R*) isomer 12, and A1 to the *cis* (35,4*S*) isomer 11. From the above findings it can be concluded that Rh(I)-catalyzed cyclization of 6-octenals to the cyclohexanol derivatives is significantly affected by the position of the chiral acetal and the bulkiness of the Lewis acid.

Synthesis of the aldehyde (1) and (10).

Glycidol (16) was converted to the triphenylmethyl (trityl) ether (17, 59%) by treatment with trityl chloride in pyridine. Reaction of 17 with 4-methyl-3-pentenylmagnesium bromide in the presence of CuI in THF afforded 7-methyl 1-trityloxy-6-octen-2-ol (18, 71%). Oxidation of 18 with pyridinium chlorochromate (PCC) in CH₂Cl₂ at room temperature gave the keto ether (19, 76%), which was converted to the alcohol (20, 58%) by treatment with aqueous 80% AcOH. Acetylation (21, 95%) of 20 and subsequent acetalization with (2R,4R)-2,4-pentanedial by standard procedures afforded the acetal (22, 73%), which was converted to the aldehyde (1) by hydrolysis (23, 90%) and subsequent Swern oxidation (84%) (Scheme 6).

Reaction conditions;

a) TrCl/pyridine; b) 4-methyl-3-pentenyl bromide/Mg,Cul; c) PCC; d) 80%AcOH;

e) Ac2O/DMAP; f) (2R,4R)-2,4-pentanediol/TsOH; g) K2CO3/MeOH; h) (COCI)2/DMSO/Et3N

Scheme 6

Reaction conditions; a) TrCl/pyridine; b) MCPBA; c) 1-Bromo-2-methylpropene/Mg;d) 80%AcOH; e) Ac₂O/pyridine; f) PCC; g) (2*R*,4*R*)-2,4-Pentanediol/TsOH; h) K₂CO₃/MeOH; i) PDC

Scheme 7

Synthesis of the aldehyde (10) is as follows. 4-Penten-1-ol (24) was converted to the trityl ether (25, 84%) by treatment with trityl chloride in pyridine, and subsequent oxidation with m-chloroperbenzoic acid (MCPBA) afforded the epoxide (26, 69%). Synthesis of 10 from 26 was achieved in a manner similar to that described for the preparation of 1 from 17 (Scheme 7).

Experimental

IR spectra were measured with a JASCO A-202 spectrometer. 1H-NMR spectra were measured on a JEOL JNM-SP-100 or a GX-270 spectrometer. Mass spectra were taken on a JEOL JMS-D 300 spectrometer. Specific rotation was measured on a JASCO DIP-360 polarimeter at 25 °C. Each reaction was carried out under N_2 and was monitored by TLC (silica gel 60F-254 plates). For gravity column chromatography, silica gel (Merck, Kiesel-gel 60, 70-230 mesh) was used and for flash column chromatography, 230-400 mesh silica gel was used. All organic extracts were washed with brine, and dried over MgSO₄. Commercially available (Aldrich) RhCl₃(hydrate), ZnBr₂ and PtCl₄ were used.

General Procedure of CIRh(PPh3)3-catalyzed Cyclization.

A mixture of Clkh(PPh₃)₃ (4.56 mmol) and the aldehyde (4.56 mmol) in CHCl₃ (300 ml) was heated at reflux for 4 h under Ar atmosphere. After removal of the solvent *in vacuo*, the residue was diluted with ether, and the precipitate was filtered off. The ether layer was concentrated *in vacuo* to leave an oily residue, which was purified by column chromatography on silica gel.

Compound 2: 53% yeld. $[\alpha]_D$ -5.63 (c 3.8, CHCl₃). IR(neat): 3500, 2920, 1640, 1440, 1150, 1020 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.20 (3H, d, *J*=6.3 Hz, -CH₃), 1.21 (3H, d, *J*=6.3 Hz, -CH₃), 1.34-1.70 (4H, m), 1.82 (3H, d, *J*=0.7 Hz, =-CH₃), 1.75-2.40 (5H,m), 2.28 (1H, d, *J*=12.5 Hz, =-CH), 3.86 (1H, s, -CH-O), 3.95-4.11 (2H, m, >CH-OR), 4.83 (1H, s, olefinic-H), 4.90 (1H, s, olefinic-H). ¹³C-NMR δ ; 147.19(s), 110.77(t), 100.85(s), 69.23(d), 62.66(d), 62.29(d), 44.46(d), 41.41(t), 27.41(t), 22.94(t), 22.20(q), 21.87(q), 21.72(q), 21.61(t). MS m/z: 240 (Mt⁺), 209, 141, 128, 69.

Compound 3: 9% yield $[\alpha]_D$ -25.5 (c 1.3, CHCl₃). IR(neat): 3480, 2920, 1640, 1440, 1380, 1160 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1/21 (3H, d, J=6.3 Hz, -CH₃), 1.23 (3H, d, J=6.3 Hz, -CH₃), 1.35-1.71 (4H,m), 1.82 (3H, d, J=0.7 Hz, =-CH₃), 1.74-2.41 (5H, m), 2.31(1H, d, J=11.2 Hz, =-CH), 3.89 (1H, s, -CH-O), 3.99-4.14 (2H, m, >CH-OR), 4.82 (1H, m, olefinic-H), 4.91 (1H, m, olefinic-H). ¹³C-NMR(CDCl₃) δ : 146.91(s), 110.97(t), 99.91(s), 70.11(d), 63.59(d), 62.82(d), 45.07(d), 40.44(t), 29.63(t), 22.87(t), 22.18(q), 22.12(q), 21.87(q), 21.47(t). MS m/z: 240 (M⁺), 209, 141, 128, 69.

Compound 4: A suspended solution of 3(100 mg, 0.42 mmol) and 10% Pd-C(50 mg) in MeOH(4ml) was stirred at room temperature under H₂ atmosphere. The Pd-C was filtered off and the solvent was removed to dryness. The residue was purified by column chromatography on silica gel to give 4 (97 mg, 96%) as a colorless oil. [α]_D -28.1 (c 1.6, CHCl₃). IR(neat): 3500, 2930, 1440, 1380, 1150 cm⁻¹. ¹H-NMR(CDCl₃) & 0.93 (3H, d, J=6.6 Hz, -CH₃), 0.99 (3H, d, J=6.6 Hz, -CH₃), 1.19 (3H, d, J=6.3 Hz, -CH₃), 1.20 (3H, d, J=6.3 Hz, -CH₃), 1.40-2.03 (11H, m), 3.83 (1H,s, -CH-O), 3.85-4.12 (2H, m, -CH-OR). MS m/z: 242 (M⁺), 225, 141, 69.

Compound 5: To a solution of 4 (82 mg) and catalytic amount of 4-dimethylaminopyridine in CH₂Cl₂ (3 ml) was added Ac₂O (150 mg). After being stirred for 5 h, the mixture was diluted with CH₂Cl₂, washed with NaHCO₃ aq. and brine, aried over Na₂SO₄. The solvent was removed and the residue was purified by column chromatography on silica gel. Compound 5 was given in 98% yield (97 mg) as a colorless oil. [α]_D -22.3 (c 1.3, CHCl₃). IR(neat) : 2930, 1740, 1440, 1370, 1150 cm^{-1.} ¹H-NMR (CDCl₃) δ : 0.90 (3H,d, *J*=6.3 Hz, -CH₃), 0.91 (3H, d, *J*=6.3 Hz, -CH₃), 1.06 (3H, d, *J*=6.3 Hz, -CH₃), 1.19 (3H, d, *J*=6.3 Hz, -CH₃), 2.06 (3H, s, -COCH₃), 3.91 (1H, m, >CH-OR), 4.07 (1H, m, >CH-OR), 5.30 (1H, s, -CH-OAc). 1.35-1.83 (10H, other-H). Ms m/z: 284 (M⁺), 225, 141, 69, 43.

Compound 6: A solution of 5 (30 mg) in 80% AcOH aq. (5 ml) was heated at reflux for 1 h. The reaction mixture was made alkaline with NaHCO₃ aq, extracted with ether, washed with brine, then dried over Na₂SO₄.

The solvent was removed and the residue was purified by column chromatography on silica gel. The fraction eluted with hexane-AcOEt(10:1) gave 6 as a colorless oil (20 mg, 96%). $[\alpha]_D$ -30.1 (c 1.9, CHCl₃). IR(neat): 2950, 1740, 1720, 1375, 1210 cm⁻¹.¹H-NMR(CDCl₃) &: 0.95(6H, d, J=6.3 Hz, -CH₃), 2.14 (3H, s, -COCH₃), 2.27 (1H, m, >CH-CO), 2.59 (1H, m, >CH-CO), 5.18 (1H, m, -CH-OAc), 1.54-2.06 (6H, m, other-H). Ms m/z: 198 (M⁺), 155, 138, 109, 43.

Compound 7: In a manner similar to the preparation of 4, compound 7 (62 mg, quant.) was obtained from 3 (61mg) as a colorless oil. $[\alpha]_D$ -15.7 (c 1.5, CHCl₃). IR(neat): 3500, 2950, 1450, 1380, 1160 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.93 (3H, d, J=6.6 Hz, -CH₃), 0.96 (3H, d, J=6.6 Hz, -CH₃), 1.20 (3H, d, J=6.3 Hz, -CH₃), 1.21 (3H, d, J=6.3 Hz, -CH₃), 3.86 (1H, s, >CH-OH), 3.95-4.11 (2H, m, >CH-OR), 1.5-2.00 (11H, other-H). Ms m/z: 242 (M⁺), 225, 141, 69.

Compound 8: In a similar manner to the preparation of 5, compound 8 (66 mg, 92%) was obtained from 7 (60 mg) as a colorless oil. $[\alpha]_D$ -31.9 (c 1.6, CHCl₃): IR (neat): 2930, 1740, 1440, 1370, 1150 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.89 (3H, d, *J*=6.3 Hz, -CH₃), 0.93 (3H, d, *J*=6.3 Hz, -CH₃), 1.10 (3H, d, *J*=6.3 Hz, -CH₃), 1.20 (3H, d, *J*=6.3 Hz), 2.05 (3H, s, -COCH₃), 3.98 (1H, s, >CH-OR), 4.06 (1H, m, >CH-OR), 5.40 (1H, s, >CH-OAc), 1.30-1.85 (other-H). Ms m/z: 284 (M⁺), 225, 141, 69, 43.

Compound 9: In a manner similar to the preparation of 6, compound 9 (31 mg, 74%) was obtained from 8 (60 mg) as a colorless oil. $[\alpha]_D$ +31.7 (c 3.1, CHCl₃). IR(neat): 2950, 1740, 1720, 1375, 1210 cm⁻¹. ¹H-NMR (CDCl₃) δ : 0.95 (6H, d, *J*=6.3 Hz, -CH₃), 2.13 (3H, s, -COCH₃), 2.26 (1H, m, >CH-CO), 2.59 (1H, m, >CH-CO), 5.18 (1H, m, >CH-OAc), 1.54-2.06 (6H, m, other-H). Ms m/z: 198 (M⁺), 155, 137, 109, 43.

Cyclization of 10: In a similar manner to that described for general procedure, a solution of **10** (345 mg, 14.4 mmol) and ClRh(PPh₃)₃ (1.33 g, 1.44 mmol) in CHCl₃ (50 ml) was heated at reflux for 2 h, *cis*-product (**11**) (73 mg, 21%), trans-product (**12**) (44 mg, 12%), and by-product (**13**) (62 mg, 18%) were obtained.

Compound 11: $[\alpha]_D$ -14.5 (c 0.3, CHCl₃). IR(neat): 3500, 2950, 1650, 1440, 1380, 1160 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.19 (3H, s, -CH₃), 1.22 (3H, s, -CH₃), 1.81 (3H, s, -CH₃), 2.38 (1H, br.s, -OH), 3.92 (1H, m, >CH-OH), 4.00-4.13 (2H, m, >CH-OR), 4.78 (1H, d, *J*=16.5 Hz, olefinic-H), 4.97 (1H, s, olefinic-H), 1.43-1.95 (9H, m, other-H). ¹³C-NMR(CDCl₃) δ : 146.45(d), 111.61(d), 100.35(d), 64.78(d), 62.52(d), 45.45(d), 41.56(d), 33.25(s), 31.30(d), 26.38(s), 22.74(d), 21.82(d). Ms m/z: 240 (M⁺), 209, 141, 128, 71.

Compound 12: $[\alpha]_D$ -22.4 (c 0.3, CHCl₃). IR(neat): 3450, 2940, 1640, 1440, 1380, 1150 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.189 (3H, s, -CH₃), 1.192 (3H, s -CH₃), 1.35-1.70 (5H, m), 1.71 (3H, s, -CH₃), 1.74-2.17 (4H, m), 2.33 (1H, m, -OH), 3.49 (1H, m, >CH-OH), 3.87-4.09 (2H, m, >CH-OR), 4.89-4.94 (2H, m, olefinic-H). ¹³C-NMR(CDCl₃) δ : 145.60(d), 113.59(d), 99.38(d), 70.20(d), 62.71(q), 50.10(d), 41.37(d), 38.19(s), 31.50(d), 29.75(q), 21,80(q), 18.80(d). Ms m/z: 240 (M⁺), 141.

Compound 13: $[\alpha]_D + 14.7$ (c 0.5, CHCl₃). IR(neat): 3000, 1720, 1380, 1150 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.18 (3H, d, J=6.3 Hz, -CH₃), 1.33 (3H, d, J=6.3 Hz, -CH₃), 1.62 (3H, s, -CH₃), 1.74 (3H,s, -CH₃), 1.79-1.92 (4H, m), 2.54 (2H, t, J=7.3 Hz, -COCH₂), 3.12 (2H,d, J=7.3 Hz,=C-CH₂), 3.92 (1H, m, >CH-OR), 4.23 (1H, m, >CH-OR), 4,89 (1H, t, J=5.0 Hz, -CH), 5.30 (1H, t, J=8.6 Hz, olefinic-H). Ms m/z: 240 (M⁺),171, 141, 125, 115, 97, 69.

Compound 14 and 15: In a similar manner to the preparation of 6, 14 (37 mg, 82%) and 15 (23 mg, 29%) were obtained from 11(70 mg) and 12(120 mg).

Compound 14: $[\alpha]_D$ +4.23 (c 1.8, CHCl₃). IR(neat): 3500, 2950, 1650, 1440, 1160 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.84 (3H, s, -CH₃), 1.97 (2H, s, -CH₂), 2.15-2.37 (3H, m), 2.49 (1H, br.s, -OH), 2.68-2.85 (2H, m, -CH₂), 4.13 (1H, s, >CH-OH), 4.80 (1H, s, olefinic-H), 5.06 (1H, s, olefinic-H). Ms m/z: 154 (M⁺), 136, 85, 69.

Compound 15: $[\alpha]_D$ -5.1 (c 0.8, CHCl₃). IR(neat): 3400, 2930, 1690, 1430 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.76 (3H, s, -CH₃), 1.75 (1H, m, >CH), 2.06 (1H, br.s,-OH), 2.26-2.33 (2H, -CH₂), 2.34-2.53 (4H, m, -CH₂), 3.96 (1H, m, >CH-OH), 5.00 (1H, s, olefinic-H), 5.01 (1H, s, olefinic-H). Ms m/z: 154 (M⁺), 136, 85, 69.

Glycidyl trityl ether (17): To a solution of trityl chloride (25.0 g, 90 mmol) in pyridine (30 ml) and CH₂Cl₂ (30 ml) was added dropwise glycidol (20.0 g, 270 mmol) at 0°C, and then stirred at room temperature for 12 h. The mixture was poured onto ice-conc.HCl (140 ml), extracted with CH₂Cl₂, washed with NaHCO₃ aq, brine, then dried over Na₂SO₄. Removal of the solvent afforded an oily residue, which was purified by silica-gel column chromatography to afford 17 (16.5 g, 59%). IR(neat): 1620, 1050, 880, 820 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.58 (1H, m, -CH-O), 2.74 (1H, m, -CH-O), 3.10-3.42 (3H, m), 7.10-7.59 (15H, m, aromatic). Ms m/z: 316 (M⁺), 298, 243, 165, 105.

7-Methyl-1-trityloxy-6-octen-2-ol (18): To a stirred solution of 4-methyl-3-pentenylmagnesium bromide [prepared from Mg (565 mg, 24 mmol) and 4-methyl-3-pentenyl bromide (3.41 g, 21 mmol)] in THF (30 ml) was added a suspended solution of CuI (300 mg, 1.57 mmol) at 0°C. After 25 min a solution of 17 (5.52 g,17 mmol) in THF (20 ml) was added, and stirred at 0 °C for 2 h. A saturated NH₄Cl aq. was added and the precipitate was filtered off, washed with brine, dried over Na₂SO₄. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with hexane-AcOEt (50:1) afforded 18 as a colorless oil (5.32 g, 76%). IR (neat): 3400, 1660, 1450 cm⁻¹. ¹H-NMR(CDCl₃) δ : 1.59 (3H, s, -CH₃), 1.66 (3H, d, J=0.8 Hz, -CH₃), 2.92-3.25 (2H, m, -CH₂-O), 3.77 (1H, m, -CH-OH), 5.07 (1H, m, olefinic-H), 7.15-7.50 (15H, m, aromatic). Ms m/z: 400 (M⁺), 243, 165, 82.

7-Methyl-1-trityloxy-6-octen-2-one (19): To a suspended solution of pyridinium chlorochromate (2.63 g, 12 mmol) and AcONa (0.49 g, 5.1 mmol) in CH₂Cl₂ (15 ml) was added a solution of 18 (3.60 g, 9 mmol) in CH₂Cl₂ (15 ml) and stirred at room temperature for 5 h. Ether (100 ml) was added to the reaction mixture and passed through a florisil column. After removal of the ether, the residue was purified by column chromatography on silica gel to afford a colorless oil 19 (2.72 g, 76%). IR(neat): 2930, 1740, 1600, 1450 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.58(3H, s, -CH₃), 1.68 (3H, s, -CH₃), 2.53 (2H, t, *J*=7.2 Hz, -CH₂CO), 3.73 (2H, s, CH₂-OTr), 5.07 (1H, m, olefinic-H), 7.16-7.52 (15H, m, aromatic). Ms m/z: 397 (M⁺-1), 243, 165, 82.

1-Hydroxy-7-methyl-6-octen-2-one (20): A solution of **19** (3.00 g, 7.5 mmol) in 80% AcOH aq (20 ml) was stirred at 55°C for 1.5 h. After neutralization of the mixture with Na₂CO₃, the whole was extracted with AcOEt, washed with brine, dried over Na₂SO₄. Removal of the solvent afforded an oily residue, which was purified by silica-gel column chromatography. The fraction eluted with hexane-AcOEt (3:1) afforded 20 as a colorless oil (0.74 g, 63%). IR(neat): 3430, 2920, 1720, 1670, 1440 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.59(3H, d, *J*=0.7 Hz,-CH₃), 1.68 (3H, d, *J*=1.5 Hz, -CH₃), 2.41 (2H, t, *J*=7.3 Hz, -CH₂-CO), 3.12 (1H, t, *J*=4.6 Hz, -OH), 4.23 (2H, d, *J*=4.6 Hz, -CH₂-O), 5.07 (1H, m, olefinic-H). Ms m/z: 156 (M⁺), 138, 125, 82, 55.

1-Acetoxy-7-methyl-6-octen-2-one (21): To a solution of 20 (520 mg, 3.3 mmol) in pyridine (3 ml) was added acetic anhydride (700 mg, 6.8 mmol) at 0°C. After being stirred at room temperature for 1 h, the whole was diluted with AcOEt, washed with brine, dried over Na₂SO₄. Removal of the solvent afforded the oily residue, which was purified by silica gel column chromatography to afford 21 (629 mg, 95%). IR(neat): 2930, 1750, 1730, 1390, 1230 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.59 (3H, s,-CH₃), 1.68 (3H, m, -CH₃), 2.17 (2H, s, COCH₃), 2.39 (2H, t, *J*=7.4Hz, CO-CH₃-), 4.64 (2H, s, CO-CH₂-O), 5.07 (1H, m, olefinic-H). Ms m/z: 198 (M⁺), 180, 138, 82.

1-Acetoxy-7-methyl-2,2-[(2R,4R)-2,4-pentanedioxy]-6-octene (22): A mixture of 21 (480 mg, 2.4 mmol) and (2R,4R)-2,4-pentanediol (327 mg, 3.1 mmol) in benzene (40 ml) was refluxed in the presence of p-toluenesulfonic acid (208 mg, 1.1mmol) with azeotropic removal of H₂O. The reaction mixture was washed with brine, and dried, then removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with hexane-AcOEt (50:1) afforded 22 (338 mg, 49%) as a colorless oil. $[\alpha]_D^{24}$ -35.6 (c 1.6, CHCl₃). IR(neat): 2960, 2020, 1750, 1440, 1370, 1050 cm⁻¹. ¹H-NMR (CDCl₃) &: 1.10 (6H, d, J=4.0 Hz,-CH₃), 1.60 (3H, s, -CH₃), 1.67 (3H, d, J=0.6 Hz, -CH₃), 2.06(3H, s,

-COCH₃), 3.67-4.16 (2H, m, -CH-O), 4.28 (2H, s, -CH₂-OAc), 5.06(1H, m, olefinic-H). Ms m/z: 284 (M⁺), 224, 211, 82, 69.

7-Methyl-2,2-[(2*R*,4*R*)-2,4-pentanedioxy]-6-octen-1-ol (23): A suspended solution of 22 (644 mg, 2.3 mmol) and K₂CO₃ (100 mg) in MeOH was stirred at room temperature for 10 h. The reaction mixture was diluted with CH₂Cl₂, washed with brine and then dried. Removal of the solvent afforded an oily residue, which was purified by column chromatography on silica gel. The fraction eluted with hexane-AcOEt (5:1) afforded 23 (521 mg, 95%) as a colorless oil. $[\alpha]_D^{24}$ -25.5 (c 2.0, CHCl₃). IR(neat): 3450, 2920, 1450, 1380 cm⁻¹. ¹H-NMR (CDCl₃) &: 1.20 (6H, d, *J*=6.1 Hz,-CH₃), 1.61 (3H, s, -CH₃), 1.69 (3H, s, -CH₃), 3.54 (2H, br, -CH₂-OH), 3.96-4.23 (2H, m, >CH-O), 5.11(1H, m, olefinic-H). Ms m/z: 242 (M⁺), 211, 82, 69.

7-Methyl-2,2-[(2R,4R)-2,4-pentanedioxy]-6-octen-1-al (1): A solution of oxalyl chloride (0.5 ml) in CH₂Cl₂ (15 ml) at -78 °C under N₂ was added dropwise to a solution of DMSO (0.5ml). The resulting mixture was stirred at -78 °C for 5 min, then 23 (500 mg, 2.1 mmol) in CH₂Cl₂ (15 ml) was added at the room temperature. After being stirred for 30 min, Et₃N (5 ml) was added. The whole was allowed to warm to room temperature and stirred for 30 min. The mixture was poured into 1N HCl (30 ml) and extracted with CH₂Cl₂. The combined organic layer was dried, concentrated and the residue was purified by column chromatography on silica gel. The fraction eluted with hexane-AcOEt (50:1) gave 1 (450 mg, 73%) as a colorless oil. $[\alpha]_D^{24}$ +34.5 (c 2.3, CHCl₃). IR(neat): 2930, 1740, 1450, 1380, 1200 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.23 (3H, d, J=6.1 Hz, -CH₃), 1.25 (3H, d, J=6.6 Hz, -CH₃), 1.59 (3H, s, -CH₃), 1.67 (3H, d, J=1.0 Hz, -CH₃), 1.3-2.0 (6H, m, -CH₂-), 3.90-4.30 (2H, m, >CH-O), 5.06(1H, m, olefinic-H), 9.56 (1H, s, -CHO). Ms m/z: 240 (M⁺), 211, 141, 125, 69, 55.

1-Trityloxy-4-pentene (25): In a manner similar to that described for tritylation of 16, compound 25 was obtained as a colorless oil in 84% yield. IR(neat): 2900, 1640, 1595, 1490, 1440, 1070 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.55-1.83 (2H, m, -CH₂-), 2.05-2.27 (2H, m, -CH₂-), 3.08 (2H, t, *J*=6.4 Hz, -CH₂-O-), 4.86 (1H, m), 5.00(1H, m), 5.79(1H, m), 7.12-7.50 (15H, m, aromatic). Ms m/z: 328 (M⁺), 259, 69.

1-Trityloxy-4,5-epoxypentane (26): To a solution of 25 (24.5 g, 75 mmol) in CH₂Cl₂ (450 ml) was added dropwise a solution of MCPBA (20 g, 91 mmol) in CH₂Cl₂ (300 ml) at 0°C. After being stirred at room temperature for 24 h, the precipitate was filtered off. The organic layer was washed with NaHCO₃ aq. and brine, then dried over Na₂SO₄. Removal of the solvent gave an oily residue, which was purified by silica-gel column chromatography. The fraction eluted with hexane-AcOEt (9:1) afforded 26 (17.5 g, 69%) as a colorless oil. IR(neat): 3030, 1590, 1480, 1440, 1070 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.55-1.94(4H, m, -CH₂-), 2.42 (1H, dd, *J*=5.1and 2.7 Hz), 2.69(1H, dd, *J*=5.1and4.0 Hz), 2.86 (1H, m), 3.12(2H, t, *J*=6.1 Hz, -CH₂-OTr), 7.13-7.51 (15H, m, aromatic). Ms m/z: 344(M⁺), 259, 85.

4-Hydroxy -7-methyl-1-trityloxy-6-octene (27): Compound 27 was obtained from 26 in 65% yield, in a manner similar to that described for the preparation of 18. IR(neat): 3400, 3050, 1595, 1495, 1445, 1070 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.63(3H, s, -CH₃), 1.73 (3H, d, J=1.0 Hz, -CH₃), 1.38-1.93 (4H, m, -CH₂-), 2.15 (2H, m, -CH₂-), 3.10 (2H, t, J=6.1 Hz, -CH₂-OTr), 3.58 (1H, m, >CH-OH), 5.15 (1H, m, olefinic-H), 7.08-7.58 (15H, m, aromatic). Ms m/z: 400(M⁺), 243, 140.

7-Methyl-6-octen-1,4-diol (28): Compound 28 was obtained from 27 in 93% yield as a colorless oil, in a manner similar to that described for the preparation of 20. IR(neat): 3330, 2910, 1640, 1440, 1370, 1050 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.63(3H, s, -CH₃), 1.69-1.70 (4H, m, -CH₂-), 1.74 (3H, s, -CH₃), 2.19 (2H,t, J=2.8 Hz, -CH₂-), 2.70 (2H, br.s, -OH), 3.60-3.74 (3H, m, -CH₂-OH; >CH-OH), 5.16 (1H, t, J=2.7 Hz, olefinic-H). Ms m/z: 159(M⁺+1), 140, 89.

1-Acetoxy-7-methyl-6-octen-4-ol (29): Compound 29 was obtained from 28 in 39% yield as a colorless oil, in a manner similar to that described for the preparation of 21. IR(neat): 3450, 2930, 1740, 1645, 1450, 1370, 1250, 1030 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.48-1.57 (2H, m, -CH2-), 1.65(3H, s, -CH3), 1.67-1.73 (2H, m, -CH2-),1.75 (3H, s, -CH3), 1.82 (1H, br.s, -OH), 2.05 (3H, s, -COCH₃), 2.17 (2H, t, J=2.4 Hz, -CH₂-), 3.62 (1H, m, -CH₂-OH), 4.09 (2H, t, J=2.4 Hz, -CH₂-OAc), 5.15 (1H, t, J=2.8 Hz, olefinic-H). Ms m/z; 201(M⁺+1), 182, 131.

1-Acetoxy-7-methyl-6-octen-4-one (30): Compound 30 was obtained from 29 in 76% yield as a colorless oil, in a manner similar to that described for the preparation of 19. IR(neat): 1740, 1710, 1675, 1240, 1040 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.64(3H, s, -CH₃), 1.76 (3H, d, J=1.0Hz, -CH₃), 1.84-2.01 (2H, m, -CH₂-), 2.04 (3H, s, -COCH3), 2.51 (2H, t, J=7.3 Hz, -COCH2-), 3.11 (2H, d, J=7.1 Hz, -CH2-), 4.06 (2H, t, J=6.4Hz, -CH2-OAc), 5.30 (1H, m, olefinic-H). Ms m/z: 198(M⁺), 138, 129, 87, 43.

1-Acetoxy-7-methyl-4,4-[(2R,4R)-2,4-pentanedioxy]-6-octene (31): Compound 31 was obtained from 30 in 38% yield as a colorless oil, in a manner similar to that described for the preparation of 22. $[\alpha]_D^{23}$ -15.2 (c 1.37, CHCl₃). IReneat): 2920, 1740, 1670, 1440, 1380 cm⁻¹. ¹H-NMR (CDCl₃) &: 1.17 (3H, s. -CH₃), 1.20 (3H, s, -CH₃), 1.63 (3H, s, -CH₃), 1.65 (3H, s, -CH₃), 1.57-1.74 (6H, m, -CH₂-), 2.04 (3H, s, -COCH₃), 2.18-2.48 (2#, m, -CH₂-), 3.92-4.10 (4H, m, -CH₂-OAc; -OCH<), 5.13 (1H, t, J=7.9 Hz, olefinic-H). Ms m/z: 284(M⁺), 224, 211, 69.

7-Methyl-4,4-[(2R,4R)-2,4-pentanedioxy]-6-octen-1-ol (32): Compound 32 was obtained from 31 in 91% yield as a colorless oil, in a manner similar to that described for the preparation of 23. $[\alpha]_D^{22}$ -17.1 (c 1.46, CHCl3). IR(neat): 3430, 2950, 1670, 1440, 1370, 1150, 1050 cm⁻¹. ¹H-NMR (CDCl3) & 1.19 (3H, s, -CH₃), 1.21 (3H, s, -CH₄3), 1.63 (3H, s, -CH₃), 1.71 (3H, s, -CH₃), 1.54-1.77 (6H, m, -CH₂-), 2.31-2.50 (3H, m, -OH, -CH₂-CH=), 3.62 (2H, s, -CH₂-OH), 3.96-4.11 (2H, m, -OCH<), 5.13 (1H, t, J=7.9 Hz, olefinic-H). Ms m/z: 242(M⁺), 173, 136, 45.

7-Methyl-4,4-[(2R,4R])²,2,4-pentanedioxy]-6-octen-1-al (10): Compound 10 was obtained from 32 in 55% yield as a colorlest oil, in a manner similar to that described for the preparation of 1. $[\alpha]_{D}^{24}$ -18.8 (c 0.26, CHCl₃). IR(neat): 2870, 2700, 1720, 1440, 1380, 1150 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.17 (3H, s, -CH₃), 1.18 (3H, s, -CH₃), 1.51-1.66 (2H, m, -CH₂-),1.63 (3H, s, -CH₃), 1.72 (3H, s, -CH₃), 1.82-2.10 (2H, m, -CH₂-), 2.27-2.36 (2H, m, -CH₂-), 2.40-2.53 (2H, m, -CH₂-CHO), 3.89-4.41 (2H, m, -OCH<), 5.12 (1H, t, J=7.9 Hz, olefinic-H), 9.12 (1H, t, J=2.0 Hz, -CHO). Ms m/z: 240(M⁺), 222, 201, 85.

References

- 1.
- 2.
- Cences
 Mcquillin,F.J.; Parker,P.G.; Stephenson,C.R. "Transition metal organometallics for organic synthesis" Cambridge University Press, Cambridge, 1991.
 a) Sakai,K.; Ishiguro,Y.; Funakoshi,K.; Ueno,K.; Suemune,H. Tetrahedron Lett. 1984, 25, 961-964;
 b) Taura,Y.; Tanaka,M.; Funakoshi,K.; Sakai,K. Tetrahedron Lett. 1989, 30, 6349-6352; c) Taura,Y.; Tanaka,M.; Wu, X.-M.; Funakoshi,K.; Sakai,K. Tetrahedron 1991, 47, 4879-4888; d) Wu,X-M.; Funakoshi,K.; Sakai,K. Tetrahedron 1991, 47, 4879-4888; d) Wu,X-M.; Funakoshi,K.; Sakai,K. Chem. Pharm. Bull. 1986, 34, 550-557; b) Xie, Z.-F.; Ichikawa,Y.; Suemune,H.; Sakai,K. Chem. Pharm. Bull. 1987, 35, 1812-1816; c) Ueno,K; Suemune,H.; Saexi,S.; Sakai,K. Chem. Pharm. Bull. 1985, 33, 4021-4025; d) Suemune,H.; Oda,K.; Saeki,S.; Sakai,K. Chem. Pharm. Bull. 1985, 33, 4021-4025; d) Suemune,H.; Oda,K.; Saeki,S.; Sakai,K. Chem. Pharm. Bull. 1985, 33, 4021-4025; d) Suemune,H.; Oda,K.; Saeki,S.; Sakai,K. Chem. Pharm. Bull. 1988, 36, 172-177; e) Suemune,H.; Maruoka,H.; Saeki,S.; Sakai,K. Chem. Pharm. Bull. 1986, 34, 259-4634; f) Takahashi,Y.; Tanaka,M.; Wu,X-M.; Sakai,K. Natural Froducts Lett. 1992, 1, 217-220.
 Larock,R. C.; Ocnle,K.; Potter,G.F. J. Am. Chem. Soc. 1980, 102, 190-197.
 Gable,K.P.; G.A. Benz. Tetrahedron Lett. 1991, 32, 3473-3476.
 a) Funakoshi,K.; Jogo,N.; Taura,Y.; Sakai,K. Chem. Pharm. Bull. 1989, 37, 1776 -1779. In cyclization using ZhEr2 (scheme 1), the diastereoselectivity was not observed (unpublished data). b) Sakai,K.; Wu,X. M.; Hata,T.; Marubayashi,N.; Funakoshi,K. J. Chem. Soc., Perkin Trans. I 1991, 2531-2536. 3.
- 4.
- 5.
- 6. 2531-2536.
- a) Sakai, K.; Oda, O. Tetrahedron Lett. 1972, 4375-4376; b) Funakoshi, K.; Togo, N.; Koga, I.; Sakai, K. Chem. Pharm. Bull. 1989, 37, 1990 -1994.
 Kagan, H.B.; Darg, T.P. J. Am. Chem. Soc. 1972, 94, 6429-6433.
 Glaser, R.; Geresh, S.; Blumenfeld, J.; Twaik, M. Tetrahedron 1978, 34, 2405-2408.
 For the acetalization using rhodium catalyst, see Ott, J.; Tombo, M.R.; Schmid, B.; Venanzi, L.M.; Wang, G.; Ward, T. D. Tetrahedron Lett. 190, 20, (151, (154, 154)). 7.
- 8.
- 9.
- 10. Ward, T.R. Tetrahedron Lett. 1989, 30, 6151-6154.