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ABSTRACT ARTICLE HISTORY
The total synthesis of Benzannulated macrolide, Received 17 March 2021
(+)-Xestodecalactone A was accomplished starting from commer- Accepted 6 June 2021

cially available enantiomerically pure propylene oxide and 3,5-
dihydroxyphenylacetic acid using Grignard reaction, alkylation of
1,3-dithiane and Yamaguchi macrolactonisation as key steps.
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1. Introduction

Macrolide molecules containing a large lactone ring in its structure and considered to
be derived from the corresponding hydroxyl acid by internal esterification (Collins
1999). Macrodiolides and macrocyclic monolactones are two types of macrolides.
Researchers across the world concentrate on the synthesis of both homo and hetero
dimers (macrodilactones) (Alluraiah et al. 2014; Edukondalu et al. 2015; Ramakrishna et
al. 2016; Pratapareddy et al. 2017; Ramanujan et al. 2017; Ashok et al. 2018; Alluraiah
et al. 2019; Edukondalu et al. 2020; Ramakrishna et al. 2021) and macrocyclic monolac-
tones (Murthy et al. 2014; Pratapareddy et al. 2015; Alluraiah et al. 2016; Pratapareddy
et al. 2020).

Benzannulated macrolactones are one of the most important classes of compounds
due to their potent biological activities such as antibacterial, antifungal and anticancer
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Figure 1. Structure of Xestodecalactones A-C.

behaviour (Musgrave 1956; Robeson et al. 1985; Lai et al. 1989, 1991; Ghisalberti and
Rowland 1993; Sponga et al. 1999; Edrada et al. 2002; He et al. 2004; Zhan et al. 2004;
Huang et al. 2008). Selected examples of these macrolides are radicicol (Nozawa and
Nakajima 1979), Zearalenone (Stob et al. 1962; Urry et al. 1966), Lasiodiplodins
(Aldridge et al. 1971; Li et al. 2005), sonnerlactones (Li et al. 2010), xestodecalactones
(Petrier and Luche 1985; Luche and Einhorn 1987; Sharma and Kumar 2004) and cur-
vularin (Musgrave 1956; Gerlach 1977) which received significant attention due to their
interesting biological properties.

Among of these macrolactones, Xestodecalactones A-C (1a-c) are the novel
Benzannulated decalactones, isolated from the fungus Penicillium cf. montanense
obtained from the marine sponge Xestospongia exigua (Edrada et al. 2002). As shown
in Figure 1, Xestodecalactones constitute 10-membered macrolides with a fused 1,3-
dihydroxybenzene ring. Xestodecalactones A—-C have been shown to exhibit antibac-
terial and antifungal activities (Bringmann et al. 2003). They are also found to be spe-
cific inhibitors of the epidermal growth factor (EGF) receptor, tyrosine kinase in vitro.
The potential biological importance as well as the unique structural feature of these
molecules prompted us to undertake the syntheses of these molecules. To date, sev-
eral approaches for syntheses of Xestodecalactones A-C have been reported
(Bringmann et al. 2004; Yoshino et al. 2006; Liang et al. 2007; Yadav et al. 2008; Rajesh
et al. 2009; Yadav et al. 2009; Pal et al. 2012; De Joarder and Jennings 2013, 2015; Rao
et al. 2019).

In this communication, we herein, report an alternative synthetic strategy to
achieve the total synthesis of Xestodecalactones A (1a) utilising the alkylation of 1,3-
dithiane and Yamaguchi macrolactonisation as the key steps.

2. Results and discussion

Our retro synthetic approach for the synthesis of xestodecalactone-A was outlined in
Scheme 1. The target molecule 1a could be made from hydroxy acid 2 by intra
molecular Yamaguchi macrolactonisation, whereas 2 could be synthesised from the
coupling reaction of two key fragments dithiane 3 and bromide 4. Dithiane intermedi-
ate 3 could be obtained from commercially available 3,5-dihydroxyphenylacetic acid 5
and bromide 4 was achieved from known chiral epoxide 6.

As discussed in the retrosynthetic analysis, the synthesis of the xestodecalactone-A
started with the preparation key intermediates 3 from commercially available 3,5-dihy-
droxyphenylacetic acid 5, which is outlined in Scheme 2. Accordingly, the 3,5-dihy-
droxyphenylacetic acid 5 was subjected to O-methylation and esterification with
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Scheme 1. Retrosynthetic analysis of xestodecalactone-A.
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Scheme 2. Reagents and conditions: (a) DMS, K,COs, acetone, reflux, 4h; (b) DMF, POCI3, rt to
55°C, 12h; (c) 1,3-propanedithiol, BF3;,0Et,, CH,Cl,, 0°C to rt, 8h, 79%.

dimethyl sulfate in acetone at reflex for 4h to afford 7 in 86% yield. The resulting
ester 7 was transformed into aldehyde 8 via Vilsmeier-Haack formylation16 (von Delius
et al. 2017) using POCl; in DMF at room temperature for 20 h. Later, aldehyde 8 on
treatment with 1,3-propanedithiol in the presence of BFs;.OEt, in CH,Cl, at 0°C to rt
for 8 h afforded the key intermediate 1,3-dithiane 3 in 79% yield.

Synthesis of the other coupling partner 4 was commenced from known chiral epox-
ide 6 (Schaus et al. 2002). Accordingly, epoxide 6 on Regioselective ring-opening by
allyl magnesium bromide in the presence of Cul yielded the alcohol 6a in 78% yield.
Subsequent silylation of the resulting alcohol 6a with TBSCl and imidazole in CH,Cl,
gave 9 in 76% yield. Later, the terminal olefin moiety of 9 was subjected to
Ozonolysis by using Ozone gas in CH,Cl, at —78°C for 15 min to furnish correspond-
ing aldehyde, which on immediate reduction with NaBH, in MeOH at 0°C for 6 h gave
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Scheme 3. Reagents and conditions: (a) i) allyl bromide, Mg, Cul, dry ether, —78°C, 2h; ii) TBSCI,
Imidazole, CH,Cly, rt, 4h; (b) i) Os, CH,Cl,, -78°C, 30 min; ii) NaBH,, MeOH, 0°C to rt, 6 h; (c) CBry,
PhsP, CH,Cl,, 0°Cto rt, 3h
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Scheme 4. Reagents and conditions: (a) n-BulLi, dry THF, -20°C, 3 h; (b) LiOH, THF:MeOH:H,0 (3:1:1),
rt, 4h, 83%; (c) TBAF, THF, 0°C to 25°C, 3h, 89%; (d) i) 2,4,6-trichlorobenzoyl chloride, EtsN, dry
THF, 25°C, 2h; ii) DMAP, toluene, 90°C, 10h, 67%; (e) CaCOs, Mel, CH3CN:H,0 (9:1), 45°C, 3h,
66%; (f) BBr3, CH,Cl,, -78°C to r.t.

the alcohol 10 in 84% yield. Finally, treatment of alcohol 10 with CBr, in the presence
of PhzP in CH,CI, afforded bromide 4 in 81% vyield.

With two subunits in hand, we proceeded to couple both intermediates 3 and 4 as
described in Scheme 3. Accordingly, dithiane 4 was lithiated by n-BuLi at —20°C and
then alkylated with bromide 3 to provide the desired product 11 in 86% yield
(Scheme 4). Later, the resulting compound 11 was subjected to base (LiOH) hydrolysis
in THF:MeOH:H,0O (3:1:1) to afford the corresponding acid 12, which on desilylation
with TBAF in THF at 0°C to 25°C for 3 h afforded hydroxy acid 2 in 91% yield. After
successful synthesis of hydroxy acid fragment 2, which was subjected to macrolactoni-
sation under Yamaguchi high dilution conditions (Inanaga et al. 1979) to provide the
lactone 13 in 69% yield.

Next, removal of 1, 3 dithiane group in compound 13 with CaCO; and Mel, in
CH3CN:H,0 for 3 h afforded the lactone 14 in 73% yield. Finally, the deprotection of
both methyl ether groups in lactone 14 using BBr; in dichloromethane gave the xesto-
decalactone-A (1a) in 82% yield (Scheme 4). All the spectroscopic data of synthetic 1a
are ("H and ">C NMR, MS) and specific rotation fully consistent with the reported data
of the natural product (Edrada et al. 2002).
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3. Conclusions

Thus, in summary, we have demonstrated an efficient synthetic route for the total syn-
thesis of xestodecalactone-A in a stereoselective manner with overall yield of 9.77%.
The key steps involved in this synthesis are Grignard reaction, alkylation of 1,3-dithiane
and Yamaguchi macrolactonisation.
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