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Abstract A 1,3,4-thiadiazole library was constructed by solid-phase organic synthesis. The key step 

of this solid-phase synthesis involves the preparation of polymer-bound 2-amido-5-amino-1,3,4-

thiadiazole resin by the cyclization of thiosemicarbazide resin using p-TsCl as the desulfurative 

agent, followed by the functionalization of the resin by alkylation, acylation, alkylation/acylation, 

and Suzuki coupling reactions. Both the alkylation and acylation reactions chemoselectively 

occurred at the 2-amide position of 2-amido-5-amino-1,3,4-thiadiazole resin and the 5-amine 

position of 2-amido-5-amino-1,3,4-thiadiazole resin, respectively. Finally, these functionalized 1,3,4-

thiadiazole resins were treated with trifluoroacetic acid in dichloromethane, affording diverse 1,3,4-

thiadiazole analogs in high yields and purities. The 1,3,4-thiadiazole analogs show a different 

distribution of physicochemical and biological properties compared to our previously constructed 

1,3,4-oxadiazole and 1,3,4-thiadiazole libraries in a range of orally available drug properties. 

 

KEYWORDS: Solid-phase, BOMBA, Thiosemicarbazide, 1,3,4-thiadiazole 
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Introduction 

 

Solid-phase synthesis has emerged as a powerful tool in medicinal chemistry owing to its capability 

to rapidly generate a massive number of small organic molecules.
1
 Among these small molecules, 

heterocyclic compounds are now used to yield potent and selective drugs having unique 

pharmacophores.
2
 Especially, five-membered ring heterocycles have showed wide range of 

intriguing biological activities. In this family, 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives have 

shown potent biological activity such as anti-inflammatory,
3
 antimicrobial,

4
 anticonvulsant,

5
 

anticancer,
6
 and antihypertensive

7
 in medicinal chemistry areas. The term bioisostere has been used 

in medicinal chemistry area, because it frequently exhibits enhanced biological activity or 

physicochemical property without significant changes in the chemical structure.
8 

Along these lines, 

1,3,4-thiadiazole and 1,3,4-oxadiazole have been considered as a bioisostere for each other in drug 

design. Lee et al. compared the binding affinity of compounds containing 1,3,4-oxadiazole or 1,3,4-

thaidiazole in the same chemical structure toward CB1 receptor in the process of developing an 

obesity drug.
9
 Both 1,3,4-oxadiazoles and 1,3,4-thiadiazoles were also used for the development 

potent antibacterial agents by Kumar et al.
10 

Asai et al. reported a dramatic difference in the binding 

affinity between identically substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles toward signal 

transducers and activators of transcription.
11

 Because of these biologically interesting properties of 

1,3,4-thiadiazoles and 1,3,4-oxadiazoles, these core skeletons have been targeted for synthesis by 

organic and medicinal chemists, and as a result, many synthetic methodologies have been reported in 

the literature.
12

 Among these synthetic methodologies, solid-phase synthesis effectively facilitates 

the rapid generation of various 1,3,4-thiadiazoles and 1,3,4-oxadiazoles.
13 

In our previous research, 

we have also developed solid-phase synthetic methodologies to produce 1,3,4-oxadiazoles and 1,3,4-

thiadiazoles.
14 

Unfortunately our methodology was limited to  the synthesis of p-nitro substituted 

1,3,4-thiadiazole derivatives (Scheme 1a). To improve over methodology, we attempted to develop a 

new intermediate to afford various 1,3,4-thiadiazoles. As shown in Scheme 1b, we designed a new 

thiosemicarbazide key intermediate, and herein, we report our research progress in this area, 
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including a desulfurative cyclization process to generate various 1,3,4-thiadiazole derivatives with a 

high level of diversity via solid-phase synthesis. 

 

Scheme 1 Strategy used to generate various 1,3,4-thiadiazole analogs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results and Discussion
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Scheme 2. Synthesis of 1,3,4-thiadiazole analog by solid-phase synthesis 

 
aReaction conditions: (a) CS2, p-TsCl, TEA, Tetrahydrofuran, rt, 18 h (b) Hydrazine, DMSO, 50 °C, 4 h (c) Acyl 

isothiocyanate, Tetrahydrofuran, rt, 3 h (d) p-TsCl, Pyridine, DCM, rt, 5 h (e) Alkyl halide, NaH, DMF, 60 °C, 16 h (f) 

TFA : DCM (1:4, v/v), 40 °C, 4 h (g) Acid chloride, Pyridine, rt, 16 h (h) TFA : DCM (1:4, v/v), rt, 4 h (i) Boronic acid, 

K3PO4, Pd(PPh3)4, 1,4-Dioxane : H2O (9:1), 80 °C, 20 h  

 

 

Based on solid-phase parallel synthesis, the synthetic route used to prepare 2-amido-5-amino-1,3,4-

thiadiazole and its derivatives 7, 9, 11, 13 and 15 is outlined in Scheme 2. To synthesize 

thiosemicarbazide intermediate 4, 4-benzyloxy-2-methoxybenzylamine (BOMBA) resin 1 was used 

as the starting material. The reaction of resin 1 with CS2, p-TsCl, and triethylamine (TEA) in 

tetrahydrofuran (THF) generated isothiocyanate terminated resin 2,
15

 and the formation of resin 2 

was confirmed by its attenuated total reflection (ATR) single bead Fourier transform infrared (FTIR) 

spectrum, showing the presence of a typical isothiocyanate peak at 2071 cm
-1 

(Figure 3b in the 

Supporting Information). After the treatment of resin 2 with hydrazine in dimethyl sulfoxide 

(DMSO), the typical isothiocyanate peak at 2071 cm
-1 

disappeared (Figure 3c in the Supporting 

Information). The following reaction of hydrazinecarbothioamide resin 3 with several acyl 

isothiocyanates in THF formed thiosemicarbazide resin 4 as the key intermediate, whose ATR-FTIR 
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spectrum showed the amide peak at 1677 cm
-1 

(Figure 3d in the Supporting Information). As a result, 

various thiosemicarbazide resins 4 equipped with electron donating groups, electron withdrawing 

groups, and aliphatic groups at the R
1
 position were obtained. Next, thiosemicarbazide resin 4 was 

reacted with p-TsCl and pyridine in dichloromethane (DCM) to afford 2-amido-5-amino-1,3,4-

thiadiazole resin 5 via desulfurative cyclization process, and its FTIR spectrum showed a shift of the 

amide peak from 1677 cm
-1

 to 1664 cm
-1 

(Figure 3e in the Supporting Information). For effective 

diversification, 2-amido-5-amino-1,3,4-thiadiazole resin 5 was reacted with various alkyl halides in 

the presence of sodium hydride (NaH) in N,N-dimethyl formamide (DMF) at 60 °C for 16 h, and 

various alkyl groups were chemoselectively introduced at the 2-amide position instead of the 5-

amine position. The chemoselectivity of the alkylation reaction was investigated by HPLC and 

COSY analysis (Pages 2–7, the Supporting information). Consequently, alkyl substituted 2-amido-5-

amino-1,3,4-thiadiazole resin 6 was successfully generated. To release our desired 2-amido-5-

amino-1,3,4-thiadiazole analog 7 from the solid support, the resin 6 was treated with TFA:DCM (1:4, 

v/v) at 40 °C for 4 h (The LC/MS spectrum of the crude product mixture 7a is shown in Figure 1 of 

the Supporting Information). As a result, 2-amido-5-amino-1,3,4-thiadiazole analogs 7 were 

obtained in good yields and high purities (Table 1).  

 

Table 1. Yields and purities of the 2-N-alkylamido-5-amino-1,3,4-thiadiazole derivatives 7  

No R
1 

R
2 

Yield  

per step 

(%)
a 

Purity 

(%)
b No R

1 
R
2 

Yield  

per step 

 (%)
a 

Purity 

(%)
b 

7a Ph 
 

81.4 100 7j Ph  75.8 100 

7b Ph 
 

82.3 100 7k Ph  85.1 100 

7c Ph 
 

74.4 96 7l Ph  86.2 100 

7d Ph 
 

78.3 100 7m Ph 
 

71.2 100 

7e Ph 

 

68.1 98 7n Ph  71.2 97 

7f Ph 
 

66.9 100 7o 
 

 78.8 100 

7g Ph 
 

74.4 100 7p 
 

 78.3 89 
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7h Ph 
 

69.2 100 7q   77.7 100 

7i Ph 
 

83.5 100      

aAverage yield per step calculated over six steps (loading capacity of resin 1 is 1.15 mmol/g). bAll the purified products 

were checked by LC/MS. 

 

Next, we tried to synthesize 2-amido-5-amido-1,3,4-thiadiazole resin 8. Various acid chlorides were 

used to chemoselectively introduce diverse amide functionality at the amine position of resin 5 at 60 

°C for 16 h in neat pyridine (Each 
1
H NMR spectrum of 2,5-di-amido-1,3,4-thiadiazoles 9 confirmed 

the chemoselective substitution at the amine position). To obtain 2,5-diamido-1,3,4-thiadiazole 

analogs 9, resin 8 was treated with TFA:DCM (1:4, v/v) at room temperature for 4 h. As a result, 

2,5-diamido-1,3,4-thiadiazole analogs 9 were obtained in good yields and high purities (Table 2).  

 

Table 2. Yields and purities of the 2,5-diamido-1,3,4-thiadiazole derivatives 9 

No R
1 

R
3 

Yield  

per step 

 (%)
a 

Purity 

(%)
b No R

1 
R
3 

Yield  

per step 

 (%)
a 

Purity 

(%)
b 

9a Ph 
 

75.8 91 9j Ph 
 

68.1 98 

9b Ph 
 

75.1 85 9k Ph 
 

69.2 99 

9c Ph 
 

77.1 95 9l Ph  69.2 98 

9d Ph 
 

74.4 97 9m Ph  68.1 95 

9e Ph 
 

79.9 91 9n Ph  68.1 93 

9f Ph 
 

79.4 94 9o 
  

77.7 81 

9g Ph 
 

83.9 91 9p 
  

77.7 61 

9h Ph 
 

69.2 92 9q   
71.2 96 

9i Ph 
 

74.4 96      

a
Average yield per step calculated over six steps (loading capacity of resin 1 is 1.15 mmol/g). 

b
All the purified products 

were checked by LC/MS. 
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To maximize the structural diversity of 1,3,4-thiadiazole core skeleton, alkyl and acyl groups were 

introduced at the amide and amine positions, respectively. First, resin 5 was reacted with alkyl halide 

in the presence of sodium hydride NaH in DMF at 60 °C for 16 h to afford resin 6, and subsequently 

acyl groups were introduced at 60 °C for 16 h in neat pyridine. As a result, 2,5-diamido-1,3,4-

thiadiazole resin 10 functionalized at the amide and amine positions were obtained. To afford 2,5-

diamido 1,3,4-thiadiazole analog 11, resin 10 was treated with TFA:DCM (1:4, v/v) at room 

temperature for 4 h. The yields and purities are summarized in Table 3. 

 

Table 3. Yields and purities of the 2-N-alkylamido-5-amido-1,3,4-thiadiazole derivatives 11 

No R
1 

R
2 R

3
 

Yield  

per step 

 (%)
a 

Purity 

(%)
b 

11a Ph 
 

 

72 100 

11b Ph 
  

80 98 

11c Ph 
 

 

66.9 99 

11d Ph 
 

 

79.5 98 

11e Ph 
 

 

73.9 99 

11f Ph 
 

 

68.4 100 

11g Ph 
 

 

68.4 95 

11h Ph 
 

 

68.4 97 

11i 
 

 

 

79.5 100 

11j 
 

 

 

73.9 99 

11k 
 

 

 

73 100 

aAverage yield per step calculated over seven steps (loading capacity of resin 1 is 1.15 mmol/g). bAll the 

purified products were checked by LC/MS. 

 

For further diversification of the 1,3,4-thiadiazole core skeleton, the R
1
 position was functionalized 

by Suzuki coupling reaction. Resins 6 and 8 equipped with aryl iodine at the R
1
 position were 

reacted with various boronic acids in the presence of K3PO4 and Pd(PPh)3 in 1,4-dioxane and water 
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(9:1, v/v) to produce Suzuki-coupled resins 12 and 14, respectively, followed by the cleavage 

reaction in TFA:DCM (1:4, v/v) at 40 °C for 4 h or in TFA:DCM (1:4, v/v) at room temperature for 

4 h. As a result, Suzuki-coupled products 2-amido-5-amino-1,3,4-thiadiazoles 13 and 2,5-diamido-

1,3,4-thiadiazoles 15 were obtained. The yields and purities are listed in Table 4. 

 

Table 4. Yields and purities of the N-(5-amino-1,3,4-thiadiazol-2-yl)-N-isopentylbiphenyl-3-

carboxamide 13 and N-(5-(3-chlorobenzamido)-1,3,4-thiadiazol-2-yl)biphenyl-3-carbox-

amide 15 

No R
2 

R
4 

Yield  

per step 

 (%)
a 

Purity 

(%)
b No R

3 
R
4 

Yield  

per step 

 (%)
a 

Purity 

(%)
b 

13a  
 

81.6 98 15a 
 

 

73 52 

13b  80 100 15b 
 

73.9 91 

13c  80 98 15c 
 

66.9 65 

a
Average yield per step calculated over seven steps (loading capacity of resin 1 is 1.15 mmol/g). 

b
All the purified 

products were checked by LC/MS. 

 

 

In the drug discovery process, the development of orally available drug is very important, and 

Lipinski’s Rule
16

 and biological parameters have been used as guidelines to determine orally 

available drug property. In this respect, physicochemical and biological parameters such as 

molecular weight, ALogP, number of rotatable bonds, polar surface area, and number of hydrogen 

bond acceptors and donors are displayed and compared to those of our previously constructed 1,3,4-

oxadiazole and 1,3,4-thiadiazole library
14

 in Figure 1. As shown in this data, in the case of molecular 

weight, ALogP, and number of rotatable bonds, our present library (blue) showed a better 

distribution in a range of those predicted for reasonable orally bioavailable drugs than the previous 

library (red), whereas it showed a slightly narrower range of distribution in the polar surface area, 

and both libraries showed a similar distribution in the number of hydrogen bonding acceptors and 

donors.     
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Figure 1. Calculation and comparison of physicochemical and biological properties for our present 

and previous libraries 

 

In conclusion, we established a solid-phase synthetic method to construct a 1,3,4-thiadiazole library. 

This method involves a desulfurative cyclization process of thiosemicarbazide resin 4 to afford 

1,3,4-thiadiazole core skeleton resin 5 and various functionalization reactions to maximize the 

structural diversity by reactions such as alkylation, acylation, alkylation/acylation, and Suzuki-

coupling reactions. In the functionalization reactions, various alkyl groups were chemoselectively 

introduced at the 2-amide position of 2-amido-5-amino-1,3,4-thiadiazole resin 5, and various acyl 

groups were chemoselectively introduced at the 5-amine position of 2-amido-5-amino-1,3,4-

thiadiazole resin 5. Furthermore, physicochemical and biological properties of 1,3,4-thiadiazole 

library were calculated and compared to those of our previous library. As a result, our present library 

showed a different distribution of physicochemical and biological properties compared to that of our 
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previous library in a range of bioavailable drug property by Lipinski’s Rule and parameters.  

 

Experimental 

 

General procedure for synthesis All the chemicals were reagent grade and used as purchased. 

Reactions were monitored by ATR-FTIR. Flash column chromatography was carried out on silica gel 

(230–400 mesh). 
1
H NMR and 

13
C NMR spectra were recorded in δ units relative to deuterated 

solvent as the internal reference using a 500 MHz NMR instrument. Liquid chromatography tandem 

mass spectrometry analysis was performed using an electrospray ionization (ESI) mass spectrometer 

with photodiode-array detector (PDA) detection. High-resolution mass spectrometry spectra were 

obtained using a TOF LC/MS system. 

 

Representative procedure for the preparation of isothiocyanateterminated resin 2 

A mixture of BOMBA resin 1 (5.00 g, 5.80 mmol) and Et3N (5.86 g, 58.0 mmol) in THF (30.0mL) 

was added to CS2 (2.65 g, 34.8 mmol) at 0 °C, and then the reaction mixture was stirred at room 

temperature for 3 h. The mixture was cooled down to 0 °C, followed by adding p-TsCl (5.53 g, 29.0 

mmol). The reaction mixture was stirred at room temperature for 15 h. The precipitate obtained by 

the filtration of the mixture was stirred at room temperature, washed with THF, H2O, MeOH, and 

CH2Cl2, and dried in a vacuum oven, affording resin 2 as a brown solid. Single-Bead ATR-FTIR: 

3022, 2920, 2072 (N=C=S), 1604, 1505, 1450, 1266, 1195, 1159, 1122, 1033, 818, 734, and 697 cm
-

1
. 

 

Representative procedure for the preparation of hydrazinecarbothioamide resin 3 

A mixture of isothiocyanate resin 2 (5.28 g, 5.80 mmol) and hydrazine (1.86 g, 58.0 mmol) in 

DMSO (20.0 mL) was stirred at 50 °C for 4 h. The resin was filtered and washed several times with 

DMSO, THF, H2O, MeOH, and CH2Cl2 and then dried in a vacuum oven. Resin 3 was obtained as a 
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yellow brown solid. Single-Bead ATR-FTIR: 3025, 2917, 1606, 1503, 1491, 1450, 1419, 1282, 1265, 

1194, 1158, 1125, 1028, 818, 733, and 697cm
-1

. 

 

Representative procedure for the preparation of thiosemicarbazide resins 4a 

A mixture of hydrazinecarbothioamide resin 3 (5.47 g, 5.80 mmol) and benzoyl isothiocynate (3.79 g, 

23.2 mmol) in THF (20 mL) was stirred at room temperature for 3 h. The resin was filtered and 

washed several times with MeOH, H2O, and CH2Cl2 and then dried in a vacuum oven. Resin 4a was 

obtained as a brown solid. Single-Bead ATR-FTIR: 3025, 2920, 1684 (C=O), 1600, 1506, 1449, 

1419, 1254, 1194, 1159, 1124, 1028, 733, and 697 cm
-1

.    

 

Representative procedure for the preparation of 2-N-alkylamido-5-amino-1,3,4-thiadiazole 

resin 5a 

A mixture of thiosemicarbazide resin 4a (6.42 g, 5.80 mmol), p-TsCl (3.32 g, 17.4 mmol) and 

pyridine (1.38 g, 17.4 mmol) in CH2Cl2 (30.0 mL) was stirred at room temperature for 5 h. The resin 

was filtered and washed several times with MeOH, H2O, and CH2Cl2 and then dried in a vacuum 

oven. Resin 5a was obtained as a brown solid. Single-Bead ATR-FTIR: 3022, 2925, 1663 (C=O), 

1577, 1505, 1450, 1264, 1195, 1160, 1123, 1028, 823, 733, and 697 cm
-1

. 

 

Representative procedure for the preparation of 2-N-alkylamido-5-amino-1,3,4-thiadiazole 

resin 6a 

A mixture of 2,5-amino-1,3,4-thiadiazole resin 5a (214 mg, 0.2 mmol) in DMF (2.00 mL) was added 

sodium hydride (32.0 mg, 0.8 mmol) at room temperature. The resulting mixture was stirred at room 

temperature for 1 h. Benzyl chloride (127 mg, 1.00 mmol) was added to the reaction mixture and 

stirred at 60 °C for 12 h. The resin was filtered and washed several times with MeOH, H2O, and 

CH2Cl2 and then dried in a vacuum oven. Resin 6a was obtained as a brown solid. Single-Bead ATR-

FTIR: 3025, 2923, 1673 (C=O), 1601, 1492, 1450, 1381, 1286, 1264, 1196, 1159, 1114, 1020, 818, 

733, and 697 cm
-1

. 

Representative procedure for the preparation of N-(5-amino-1,3,4-thiadiazol-2-yl)-N-
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benzylbenzamide 7a 

Resin 6a (232 mg, 0.2 mmol) was treated with a mixture of TFA/CH2Cl2 (1:4, v/v) at 40 °C for 4 h. 

The resin was filtered and then washed several times with CH2Cl2 and MeOH. The organic filtrate 

was neutralized to pH 6–7 with a saturated aqueous NaHCO3 solution and then extracted with 

CH2Cl2 and H2O. The aqueous layer was back-extracted with CH2Cl2. The combined organic layers 

were dried over anhydrous MgSO4 and evaporated to obtain the crude product, which was purified 

diethyl ether/hexane (1:1) to obtain 18.0 mg (81.4%, average yield per step calculated over six steps) 

of the desired N-(5-amino-1,3,4-thiadiazol-2-yl)-N-benzylbenzamide 7a. 
1
H NMR (500 MHz, 

DMSO) δ 8.21 (d, J = 7.1 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 7.39–7.33 (m, 

4H), 7.33–7.29 (m, 1H), 7.14 (s, 2H), 5.44 (s, 2H). 
13

C NMR (126 MHz, DMSO) δ 172.4, 161.8, 

159.1, 136.8, 136.7, 132.1, 129.3, 129.1, 128.7, 128.6, 128.3, 53.2, LC-MS (ESI): m/z = 309.1 [M-

H]
-
. HRMS (ESI) calcd for C16H14N4OS [M + H]

+
: 311.0961, found: 311.0961. 

 

Representative procedure for the preparation of 2,5-diamido-1,3,4-thiadiazole resin 8a 

A mixture of 2,5-amino-1,3,4-thiadiazole resin 5a (214 mg, 0.2 mmol) in Pyridine (2.00 mL) was 

added Benzoyl chloride(140 mg, 1.0 mmol) The resulting mixture was stirred at 60 
o
C for 12 h. The 

resin was filtered and washed several times with MeOH, H2O, and CH2Cl2 and then dried in a 

vacuum oven. Resin 8a was obtained as a brown solid. Single-Bead ATR-FTIR : 3023, 2919, 1671, 

1600, 1506, 1449, 1373, 1262, 1195, 1158, 1114, 1024, 817, 749 and 696cm 
-1

.  

 

Representative procedure for the preparation of N,N'-(1,3,4- thiadiazole-2,5-diyl)dibenzamide 

9a 

A resin 8a (235 mg, 0.2 mmol) was treated with a mixture of TFA/CH2Cl2 (1:4, v/v) at rt for 4 h. The 

resin was filtered and then washed several times with CH2Cl2 and MeOH. The organic filtrate was 

neutralized to pH 6-7 with a saturated NaHCO3 aqueous solution and then extracted with CH2Cl2 

and H2O. The aqueous layer was back-extracted with CH2Cl2. The combined organic layers were 

dried over MgSO4 and evaporated to obtain the crude product, which was purified by column 
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chromatography on silica gel (hexane/THF) to afford 12.0 mg (75.8%, average yield per step 

calculated over six step) of desired N,N'- (1,3,4-thiadiazole-2,5-diyl)dibenzamide 9a. 
1
H NMR (500 

MHz, DMSO) δ 12.75 (s, 2H), 8.12 (d, J = 7.4 Hz, 4H), 7.67 (t, J = 7.4 Hz, 2H), 7.57 (t, J = 7.6 Hz, 

4H). 
13

C NMR (126 MHz, DMSO) δ 165.5, 156.4, 133.3, 132.2, 129.1, 128.8. LC-MS (ESI): m/z = 

323.1 [M-H] - . HRMS (ESI) calcd for C16H12N4O2S [M + Na]
+ 

: 347.0573, found :347.0574. 

  

Representative procedure for the preparation of 2-N-alkylamido-5-amido-1,3,4-thiadiazole 

resin 10a A mixture of 2-N-alkylamido-5-lamino-1,3,4-thiadiazole resin 6a (232 mg, 0.2 mmol) in 

Pyridine (2.00 mL) was added Benzoyl chloride (140 mg, 1.0 mmol) The resulting mixture was 

stirred at 60 
o
C for 12 h. The resin was filtered and washed several times with MeOH, H2O, and 

CH2Cl2 and then dried in a vacuum oven. Resin 10a was obtained as a brown solid. Single-Bead 

ATR-FTIR : 3021, 2924, 1664(C=O), 1600, 1493, 1449, 1371, 1269, 1194, 1159, 1110, 1026, 823, 

761 and 696 cm -1 . 

 

Representative procedure for the preparation of N-(5-benzamido-1,3,4-thiadiazol-2-yl)-N-

benzylbenzamide 11a A resin 10a (253 mg, 0.2 mmol) was treated with a mixture of TFA/CH2Cl2 

(1:4, v/v) at rt for 4 h. The resin was filtered and then washed several times with CH2Cl2 and MeOH. 

The organic filtrate was neutralized to pH 6-7 with a saturated NaHCO3 aqueous solution and then 

extracted with CH2Cl2 and H2O. The aqueous layer was back-extracted with CH2Cl2. The combined 

organic layers were dried over MgSO4 and evaporated to obtain the crude product, which was 

purified by column chromatography on silica gel (hexane/THF) to afford 8.28 mg (72%, average 

yield per step calculated over seven steps) of desired N-(5-benzamido-1,3,4-thiadiazol-2-yl)-N-

benzylbenzamide 11a. 
1
H NMR (500 MHz, DMSO) δ 12.76 (s, 1H), 8.28 (d, J = 7.2 Hz, 2H), 8.08 

(d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.61 – 7.54 (m, 3H), 7.53 (d, J = 4.9 Hz, 1H), 7.51 (d, J 

= 7.3 Hz, 1H), 7.42 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.1 Hz, 1H), 5.66 (s, 

2H). 
13

C NMR (126 MHz, DMSO) δ 173.3, 166.4, 163.7, 152.3, 136.5, 136.4, 133.6, 132.5, 131.8, 

129.5, 129.2, 129.1, 128.9, 128.8, 128.5, 128.5, 53.5. LC-MS (ESI): m/z = 413.2 [M-H]
-
. HRMS 
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(ESI) calcd for C23H18N4O2S [M + Na]
+ 

: 437.1043, found :437.1044. 

 

Representative procedure for the preparation of N-(5-(ethylamino)-1,3,4-thiadiazol-2-yl)-N-

isopentylbiphenyl-3-carboxamide resin 12a 

A resin 6r (127 mg, 0.1 mmol) was added successively K3PO4 (106.14 mg, 0.5 mmol), 

Phenylboronic acid (60.9 mg, 0.5 mmol) in 1,4-Dioxane : H2O(9:1), and Pd(PPh3)4 (23.1 mg, 0.02 

mmol) was added under nitrogen atmosphere. The mixture was shaken for 20 h at 80 
o
C. N-(5-

amino-1,3,4-thiadiazol-2-yl)-N-isopentylbiphenyl-3-carboxamide resin 12a was filtered and washed 

with H2O, MeOH, and CH2Cl2 and dried in a vacuum oven. This process made resin 12a as a dark 

brown solid. Single-Bead ATRFTIR :3023, 2926, 2864, 1669(C=O), 1588, 1491, 1449, 1419, 1387, 

1313, 1258, 1193, 1157, 1115, 1026, 818, 744 and 695cm -1 . 

 

Representative procedure for the preparation of N-(5-amino-1,3,4-thiadiazol-2-yl)-N-

isopentylbiphenyl-3-carboxamide 13a A resin 12a (122 mg, 0.1 mmol) was treated with a mixture 

of TFA/CH2Cl2 (1:4, v/v) at 40 
o
C for 4 h. The resin was filtered and then washed several times with 

CH2Cl2 and MeOH. The organic filtrate was neutralized to pH 6-7 with a saturated NaHCO3 aqueous 

solution and then extracted with CH2Cl2 and H2O. The aqueous layer was back-extracted with 

CH2Cl2. The combined organic layers were dried over MgSO4 and evaporated to obtain the crude 

product, which was purified by column chromatography on silica gel (hexane / THF) to afford 8.8 

mg (81.6%, average yield per step calculated over seven steps) of desired N-(5- amino-1,3,4-

thiadiazol-2-yl)-N-isopentylbiphenyl-3- carboxamide 13a. 
1
H NMR (500 MHz, DMSO) δ 8.46 (s, 

1H), 8.16 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.7 Hz, 

1H), 7.50 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.14 (s, 2H), 4.29 (t, J = 7.0 Hz, 2H), 1.71 (dd, 

J = 13.9, 6.9 Hz, 2H), 1.57 (dt, J = 13.1, 6.5 Hz, 1H), 0.97 (d, J = 6.6 Hz, 6H). 
13

C NMR (126 MHz, 

DMSO) δ 171.9, 161.2, 159.2, 140.6, 140.3, 137.7, 130.3, 129.5, 129.4, 129.1, 128.2, 127.3, 127.2, 

48.3, 37.0, 25.4, 22.7. MS (ESI): m/z = 365.2 [M-H]
-
. HRMS (ESI) calcd for C20H22N4OS [M + H]

+ 
: 

367.1587, found :367.1587. 
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Representative procedure for the preparation of N-(5-(3-chloroN-ethylbenzamido)-1,3,4-

thiadiazol-2-yl)biphenyl-3- carboxamide resin 14a  

A resin 8r (267.3 mg, 0.2 mmol) was added successively K3PO4 (212.3 mg, 1.0 mmol), 

Phenylboronic acid (121.9 mg, 1.0 mmol) in 1,4-Dioxane : H2O (9:1), and Pd(PPh3)4 (46.2 mg, 0.04 

mmol) was added under nitrogen atmosphere. The mixture was shaken for 20 h at 80 
o
C. N-(5-(3-

chloro-N-ethylbenzamido)-1,3,4-thiadiazol-2-yl)biphenyl-3-carboxamide resin 14a was filtered and 

washed with H2O, MeOH, and CH2Cl2 and dried in a vacuum oven. This process made resin 14a as 

a dark brown solid. Single-Bead ATR-FTIR :3026, 2924, 2852, 1664(C=O), 1600, 1506, 1449, 1419, 

1364, 1285, 1260, 1194, 1157, 1115, 1024, 899, 816, 747 and 696 cm
-1

. 

 

Representative procedure for the preparation of N-(5-(3- chlorobenzamido)-1,3,4-thiadiazol-2-

yl)biphenyl-3-carboxamide 15a 

A resin 14a (257 mg, 0.2 mmol) was treated with a mixture of TFA/CH2Cl2 (1:4, v/v) at rt for 4 h. 

The resin was filtered and then washed several times with CH2Cl2 and MeOH. The organic filtrate 

was neutralized to pH 6-7 with a saturated NaHCO3 aqueous solution and then extracted with 

CH2Cl2 and H2O. The aqueous layer was back-extracted with CH2Cl2. The combined organic layers 

were dried over MgSO4 and evaporated to obtain the crude product, which was purified by column 

chromatography on silica gel (hexane / THF) to afford 9.6 mg (73%, average yield per step over 

seven steps) of desired N-(5-(3- chlorobenzamido)-1,3,4-thiadiazol-2-yl)biphenyl-3-carboxamide 

15a. 
1
H NMR (500 MHz, DMSO) δ 12.89 (s, 2H), 8.48 (s, 1H), 8.19 (s, 1H), 8.09 (dd, J = 19.2, 7.7 

Hz, 2H), 8.03 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 7.1 Hz, 1H), 7.74 (d, J = 7.7 

Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 7.1 

Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H). 
13

C NMR (126 MHz, DMSO) δ 141.7, 140.9, 139.7, 137.1, 134.2, 

133.9, 133.1, 131.2, 131.1, 129.9, 129.5, 129.1, 128.8, 128.6, 128.5, 128.2, 128.0, 127.6, 127.4, 

126.8. MS (ESI): m/z = 433.2[M-H]
-
. HRMS (ESI) calcd for C23H17ClN4OS [M + H]

+ 
: 435.0677, 

found :435.0676. 
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