Reactions of the Seven-co-ordinate Complexes $[MI_2(CO)_3(NCMe)_2]$ and $[MI_2(CO)_3(NCMe)L]$ (M = Mo or W; L = PPh₃, AsPh₃ or SbPh₃) with Dithiocarbamate Ligands

Paul K. Baker,* Stuart G. Fraser and Dafydd Ap Kendrick

Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK

The complexes $[Ml_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with 1 equivalent of Na[S₂CN(CH₂Ph)₂] eventually to give the iodo-bridged dimers $[{M(\mu-I)(CO)}_{3}[S_{2}CN(CH_{2}Ph)_{2}]_{2}]$. The reaction of $[MI_2(CO)_3(NCMe)_2]$ with 1 equivalent of L (L = PPh₃, AsPh₃ or SbPh₃) gave $[MI_2(CO)_3(NCMe)L]$ which when treated in situ with $Na[S_2CNR_2]$ (R = Me, Et or CH₂Ph) afforded [MI(CO)₃L(S₂CNR₂)]. The complexes $[Mol(CO)_3L(S_2CNR_2)]$ prepared as described above when treated in situ with 1 equivalent of $[S_2CNR_2]^-$ generally give the mixed-ligand oxides $[Mo_2O_3(S_2CNR_2)_2(S_2CNR'_2)_2]$. The complexes $[WI(CO)_3(PPh_3)(S_2CNR_2)]$ (R = Me, Et or CH₂Ph) when treated *in situ* with Na[S₂CNR'₂] afforded $[W(CO)_2(PPh_3)(S_2CNR_2)(S_2CNR'_2)]$ (R = Me, R' = Et; R = Me, R' = CH_2Ph; R = Et, R' = CH₂Ph), whereas reaction with the AsPh₃ and SbPh₃ complexes in an analogous manner gave $[W(CO)_3(S_2CNR_2)(S_2CNR_2)]$ in low yield. Reaction of $[Mol_2(CO)_3(NCMe)_2]$ with 2 equivalents of Na[S2CNEt2]·3H2O gave the previously reported oxide compound [Mo2O3(S2CNEt2)4], whereas $[WI_2(CO)_3(NCMe)_2]$ reacts to give $[W(CO)_3(S_2CNEt_2)_2]$. Two equivalents of Na $[S_2CN(CH_2Ph)_2]$ react with $[Mol_2(CO)_3(NCMe)L]$ to give for L = PPh₃ and AsPh₃ the oxides $[Mo_2O_3\{S_2CN(CH_2Ph)_2\}_4]$ and the seven-co-ordinate complex $[Mo(CO)_2(SbPh_3)\{S_2CN(CH_2Ph)_2\}_2]$ for L = SbPh_3. The complexes $[W(CO)_2L\{S_2CN(CH_2Ph)_2\}_2]$ (L = PPh₃, AsPh₃ or SbPh₃) were prepared in an analogous manner. Lowtemperature ¹³C NMR spectra are interpreted to suggest the likely stereochemistry of several of these complexes.

Dithiocarbamate ligands have generally been found to coordinate to a transition metal as a bidentate ligand a,^{1,2} however, monodentate co-ordination **b** as in [W(CO)₃(S₂-CNMe₂-S)(η^5 -C₅H₅)]³ and [Mo(S₂CNEt₂-S)(S₂CNEt₂-SS')-{HB(dmpz)₃}] (dmpz = 3,5-dimethylpyrazolyl)⁴ have also been reported. Molybdenum complexes containing anionic sulphur-donor ligands such as dithiocarbamates have received considerable attention since it is believed that the Mo–S binding site in the nitrogenase enzyme is the active site for reduction of dinitrogen to ammonia.^{5,6} Six- and seven-co-ordinate dithiocarbamate complexes of molybdenum(II) and tungsten(II) such as [M(CO)_n(S₂CNR₂)₂] (M = Mo or W, n = 2 or 3, R = Me, Et or Prⁱ) have been extensively studied.⁷⁻¹⁵ However, few reports of monodithiocarbamate seven-co-ordinate complexes have been published.¹⁶

We have been studying the chemistry of the seven-coordinate complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W)¹⁷ which are synthesised in quantitative yield by an *in situ* reaction of the tris(acetonitrile) complexes $[M(CO)_3(NCMe)_3]$ with an equimolar quantity of I₂. In this paper we describe full details of the reactions of $[MI_2(CO)_3(NCMe)_2]$ and $[MI_2(CO)_3-(NCMe)L]$ (L = PPh₃, AsPh₃ or SbPh₃)¹⁸ with dithiocarbamates which afford a wide variety of products. A preliminary report of this work has appeared.¹⁶

Results and Discussion

The seven-co-ordinate diiodo complexes $[MI_2(CO)_3(NCMe)_2]$ and $[MI_2(CO)_3(NCMe)L]$ (M = Mo or W; L = PPh₃, AsPh₃ or SbPh₃) react with 1 or 2 equivalents of Na[S₂CNR₂] (R = Me, Et or CH₂Ph) in CH₂Cl₂ at room temperature to give a wide range of different seven-co-ordinate dithiocarbamate complexes, 1-32, or oxides of the type $[Mo_2O_3(S_2CNR_2)_4]$ or $[Mo_2O_3(S_2CNR_2)_2(S_2CNR'_2)_2]$ (see Experimental section). The complexes described in this paper have been fully characterised by elemental analysis (C, H and N) (Table 1),

infrared (Table 1) and ¹H NMR spectroscopy (Table 2). The iodo-bridged dimers 1 and 2 are air-sensitive, however they can be stored under nitrogen for several days. The monodithiocarbamate compounds [MI(CO)₃L(S₂CNR₂)] **3–20** are all moderately air-stable in the solid state, but are much more air-sensitive in solution. The mixed and bis(dithiocarbamate) complexes **21–32** are all very air-sensitive (particularly the molybdenum complexes many of which decomposed to the oxides). The seven-co-ordinate complexes **1–32** are soluble in CHCl₃ and CH₂Cl₂ and very soluble in MeOH, and as expected only slightly soluble in diethyl ether and hydrocarbon solvents.

Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) and $Na[S_2CN(CH_2Ph)_2]$ react in CH_2Cl_2 eventually to afford the iodo-bridged dimers $[{M(\mu-I)(CO)_3[S_2CN(CH_2-CN)]}]$ Ph_{2}_{2} 1 and 2. It is likely that these reactions proceed with initial formation of the monoacetonitrile complexes [MI(CO)3- $(NCMe){S_2CN(CH_2Ph)_2}]$. However, these intermediates could not be isolated since they rapidly dimerised with loss of acetonitrile to give the dimers 1 and 2. The dimeric nature of 1 and 2 was confirmed by molecular-weight measurements using Rast's method¹⁹ (see Experimental section). Since the X-ray crystal structure of $[{W(\mu-Br)Br(CO)_4}_2]$ has been determined by Cotton et al.²⁰ and shown to have bromide bridges it is highly likely that complexes 1 and 2 contain iodide bridges, although a possible structure containing metal-metal double bonds and no iodide bridges cannot be ruled out. Each tungsten atom in $[{W(\mu-Br)Br(CO)_4}_2]$ is in a capped-octahedral environment²⁰ with carbonyl ligands capping each octahedral face. The structures of seven-co-ordinate complexes of

			Analysis (%)				
Complex	Colour	Yield (%)	C	Н	N	v(CO)/cm ⁻¹	$v(CN)/cm^{-1}$
$1 \int M_0(\mu_J)(CO) \int S CN(CH, Ph) \frac{1}{3}$	Black	62	371(373)	25(24)	26(24)	2020s 1981s 1945s	1495m
$2 [\{W(u-1)(CO), [S, CN(CH, Ph),]\},]$	Brown	54	329(324)	21(21)	20(21)	2005s 1926s 1905s	1481m
$2 [(w(\mu^{-1})(CO)_{3}[5_{2}CV(CH_{2}H_{2})]_{2}]$ $3 [MoI(CO)_{1}(PPh_{2})(S_{2}CNMe_{2})]$	Brown	54 64	42.2(41.8)	32(31)	19(20)	20003, 19203, 19093 2040s, 1960s, 1939s	1533m
$4 \left[MoI(CO), (A_sPh_2)(S_cCNMe_2) \right]$	Brown	66	39.2 (39.3)	31(29)	20(19)	2040s, 1950s, 1959s	1528m
$5 [MoI(CO)_{3}(NSFR_{3})(S_{2}CNMe_{2})]$	Brown	60	37.2(37.0)	29(27)	17(18)	20403, 19503, 19573	1520m
$6 [MoI(CO), (PPh_2)(S, CNFt_2)]$	Brown	55	43 3 (43 5)	40(35)	1.7(1.0) 1.8(2.0)	2020m 1935s 1857m	1493m
$7 [MoI(CO), (AsPh_)(S, CNFt_)]$	Brown	65	40.8 (41.0)	36(33)	20(18)	2025s 1953s 1934s	1500m
$8 [MoI(CO), (SbPh_)(S, CNFt_)]$	Brown	58	38.7 (38.6)	34(31)	16(17)	2020s, 1959s, 1953s 2020s, 1959s, 1932m	1505m
$9 [MoI(CO)_{2}(PPh_{2}) \{S_{2}CN(CH_{2}Ph)_{2}\}]$	Black	58	51.2(51.4)	36(35)	1.0(1.7) 1.5(1.7)	20208, 19998, 199211	1490m
$10 \text{ FMol}(CO) (A_{\text{s}}Ph) \{S, CN(CH, Ph)\}$	Black	58	47.5(47.5)	33(33)	1.5(1.7) 17(16)	20203, 19403, 19003 2025s 1945s 1865m	1490m
11 $[Mol(CO)]$ (ShPh) (S CN(CH, Ph))	Black	67	451(451)	34(31)	14(15)	20258, 19458, 100511	1402m
12 EWI(CO) (PPh)(S CNMe)	Brown	70	367(371)	28(27)	1.7(1.3)	20258, 19458, 19568	1534m
$13 [WI(CO)] (A_{S}Ph)(S_{CNMe})]$	Orange	75	347(351)	2.6(2.7)	1.7(1.3) 1.4(1.7)	20203, 19303, 19103	1533m
$14 [WI(CO)] (ShPh_)(S CNMe_)]$	Orange	65	33.0 (33.2)	2.0(2.0)	1.4(1.7)	2020s, 1920s, 1922s	1532m
15 [WI(CO) (PPh) (S CNFt)]	Orange	68	39.2 (38.8)	34(31)	1.4(1.0) 1.8(1.7)	2010s 1920s 1832s	1420m
$16 [WI(CO)] (A_sPh)(S_cONEt_)]$	Orange	68	36.5 (36.8)	30(30)	1.5(1.7)	2010s, 1920s, 1052s	1420m
$17 [WI(CO)] (ShPh)(S CNEt_2)]$	Orange	62	30.3(30.0) 34.8(34.9)	30(28)	1.3(1.7)	20103, 19203, 19123	1501m
18 $[WI(CO)]$ (PPh) (S CN(CH Ph))	Brown	69	46.0 (46.5)	34(31)	1.5(1.0)	20033, 19353, 19003	1482m
$10 [WI(CO)_3(11 II_3)(5_2CIV(CII_2III)_2)]$	Brown	51	40.0(40.3)	3.1(3.1)	1.5(1.5) 1.5(1.4)	2030s, 1923s, 1843s	1402m
20 [WI(CO)] (ShPh) (S CN(CH Ph))]	Brown	51	43.7(44.4)	27(29)	1.5(1.4)	20203, 19775, 19245 2020e 1070e 1035e	1480m
20 $[W_1(CO)_3(SOT H_3)(S_2CN(CH_2TH)_2)]$ 21 $[M_0(CO)_3(SOT H_3)(S_2CN(CH_2TH)_2)]$	Brown	87	57.6(57.5)	47(47)	33(34)	1925e 1850e	1481m
27 $[Mo(CO)_2(11 H_3)(3_2COUL_2)(3_2COU(CH_2)H_2)]$	brown	02	51.0 (51.5)	4.7 (4.7)	5.5 (5.4)	17233, 18503	140111
$\frac{122}{(MO(CO)_2(SOT M_3)(S_2COMC_2)^2}$	Brown	58	51 1 (50 0)	38(30)	27(31)	1925: 1845:	1478m
$3_2 \text{CN}(\text{CH}_2\text{I} \text{H}_2\text{I})$ 23 $[M_0(\text{CO}) \text{ (ShPh)(S CNEt)}$	Brown	50	51.1 (50.9)	5.8 (5.9)	2.7 (5.1)	17233, 10435	14/011
(S CN(CH Ph)) 1.0 SCH Cl	Brown	61	40.0 (50.2)	39(12)	31(29)	1030e 1845e	1470m
$(3_2 \text{CN}(\text{CH}_2\text{FH})_2) = 0.5 \text{CH}_2\text{CH}_2$ 24 FW(CO) (PPh)(S CNMe)(S CNFt)]	Red	85	47.9(30.2)	$\frac{3.9}{4.4}$	3.1(2.7)	19303, 18435	1479m
25 $[W(CO) (PPh)(S CNMe) (S CN(CH Ph))]$	Red	63	510(510)	41(39)	30(31)	1975, 18255	1470m
$26 \left[W(CO) \right] (PPh) (S CNEt) (S CN(CH Ph))]$	Red	58	51.6 (52.1)	4.1(3.3)	3.0(3.1)	1010c 1825c	1487m
$20 \left[W(CO)_2(1 + H_3)(S_2CNEt_2)(S_2CN(CH_2H)_2) \right]$ $27 \left[W(CO)_2(S_2CNEt_2)(S_2CN(CH_2H)_2) \right]$	Brown	21	35.3(34.0)	4.7 (4.5)	3.2(3.0)	2005e 1010e 1822e	1402m
$27 [W(CO)_3(3_2CNEt_2) \{3_2CN(CH_2FH)_2\}]$ $28 [W(CO)_3(S_2CNEt_2)]$	Brown	56	33.3(34.9)	$\frac{4.1(3.3)}{3.7(3.6)}$	4.0(4.1)	20035, 19195, 10225 2010a, 1024a, 1005 (ab)	14/0111
20 $[M_0(CO)_3(3_2CNEt_2)_2]$ 20 $[M_0(CO)_3(5_2CN(CH, Ph)_2)]$	Brown	54	568 (57.2)	$\frac{3.7}{4.2}$	2.0(3.0)	10250 18420	1478m
29 $[W(CO) (DDb) (S CN(CH Db)]]$	Red	83	50.8(57.2)	4.2(4.1)	2.4(2.7)	19235, 10425	1470m
$30 \left[W(CO)_{2}(F \Pi_{3})_{3} S_{2} CN(C\Pi_{2}F \Pi_{2})_{2} \right]$ $31 \left[W(CO)_{4} A_{2} Dh_{3} \right] \left[S_{2} CN(CH, Dh)_{3} \right]$	Brown	65	55.2 (55.1)	4.1(4.1)	2.4(2.7)	19228, 10338	14/011 1/79m
$\frac{31}{27} \left[\frac{1}{2} \frac{1}{2}$	Brown	54	52.4 (52.8)	4.2(4.0)	2.2(2.0)	10250 18400	14/011 1/75m
$32 [w(CO)_2(SOF II_3)_{(S_2CIN(CII_2FII)_2)_2}]$	DIOMI	54	52.4 (52.0)	5.7 (5.8)	2.3 (2.3)	17258, 10408	14/3111
^a Calculated values in parentheses. ^b Spectra recorded in CHCl ₃ ; $s = strong$, $m = medium$, $w = weak$, $br = broad$ and $sh = shoulder$.							

Table 1 Physical, analytical^{*a*} and infrared spectroscopic data^{*b*} for the seven-co-ordinate dithiocarbamate complexes of molybdenum(II) and tungsten(II)

molybdenum(II) and tungsten(II) have generally been found to be capped octahedral.²¹ Colton and Kevekordes²² have described how ¹³C NMR spectroscopy can be used to indicate if there is a carbonyl ligand in the unique capping position in capped-octahedral complexes. The low-temperature $(-70 \,^{\circ}C, CD_2Cl_2)$ ¹³C NMR spectrum of $[\{W(\mu-I)(CO)_3[S_2CN(CH_2-Ph)_2]\}_2]$ **2** was measured and showed three carbonyl resonances at δ 199.63, 200.44 and 228.03 ppm. In view of the structure of $[\{W(\mu-Br)Br(CO)_4\}_2]$,²⁰ and Colton and Kevekordes observations ²² it is highly likely that the low-field resonance at δ 228.03 ppm is due to equivalent (one on each tungsten) carbonyls in capped-octahedral positions, and the resonances at δ 199.63 and 200.44 ppm due to equivalent pairs of octahedral carbonyls. A possible structure for this complex is shown below.

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with 1 equivalent of L (L = PPh₃, AsPh₃ or SbPh₃) in CH₂Cl₂ at room temperature to give $[MI_2(CO)_3(NCMe)L]$,¹⁸ which

when treated *in situ* with Na[S₂CNR₂] (R = Me, Et or CH₂Ph) afford good yields of the monodithiocarbamate complexes [MI(CO)₃L(S₂CNR₂)] **3–20**. The low-temperature ¹³C NMR (-70 °C, CD₂Cl₂) spectra of a number of complexes **3–20** were measured, however, due to their low solubility, no satisfactory spectra were obtained. Many unsuccessful attempts were made to grow crystals of complexes **3–20**. It should also be noted that the S₂CNMe₂ complexes **3–5** and **12–14** all show two well separated methyl resonances in the ¹H NMR spectra even at 60 °C. Hence the barrier to rotation about the C–N bond in these complexes is likely to be high.

Reaction of the molybdenum complexes $[MoI(CO)_3L(S_2-CNR_2)]$ in situ with 1 equivalent of $[S_2CNR'_2]^-$ generally afforded the purple oxides $[Mo_2O_3(S_2CNR_2)_2(S_2CNR'_2)_2]$ (see Experimental section). This type of reaction was previously observed by Colton and co-workers.^{7,8,23} They treated $[\{Mo(\mu-Cl)Cl(CO)_4\}_2]$ with Na[S₂CNEt₂] which afforded $[Mo_2O_3(S_2-CNEt_2)_4]$. It is likely that these reactions result from the initial formation of the seven-co-ordinate complexes $[Mo(CO)_2L-(S_2CNR_2)(S_2CNR'_2)]$, but due to the extreme sensitivity of these complexes they decompose readily to the oxide. However, the seven-co-ordinate molybdenum complexes $[Mo(CO)_2-(PPh_3)(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}]$ **21** and $[Mo(CO)_2-(SbPh_3)(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}]$ **21** and $[Mo(CO)_2-(SbPh_3)(S_2CNR'_2)]^-$. These are the first examples of mixed dithiocarbamate seven-co-ordinate complexes of molybdenum-(II) and tungsten(II) to be reported. The triphenylphosphinetungsten complexes $[WI(CO)_3(PPh_3)(S_2CNR_2)]$

132

Table 2 Proton NMR spectroscopic data * (δ) for the seven-co-ordinate dithiocarbamate complexes

Complex

8

- 5.07 (s, 4 H, CH₂), 7.37 (s, 10 H, Ph) 2
- 4.76 (s, 2 H, CH₂), 4.88 (s, 2 H, CH₂), 7.4 (s, 10 H, Ph) 3.31 (s, 3 H, CH₃), 3.57 (s, 3 H, CH₃), 7.38 (s, 15 H, Ph) 3
- 3.40 (s, 3 H, CH₃), 3.47 (s, 3 H, CH₃), 7.51 (s, 15 H, Ph) 4
- 5 2.73 (s, 3 H, CH₃), 3.47 (s, 3 H, CH₃), 7.45 (s, 15 H, Ph
- 1.18 (m, 6 H, CH₃), 3.89 (m, 4 H, CH₂), 7.53 (m, 15 H, Ph)
- 7 $1.4 (t, J = 7.8, 6 H, CH_3), 3.92 (m, 4 H, CH_2), 7.34 (m, J)$ 15 H, Ph)
 - $1.26 (t, J = 6.6, 6 H, CH_3), 3.91 (m, 4 H, CH_2), 7.39 (m, 4 H, CH_2)$ 15 H, Ph)
- 4.89 (s, 4 H, CH₂), 7.31, 7.39, 7.47 (m, 25 H, Ph)
- 10 4.78 (s, 2 H, CH₂), 5.07 (s, 2 H, CH₂), 7.35, 7.61, (m,
- 25 H, Ph)
- 4.85 (m, 4 H, CH₂), 7.39 (m, 25 H, Ph) 11
- 2.79 (s, 3 H, CH₃), 3.11 (s, 3 H, CH₃), 7.4 (s, 15 H, Ph) 12
- 13 2.61 (s, 3 H, CH₃), 3.25 (s, 3 H, CH₃), 7.48 (s, 15 H, Ph)
- 14 2.72 (s, 3 H, CH₃), 3.24 (s, 3 H, CH₃), 7.39 (s, 15 H, Ph)
- 15 1.18 (m, 6 H, CH₃), 3.26 (m, 2 H, CH₂), 3.57 (m, 2 H, CH₂), 7.38 (m, 15 H, Ph)
- $0.96 (t, J = 7.2, 6 H, CH_3), 3.16 (q, J = 7.8, 2 H, CH_2),$ 16 $3.81 (m, 2 H, CH_2), 7.37 (m, 15 H, Ph)$ 1.41 (t, $J = 8.4, 6 H, CH_3), 3.75 (m, 4 H, CH_2), 7.36$
- 17 (m, 15 H, Ph)
- 18 4.13 (m, 2 H, CH₂), 4.66, 4.85 (m, 2 H, CH₂), 7.29, 7.39, 7.45 (m, 25 H, Ph)
- 4.75, 4.85, 5.03 (m, 4 H, CH₂), 7.34 (s, 25 H, Ph) 19
- 4.7, 4.85, 5.08 (m, 4 H, CH₂), 7.39 (s, 25 H, Ph) 20
- 1.32 (t, J = 6.6, 6 H, $CH_2\bar{C}H_3$), 3.92 (m, 4 H, CH_2CH_3), 21 4.94 (s, 4 H, CH₂Ph), 7.32, 7.52 (m, 25 H, Ph)
- 22 3.42 (s, 6 H, NCH₃), 4.96 (s, 4 H, CH₂Ph), 7.36 (s, 25 H, Ph) 23 1.26 (m, 6 H, CH₂CH₃), 3.92 (m, 4 H, CH₂CH₃), 4.91
- (5, 4 H, CH₂Ph), 5.3 (s, 1 H, CH₂Cl₂), 7.31, 7.36 (m, 25 H. Ph) 1.18 (m, 6 H, CH₂CH₃), 3.11 (s, 6 H, NCH₃), 3.56 (m, 24
 - 4 H, CH₂CH₃), 7.32 (s, 15 H, Ph)
- 3.3 (s, 6 H, NCH₃), 4.84 (s, 4 H, CH₂Ph), 7.31, 7.35, 7.52 25 (m, 25 H, Ph) 26
- 1.3 (t, J = 8.4, 6 H, CH₂CH₃), 3.15, 3.25 (q, J = 6, 4 H, CH₂CH₃), 4.9 (s, 4 H, CH₂Ph), 7.3, 7.35, 7.51, 7.69 (m, 25 H, Ph)
- 27 1.42 (t, J = 7.2, 6 H, CH₂CH₃), 3.0, 3.14 (q, J = 8.4, 4 H, CH₂CH₃), 7.33 (s, 10 H, Ph)
- 29 4.94 (s, 8 H, CH₂), 7.36 (s, 35 H, Ph)
- 30 4.84 (s, 8 H, CH₂), 7.31 (s, 35 H, Ph)
- 4.89 (s, 8 H, CH₂), 7.32 (s, 35 H, Ph) 4.9 (s, 8 H, CH₂), 7.36 (s, 35 H, Ph) 31
- 32
- * Spectra recorded in CDCl₃ (25 °C) and referenced to SiMe₄; J values in Hz; s = singlet, d = doublet, t = triplet, q = quartet and m =multiplet.

when treated in situ with Na[S2CNR'2] afforded good yields of the bright red complexes [W(CO)₂(PPh₃)(S₂CNR₂)- $(S_2 CNR'_2)$] 24–26. These complexes are remarkably stable and do not appear to disproportionate in solution. However, the triphenyl-arsine and stibine complexes [WI(CO)₃L(S₂CNR₂)] react in situ with 1 equivalent of Na[S2CNR'2] to give the tricarbonyl complexes $[W(CO)_3(S_2CNR_2)(S_2CNR_2)]$. These complexes were very unstable and disproportionated in solution, however, $[W(CO)_3(S_2CNEt_2)\{S_2CN(CH_2Ph)_2\}]$ 27 was isolated and fully characterised. This difference in reaction type between PPh₃ and the more weakly co-ordinated AsPh₃ and SbPh₃ complexes is illustrated in Scheme 1. An explanation for this behaviour may be that the monodentate dithiocarbamate initially formed from iodide displacement prefers to displace carbon monoxide rather than the strongly bonded triphenylphosphine ligand, whereas the more weakly bonded (and larger) triphenyl-arsine and -stibine ligands are displaced in preference to carbon monoxide in these complexes. The lowtemperature $(-70 \,^{\circ}\text{C}, \text{CD}_2\text{Cl}_2)^{13}\text{C}$ NMR spectra of the seven-

[W(CO)2(PPh3)(S2CNR2)(S2CNR2)] $[W(CO)_3(S_2CNR_2)(S_2CNR'_2)]$ Scheme 1 (i) Na[S₂CNR'₂]; (ii) $L = PPh_3$, -CO; (iii) $L = AsPh_3$ or SbPh₃, -AsPh₃ or SbPh₃

co-ordinate mixed dithiocarbamate complex [W(CO)2(PPh3)- $(S_2CNMe_2){S_2CN(CH_2Ph)_2}$ 25 shows carbonyl resonances at 8 204.62, 207.42, 212.23 and 212.62 ppm. From these data it appears that there is no carbonyl ligand in the capping position (no very low-field resonance) which is confirmed by the X-ray crystal structure²⁴ of the related bis(diethyldithiocarbamate) complex [W(CO)₂(PPh₃)(S₂CNEt₂)₂] shown below, which has a 4:3 tetragonal base-trigonal base geometry.

The bis(acetonitrile)molybdenum complex [MoI2(CO)3-(NCMe)₂] reacts in CH₂Cl₂ with 2 equivalents of Na[S₂- $CNEt_2$]·3H₂O eventually to afford the oxide $[Mo_2O_3]$ - $(S_2CNEt_2)_4$] (see Experimental section) previously reported by Colton and Rose.²³ They prepared this type of complex by oxidation in acetone of $[Mo(CO)_2L(S_2CNR_2)_2]$. It could be that the water of crystallisation in $Na[S_2CNEt_2]\cdot 3H_2O$ is providing the oxygen for the formation of the oxo-complex $[Mo_2O_3(S_2CNEt_2)_4]$. It is interesting that they found ²³ the oxidation of $[Mo(CO)_2L(S_2CNR_2)_2]$ in CCl_4 -benzene gave oxides of empirical formulae [MoO2(S2CNR2)2]. As expected, reaction of the tungsten complex [WI2(CO)3(NCMe)2] with 2 equivalents of Na[S2CNEt2]·3H2O afforded the tricarbonyl seven-co-ordinate compound [W(CO)₃(S₂CNEt₂)₂] 28. Tricarbonyl tungsten bis(dithiocarbamates) of this type have been previously reported, and the X-ray crystal structure of [W- $(CO)_3(S_2CNMe_2)_2$ has been determined and is shown below.²⁵

Reaction of the molybdenum complexes [MoI₂(CO)₃-(NCMe)L] (L = PPh₃, AsPh₃ and SbPh₃) with 2 equivalents of Na[S2CN(CH2Ph)2] afforded the seven-co-ordinate complexes $[Mo(CO)_2L{S_2CN(CH_2Ph)_2}_2]$ which were identified by infrared spectroscopy, e.g. v(CO)/cm⁻¹ (CHCl₃) 1920 and 1840 (L = PPh₃), 1922 and 1835 (L = AsPh₃) and 1925 and 1840 (L = SbPh₃). These complexes were extremely airsensitive and it was difficult to obtain satisfactory analytical data. However, the compound $[Mo(CO)_2(SbPh_3){S_2CN(CH_2-Ph)_2}_2]$ **29** was isolated and fully characterised. The considerably more air-stable tungsten complexes $[W(CO)_2L-{S_2CN(CH_2Ph)_2}_2]$ **30–32** were prepared by treating $[WI_2(CO)_3(NCMe)L]$ in situ with 2 equivalents of Na $[S_2CN(CH_2Ph)_2]$. The low-temperature $(-70 \text{ °C}, CD_2Cl_2)^{13}C$ NMR spectra of **30** and **32** showed carbonyl resonances at δ 207.35 and 212.68 and 208.06, 208.33 and 209.59 ppm respectively. These resonances are typical for carbonyl ligands in normal octahedral environments and the structure is likely to be similar to that shown for $[W(CO)_2(PPh_3)(S_2CNEt_2)_2]$,²⁴ *i.e.* a 4:3 tetragonal base–trigonal base geometry.

Experimental

All reactions described were carried out under an atmosphere of dry nitrogen unless otherwise stated using standard Schlenkline techniques. The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) were prepared by the published procedure.¹⁷ All chemicals used were purchased from commercial sources. Proton and ¹³C NMR spectra were recorded on either a JEOL FX60 or a Bruker WH 400 spectrometer and calibrated against tetramethylsilane, infrared spectra on a Perkin-Elmer 197 spectrophotometer. Elemental analysis (C, H and N) were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas) by Mr. E. Lewis of the Department of Chemistry, University of Wales, Bangor. Molecular weights were determined by Rast's method ¹⁹ using camphor (bornan-2-one) as the solvent. Magnetic susceptibilities were determined using a Johnson-Matthey magnetic susceptibility balance.

[{Mo(μ -I)(CO)₃[S₂CN(CH₂Ph)₂]}₂] 1.—To [MoI₂(CO)₃-(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added Na[S₂CN(CH₂Ph)₂] (0.286 g, 0.968 mmol) and MeOH (10 cm³). The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the black crystalline solid [{Mo(μ -I)(CO)₃-[S₂CN(CH₂Ph)₂]₂] (yield = 0.35 g, 62%) which was recrystallised from CH₂Cl₂; M_r 1094 (calc. 1158). A similar reaction of [WI₂(CO)₃(NCMe)₂] with an

A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of Na $[S_2CN(CH_2Ph)_2]$ afforded $[\{W(\mu-I)-(CO)_3[S_2CN(CH_2Ph)_2]\}_2]$ 2. See Table 1 for colour and yield; M_r 1027 (calc. 1334).

[WI(CO)₃(SbPh₃)(S₂CNMe₂)] 14.—To [WI₂(CO)₃(NC-Me)₂] (0.222 g, 0.368 mmol) dissolved in CH₂Cl₂-MeOH (1:1, 20 cm³) with continuous stirring under a stream of nitrogen was added SbPh₃ (0.130 g, 0.368 mmol). After stirring for 5 min, Na[S₂CNMe₂]-2H₂O (0.066 g, 0.368 mmol) was added and the mixture stirred for 25 min. Removal of solvent *in vacuo* afforded a brown powder which was dissolved in CH₂Cl₂ and filtered. Removal of solvent *in vacuo* gave orange crystals of [WI(CO)₃(SbPh₃)(S₂CNMe₂)] 14; yield of pure product = 0.206 g, 65%.

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L (L = PPh₃, AsPh₃ or SbPh₃) and Na[S₂CNMe₂]·2H₂O gave the complexes $[MI(CO)_3L(S_2CNMe_2)]$ **3–5**, **12** and **13**. Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3-(NCMe)L]$ and Na[S₂CNMe₂]·2H₂O $\longrightarrow [MI(CO)_3L-(S_2CNMe_2)] + 2NCMe + NaI at 25 °C are:$ **3**(M = Mo), L =PPh₃, 1 min; Na[S₂CNMe₂]·2H₂O, 30 min;**4**(M = Mo),L = AsPh₃, 3 min; Na[S₂CNMe₂]·2H₂O, 27 min;**5**(M = Mo),L = SbPh₃, 5 min; Na[S₂CNMe₂]·2H₂O, 25 min. Similar timeswere recorded for the tungsten complexes**12–14**. See Table 1 forcolours and yields.

 $[Mol(CO)_3(PPh_3)(S_2CNEt_2)]$ 6.—To $[Mol_2(CO)_3(NC-Me)_2]$ (0.21 g, 0.407 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was

J. CHEM. SOC. DALTON TRANS. 1991

added PPh₃ (0.107 g, 0.408 mmol). After stirring for 1 min, Na[S₂CNEt₂]-3H₂O (0.092 g, 0.408 mmol) was added and the mixture was stirred for 2 h. After filtration, removal of solvent *in* vacuo gave brown crystals of [MoI(CO)₃(PPh₃)(S₂CNEt₂)] **6** (yield = 0.16 g, 55%), which were recrystallised from CH₂Cl₂.

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L (L = PPh₃, AsPh₃ or SbPh₃) and Na[S₂CNEt₂]·3H₂O gave the complexes $[MI(CO)_3L(S_2CNEt_2)]$. Reaction times for $[MI_2-(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3(NCMe)L]$ and Na-[S₂CNEt₂]·3H₂O $\longrightarrow [MI(CO)_3L(S_2CNEt_2)] + 2NCMe$ at 25 °C are: **6** (M = Mo), L = PPh₃, 1 min; Na[S₂CNEt₂]·3H₂O, 120 min; **7** (M = Mo), L = AsPh₃, 3 min; Na[S₂CNEt₂]·3H₂O, 66 min; **8** (M = Mo), L = SbPh₃, 5 min; Na[S₂CNEt₂]·3H₂O, 180 min. Similar times were recorded for the tungsten complexes **15–17**. See Table 1 for colours and yields.

[MoI(CO)₃(PPh₃){S₂CN(CH₂Ph)₂}] 9.—To [MoI₂(CO)₃-(NCMe)₂] (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³), with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring for 1 min, Na[S₂CN(CH₂Ph)₂] (0.268 g, 0.968 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the black crystalline solid [MoI(CO)₃(PPh₃)-{S₂CN(CH₂Ph)₂}] 9 (yield 0.47 g, 58%), which was recrystallised from CH₂Cl₂.

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with L (L = PPh₃, AsPh₃ or SbPh₃) and Na[S₂CN(CH₂Ph)₂] gave the complexes $[MI(CO)_3L\{S_2CN(CH_2Ph)_2\}]$. Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \longrightarrow [MI_2(CO)_3(NCMe)L]$ and Na[S₂CN(CH₂Ph)₂] $\longrightarrow [MI(CO)_3L\{S_2CN(CH_2Ph)_2\}] + 2NCMe$ at 25 °C are: 9 (M = Mo), L = PPh₃, 1 min; Na[S₂CN(CH₂Ph)₂], 18 h; 10 (M = Mo), L = AsPh₃, 3 min: Na[S₂CN(CH₂Ph)₂], 18 h; 11 (M = Mo), L = SbPh₃, 5 min; Na[S₂CN(CH₂Ph)₂], 18 h. Similar times were recorded for the tungsten complexes 18–20. See Table 1 for colours and yields.

Reactions of [MoI(CO)₃L(S₂CNR₂)] with Na[S₂CNR'₂].-- $[MoI(CO)_3(PPh_3)(S_2CNMe_2)] \quad with \quad Na[S_2CNEt_2].$ To $[MoI_2(CO)_3(NCMe)_2]$ (0.50 g, 0.969 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.969 mmol). After stirring for 1 min, Na[S₂CNMe₂]·2H₂O (0.174 g, 0.969 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which Na[S2CNEt2]·3H2O (0.218 g, 0.969 mmol) and MeOH (10 cm³) were added and the mixture stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed in vacuo to give an orange product which rapidly formed a purple product, which was washed in diethyl ether to give $[Mo_2O_3(S_2CNMe_2)_2(S_2CNEt_2)_2]$ (yield 0.27 g, 72%) and recrystallised from CH₂Cl₂ (Found: C, 25.0; H, 4.3; N, 7.0. $C_{16}H_{32}Mo_2N_4O_3S_8$ requires C, 24.7; H, 4.2; N, 7.2%). ¹H NMR (CDCl₃, 25 °C): 81.2, 1.32, 1.43 (t, J6, 12 H, CH₂CH₃), 3.42 (s, 12 H, NCH₃), 3.62, 3.76, 3.88 and 4.0 (q, J 7.2 Hz, 8 H, CH_2CH_3).

Similar reactions of $[MoI_2(CO)_3(NCMe)_2]$ with L (L = AsPh₃ or SbPh₃), followed by Na[S₂CNMe₂]·2H₂O and Na[S₂CNEt₂]·3H₂O gave the purple complex $[Mo_2O_3-(S_2CNMe_2)_2(S_2CNEt_2)_2]$.

Reaction times for $[MoI(CO)_3NCMe)_2] + L \longrightarrow [MoI_2-(CO)_3(NCMe)L] + Na[S_2CNMe_2]\cdot2H_2O and Na[S_2CNEt_2]\cdot$ $3H_2O → <math>[Mo_2O_3(S_2CNMe_2)_2(S_2CNEt_2)_2] + 2NCMe$ at 25 °C are: M = Mo, L = AsPh_3, 3 min; Na[S_2CNMe_2]\cdot2H_2O, 2 h; Na[S_2CNEt_2]\cdot3H_2O, 18 h; yield = 66% (Found: C, 24.8; H, 4.2; N, 6.8. C₁₆H_{32}Mo_2N_4O_3S_8 requires C, 24.7; H, 4.2; N, 7.2%); M = Mo, L = SbPh_3, 5 min; Na[S_2CNMe_2]\cdot2H_2O, 2 h; Na[S_2CNEt_2]\cdot3H_2O, 18 h; yield = 45% (Found: C, 24.6; H, 4.2; N, 6.8. C₁₆H_{32}Mo_2N_4O_3S_8 requires C, 24.7; H, 4.2; N, 7.2%). $[Mo(CO)_{2}(PPh_{3})(S_{2}CNEt_{2})\{S_{2}CN(CH_{2}Ph)_{2}\}] 21.-To [MoI_{2}(CO)_{3}(NCMe)_{2}] (0.50 g, 0.969 mmol) dissolved in CH_{2}Cl_{2} (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh_{3} (0.254 g, 0.969 mmol). After stirring for 1 min, Na[S_{2}CNEt_{2}]\cdot3H_{2}O (0.218 g, 0.969 mmol) and MeOH were added. The mixture was stirred for 2 h after which Na[S_{2}CN(CH_{2}Ph)_{2}] (0.268 g, 0.969 mmol) and MeOH (10 cm³) were added and the mixture was stirred for 18 h. The solvents were removed$ *in vacuo*and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed*in vacuo* $to give the brown crystalline product [Mo(CO)_{2}(PPh_{3})(S_{2}CNEt_{2})\{S_{2}CN(CH_{2}Ph)_{2}\}] 21, yield = 0.67 g (82%), which was recrystallised from CH₂Cl₂.$

Similar reactions of $[MoI_2(CO)_3(NCMe)_2]$ with SbPh₃ followed by Na[S₂CNMe₂]·2H₂O or Na[S₂CNEt₂]·3H₂O and Na[S₂CN(CH₂Ph)₂] gave the complexes $[Mo(CO)_2(SbPh_3)-(S_2CNR_2){S_2CN(CH_2Ph)_2}]$ (R = Me or Et). Reaction times for $[MoI_2(CO)_3(NCMe)_2] + SbPh_3 \longrightarrow [MI_2(CO)_3-(NCMe)(SbPh_3)] + Na[S_2CNMe_2]·2H_2O or Na[S_2CNEt_2]·$ $3H₂O followed by Na[S₂CN(CH₂Ph)₂] <math>\longrightarrow [Mo(CO)_2-(SbPh_3)(S_2CNR_2){S_2CN(CH_2Ph)_2}] + 2NCMe at 25 °C are:$ **22** $(M = Mo), SbPh₃, 5 min; Na[S₂CNMe_2]·2H₂O, 2 h;$ Na[S₂CN(CH₂Ph)₂], 18 h;**23**(M = Mo), SbPh₃, 5 min;Na[S₂CNEt₂]·3H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h. SeeTable 1 for colours and yields.

Reactions of $[WI(CO)_3L(S_2CNR_2)]$ with $Na[S_2CNR'_2]$.-[W(CO)₂(PPh₃)(S₂CNMe₂)(S₂CNEt₂)] **24**. To $[WI_2(CO)_3(NCMe)_2]$ (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.2172 g, 0.828 mmol). After stirring for 1 min, $Na[S_2CNMe_2]\cdot 2H_2O$ (0.148 g, 0.826 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which $Na[S_2CNEt_2]\cdot 3H_2O$ (0.187 g, 0.829 mmol) and MeOH (10 cm³) were added, and the mixture stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give a bright red product [W(CO)₂(PPh₃)-(S₂CNMe₂)(S₂CNEt₂)] **24** (yield = 0.54 g, 85%), which was recrystallised from CH₂Cl₂.

Similar reactions of $[WI_2(CO)_3(NCMe)_2]$ with PPh₃ and Na[S₂CNR₂] (R = Me or Et) followed by Na[S₂CN-(CH₂Ph)₂] gave the complexes $[W(CO)_2(PPh_3)(S_2CNR_2)-$ {S₂CN(CH₂Ph)₂}]. Reaction times for $[WI(CO)_2(NCMe)_2] +$ PPh₃ $\longrightarrow [WI_2(CO)_3(NCMe)(PPh_3)]$ and Na[S₂CNR₂]. xH₂O (R = Me or Et, x = 2 or 3) followed by Na[S₂CN-(CH₂Ph)₂] $\longrightarrow [W(CO)_2(PPh_3)(S_2CNR_2){S_2CN(CH_2Ph)_2}]$ + 2NCMe at 25 °C are: **25** (M = W), PPh₃, 1 min; Na[S₂CN-Me₂]·2H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h; **26** (M = W), PPh₃, 1 min; Na[S₂CNEt₂]·3H₂O, 2 h; Na[S₂CN(CH₂Ph)₂], 18 h.

 $[W(CO)_3(S_2CNEt_2){S_2CN(CH_2Ph)_2}]$ 27. To $[WI_2(CO)_3(NCMe)_2]$ (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added AsPh₃ (0.2535 g, 0.828 mmol). After stirring for 3 min, Na[S₂CNEt₂]-3H₂O (0.187 g, 0.829 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 2 h, after which Na[S₂CN(CH₂Ph)₂] (0.245 g, 0.827 mmol) and MeOH (10 cm³) were added and the mixture stirred for 18 h. The solvents were removed *in vacuo*, and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to afford a golden-brown product which after washing with diethyl ether and recrystallisation from CH₂Cl₂ gave the brown complex $[W(CO)_3(S_2CNEt_2){S_2CN(CH_2Ph)_2}]$ 27 (yield of pure product = 0.12 g, 21%).

Reactions of $[MI_2(CO)_3(NCMe)_2]$ with 2 equivalents of $Na[S_2CNEt_2]\cdot 3H_2O$.—To $[MoI_2(CO)_3(NCMe)_2]$ (0.25 g, 0.485 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added $Na[S_2CNEt_2]\cdot 3H_2O$ (0.218 g, 0.968 mmol). After stirring for

160 min, and filtration, removal of the solvent *in vacuo* gave purple crystals of $[Mo_2O_3(S_2CNEt_2)_4]$, yield of pure product = 0.14 g (69%) (Found: C, 28.5; H, 4.8; N, 6.6. $C_{20}H_{40}Mo_2N_4O_3S_8$ requires C, 28.8; H, 4.8; N, 6.7%).

To $[WI_2(CO)_3(NCMe)_2]$ (0.23 g, 0.381 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring was added Na[S₂CNEt₂]·3H₂O (0.172 g, 0.763 mmol). After stirring for 90 min and filtration, removal of solvent *in vacuo* gave brown crystals of $[W(CO)_3(S_2CNEt_2)_2]$ **28**, yield of pure product = 0.12 g (56%).

Reactions of $[MI_2(CO)_3(NCMe)L]$ with 2 equivalents of $Na[S_2CN(CH_2Ph)_2]$.—To $[MoI_2(CO)_3(NCMe)_2]$ (0.50 g, 0.969 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.254 g, 0.968 mmol). After stirring for 1 min, $Na[S_2CN(CH_2Ph)_2]$ 0.572 g, 1.936 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH_2Cl_2 and filtered to remove NaI. The solvent was removed *in vacuo* to give the purple product $[Mo_2O_3\{S_2CN(CH_2Ph)_2\}_4]$ (yield 0.26 g, 47%) which was washed with ether to remove any unco-ordinated PPh₃ and recrystallised from CH_2Cl_2 (Found: C, 54.2; H, 4.2; N, 4.4. $C_{60}H_{56}Mo_2N_4O_3S_8$ requires C, 54.2; H, 4.3; N, 4.2%).

A similar reaction of $[MoI_2(CO)_3(NCMe)_2]$ with AsPh₃, followed by 2 equivalents of Na[S₂CN(CH₂Ph)₂] gave the identical purple complex $[Mo_2O_3{S_2CN(CH_2Ph)_2}_4]$. Reaction times for $[MoI_2(CO)_3(NCMe)_2] + AsPh_3 \longrightarrow [MoI_2(CO)_3-(NCMe)(AsPh_3)] + 2Na[S_2CN(CH_2Ph)_2] \longrightarrow [Mo_2O_3-{S_2CN(CH_2Ph)_2}_4]$: AsPh₃, 3 min; 2Na[S₂CN(CH₂Ph)_2], 18 h (Found: C, 54.4; H, 4.3; N, 4.7. C₆₀H₅₆Mo_2N₄O₃S₈ requires C, 54.2; H, 4.3; N, 4.2%), yield = 42%. ¹H NMR (CDCl₃, 25 °C): δ 4.94 (s, 16 H, CH₂Ph) and 7.33 (s, 40 H, Ph).

 $[Mo(CO)_2(SbPh_3){S_2CN(CH_2Ph)_2}_2$ **29.** To $[MoI_2(CO)_3(NCMe)_2]$ (0.50 g, 0.969 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added SbPh₃ (0.342 g, 0.969 mmol). After stirring for 5 min, Na[S₂CN(CH₂Ph)₂] (0.572 g, 1.936 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the brown crystalline product [Mo(CO)₂(SbPh₃)-{S₂CN(CH₂Ph)₂}_2] **29** (yield = 0.55 g, 54%), which was recrystallised from CH₂Cl₂.

 $[W(CO)_2(PPh_3){S_2CN(CH_2Ph)_2}_2]$ 30. To $[WI_2(CO)_3-(NCMe)_2]$ (0.50 g, 0.828 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added PPh₃ (0.2172 g, 0.828 mmol). After stirring for 1 min, Na[S₂CN(CH₂Ph)₂] (0.493 g, 1.654 mmol) and MeOH (10 cm³) were added. The mixture was stirred for 18 h. The solvents were removed *in vacuo* and the resulting product resolvated in CH₂Cl₂ and filtered to remove NaI. The solvent was removed *in vacuo* to give the red crystalline product [W(CO)₂(PPh₃)-{S₂CN(CH₂Ph)₂}_2] 30 (yield = 0.72 g, 83%), which was recrystallised from CH₂Cl₂.

Similar reactions of $[WI_2(CO)_3(NCMe)_2]$ with L (L = AsPh₃ or SbPh₃) and 2 equivalents of Na[S₂CN(CH₂Ph)₂] gave the complexes $[W(CO)_2L{S_2CN(CH_2Ph)_2}_2]$. Reaction times for $[WI_2(CO)_3(NCMe)_2] + L \longrightarrow [WI_2(CO)_3(NC-Me)L]$ and $2Na[S_2CN(CH_2Ph)_2] \longrightarrow [W(CO)_2L{S_2CN-(CH_2Ph)_2}_2] + 2NCMe at 25 °C are:$ **31**, L = AsPh₃, 3 min; $<math>2Na[S_2CN(CH_2Ph)_2]$, 18 h; **32**, L = SbPh₃, 5 min; $2Na[S_2CN(CH_2Ph)_2]$, 18 h. See Table 1 for colours and yields.

References

- 1 D. Coucouvanis, Prog. Inorg. Chem., 1970, 23, 233.
- 2 D. Coucouvanis, Prog. Inorg. Chem., 1979, 26, 301.
- 3 H. B. Abrahamson, M. L. Freeman, M. B. Hussain and D. Van der Helm, *Inorg. Chem.*, 1984, 23, 2286.
- 4 C. J. Young, S. A. Roberts and J. H. Enemark, *Inorg. Chem.*, 1986, 25, 3667.

J. CHEM. SOC. DALTON TRANS. 1991

- 5 J. W. McDonald, J. L. Corbin and W. E. Newton, J. Am. Chem. Soc., 1975, 97, 1970.
- 6 E. A. Maata, R. A. D. Wentworth, W. E. Newton, J. W. McDonald and G. D. Watt, J. Am. Chem. Soc., 1978, 100, 1320.
 7 R. Colton, G. R. Scollary and I. B. Tomkins, Aust. J. Chem., 1968, 21,
- 8 R. Colton and G. R. Scollary, Aust. J. Chem., 1968, 21, 1427.
- 9 G. J.-J. Chen, R. O. Yelton and I. B. Tomkins, Inorg. Chim. Acta, 1977. 22, 249.
- 10 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 1980, 102, 6568. 11 J. L. Tempeton and B. C. Ward, Organometallics, 1982, 1, 1007.
- 12 J. A. Broomhead and C. G. Young, Aust. J. Chem., 1982, 35, 277.
- 13 B. Zhuang, L. Huang, L. He, Y. Yang and J. Lu, Inorg. Chim. Acta,
- 1988, 145, 225. 14 E. Carmona, K. Doppert, J. M. Marin, M. L. Poreda, L. Sanchez and R. Sanchez-Delgado, *Inorg. Chem.*, 1984, **23**, 530.
- 15 J. L. Templeton, Adv. Chem. Ser., 1979, 173, 263.

- 16 P. K. Baker and S. G. Fraser, Transition Met. Chem. (Weinheim, Ger.), 1986, 11, 273.
- 17 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 1986, 309. 319.
- 18 P. K. Baker and S. G. Fraser, Transition Met. Chem. (Weinheim, Ger.), 1987, 12, 560.
- 19 F. G. Mann and B. C. Saunders, Practical Organic Chemistry, Longmans Green and Co., London, 1954, pp. 342–344.
 20 F. A. Cotton, L. R. Falvello and J. H. Meadows, *Inorg. Chem.*, 1985,
- **24**, 514.
- 21 M. G. B. Drew, Prog. Inorg. Chem., 1977, 23, 67.
- 22 R. Colton and J. Kevekordes, Aust. J. Chem., 1982, 35, 895.
- 23 R. Colton and G. G. Rose, Aust. J. Chem., 1970, 23, 1111. 24 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 1981, 103, 3743.
- 25 J. L. Templeton and B. C. Ward, Inorg. Chem., 1980, 19, 1753.

Received 22nd June 1990; Paper 0/02804E