HETEROCYCLES, Vol. 93, No. 2, 2016, pp. 512 - 528. © 2016 The Japan Institute of Heterocyclic Chemistry Received, 25th August, 2015, Accepted, 30th September, 2015, Published online, 28th October, 2015 DOI: 10.3987/COM-15-S(T)22

# PD(II)-CATALYZED LIGAND-CONTROLLED SYNTHESIS OF 2,3-DIHYDROISOXAZOLE-4-CARBOXYLATES AND BIS(2,3-DIHYDROISOXAZOL-4-YL)METHANONES

# Tomohiro Ariyama, Taichi Kusakabe,\* Keita Sato, Mifuyu Funatogawa, Dong Lee, Keisuke Takahashi, and Keisuke Kato\*

Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan. E-mail: taichi.kusakabe@phar.toho-u.ac.jp, kkk@phar.toho-u.ac.jp

Dedicated to Professor Dr. Lutz F. Tietze on the occasion of his 75th birthday

**Abstract** – Pd(II)-catalyzed ligand-controlled switching between cyclization–carbonylation and cyclization–carbonylation–cyclization-coupling (CCC-coupling) reactions of propargylic *N*-hydroxylamines was investigated. The use of a [Pd(tfa)<sub>2</sub>(box)] catalyst in MeOH afforded symmetric ketones bearing two 2,3-dihydroisoxazoles in good yields; replacing the catalyst and solvent with Pd(tfa)<sub>2</sub> and MeOH/DMSO led to the formation of methyl 2,3-dihydroisoxazole-4-carboxylates in good yields.

## **INTRODUCTION**

2,3-Dihydroisoxazoles ( $\Delta^4$ -isoxazolines) are versatile heterocycles known for their potent biological activities<sup>1</sup> as well as being useful building blocks for synthesis<sup>2</sup> (Figure 1). Diarylketones are also frequently present in natural products and pharmaceuticals,<sup>3</sup> *e.g.*, raloxifene (selective estrogen receptor modulator used for treatment of osteoporosis), benzbromarone (antipodagric), and amiodarone (antiarrhythmic). The importance of 2,3-dihydroisoxazoles in both chemistry and biology has led to various approaches<sup>2</sup> for their synthesis: (i) [3+2] cycloadditions between nitrones and alkynes,<sup>2,4</sup> (ii) oxaziridine ring opening,<sup>5</sup> (iii) addition of *N*-hydroxylamines to a 1,3-conjugated enyne<sup>6</sup> or an  $\alpha, \alpha$ -dicyanoolefin,<sup>7</sup> and (iv) a one-pot multicomponent approach by the reaction of an aldehyde with acetohydroxamic acid and malononitrile or methyl cyanoacetate.<sup>8</sup> A variety of heterocycles can be synthesized by transition-metal-catalyzed cyclization of unsaturated systems.<sup>9</sup> Propargylic

*N*-hydroxylamines are a good precursor for the synthesis of 2,3-dihydroisoxazoles,  $\frac{10}{10}$  but the cyclization–carbonylation reaction of propargylic *N*-hydroxylamines has not been investigated.



Figure 1. Structures of biologically active 2,3-dihydroisoxazoles and diarylketones

Recently, we reported a cyclization-carbonylation-cyclization-coupling reaction (CCC-coupling reaction) of propargyl acetates,  $\frac{11a}{2}$  amides,  $\frac{11a}{2}$   $\gamma$ -propynyl-1,3-diketones,  $\frac{11b}{N}$  N-propargylanilines,  $\frac{11c}{2}$ o-alkynylphenols,  $\frac{11c}{1}$  and propargyl ureas  $\frac{11d}{1}$  catalyzed by palladium(II)-bisoxazoline (box) complexes. We also verv recently reported Pd(II)-catalyzed ligand-controlled switching between cyclization–carbonylation and CCC-coupling reactions of  $\alpha,\beta$ -alkynic hydrazones, <u>11e,h</u> (*o*-alkynylphenyl) (methoxymethyl) sulfides, <sup>11f,h</sup> and 2-alkynylanilines<sup>11g</sup> (Scheme 1). In this transformation, the triple bond of the substrate coordinates to palladium(II) and undergoes nucleophilic attack by the intramolecular nucleophile X, followed by CO insertion to produce the acyl palladium intermediate A. Coordination of the triple bond of a second molecule induces the second cyclization,<sup>12</sup> then reductive elimination leads to the formation of a ketone bearing two heterocyclic groups. Methanolysis of the acyl palladium intermediate A gives the ester product as a result of cyclization-carbonylation. If the intramolecular cyclization reactions of propargylic N-hydroxylamine could be expanded to include carbonylative (coupling) reactions, the process would be a synthetically valuable method for direct preparation of ketones bearing two 2,3-dihydroisoxazole groups and 2,3-dihydroisoxazole-4-carboxylates. Herein, we investigated Pd(II)-catalyzed ligand-controlled switching between cyclization-carbonylation and CCC-coupling reactions of propargylic *N*-hydroxylamines.



Scheme 1. Reaction courses of cyclization–carbonylation and cyclization–carbonylation–cyclization-coupling (CCC-coupling) in propargylic compounds

## **RESULTS AND DISCUSSION**

Initially, we selected **1a** as a standard substrate to search for potential catalysts and solvents (Table 1). The reaction of 1a with Pd(tfa)<sub>2</sub> (5 mol%) and p-benzoquinone (1.5 equiv.) in methanol under a carbon monoxide atmosphere (balloon) at 0 °C afforded the 2,3-dihydroisoxazole-4-carboxylate derivative 3a in 77% yield (Table 1, entry 1). The use of [PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] was ineffective, affording **3a** in low yield along with recovery of substrate 1a (74%) (Table 1, entry 2). The use of [PdCl<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>] and [Pd(tfa)<sub>2</sub>(bipy)] generated the dimeric ketone 2a in 37-56% yield along with 5-38% yield of ester 3a (Table 1, entries 3 and 4). Next, an attempt was made to use the box-Pd<sup>II</sup> complexes according to our previous results<sup>11</sup> (Table 1, entries 5-7). Although the use of [Pd(tfa)<sub>2</sub>(L1)] resulted in the formation of 2a in 33% yield together with 54% yield of 3a, [Pd(tfa)<sub>2</sub>(L2)] accelerated the reaction, and the yield of dimeric ketone 2a improved to 89%. It is conceivable that the steric hindrance of L1 inhibited the coordination of the second substrate to palladium, and thus the yield of 2a was decreased. The nature of the counteranion of the palladium complexes somewhat influenced catalytic activity (Table 1, entry 8). Next, according to our previous findings, <u>11g,h</u> mixed solvent (MeOH/DMSO) was tested in the carbonylation reaction of **1a** (Table 1, entries 9-13). The best result was obtained using a 5/1 ratio of MeOH/DMSO, affording 3a in 88% yield (Table 1, entry 11). PdCl<sub>2</sub> and Pd(OAc)<sub>2</sub> were found to be unsuitable catalysts for this reaction (Table 1, entries 12 and 13).

|         | Cbz <sub>N</sub> ∕OH Pd <sup>II</sup><br>↓ <u>p-be</u> | (5 mol%)<br>nzoquinone (1.5 equiv) | u Cbz<br>Bu t       | <b>1−0</b><br><i>n</i> -Bu |                              |                           |
|---------|--------------------------------------------------------|------------------------------------|---------------------|----------------------------|------------------------------|---------------------------|
|         | Ph´ Solv<br>n-Bu <sub>0 °</sub> C                      | ent, CO balloon<br>, Time Ph       | Ph <sup>2</sup> OMe |                            | R R<br>L1 : R = Ph (racemic) |                           |
|         | 1a                                                     | 2a <sup>C</sup>                    | bz                  | 3a                         | <b>-2</b> . K – H            |                           |
| Entry   | Pd <sup>II</sup>                                       | Solvent                            | Time<br>(h)         | Yield of <b>2a</b> (%)     | Yield of <b>3a</b> (%)       | Recovery of <b>1a</b> (%) |
| 1       | Pd(tfa) <sub>2</sub>                                   | MeOH                               | 52                  | -                          | 77                           | -                         |
| 2       | [PdCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> ]  | MeOH                               | 96                  | -                          | 7                            | 74                        |
| 3       | [PdCl <sub>2</sub> (MeCN) <sub>2</sub> ]               | MeOH                               | 96                  | 56                         | 38                           | -                         |
| 4       | [Pd(tfa) <sub>2</sub> (bipy)]                          | MeOH                               | 48                  | 37                         | 5                            | 29                        |
| 5       | $[Pd(tfa)_2(L1)]$                                      | MeOH                               | 96                  | 33                         | 54                           | -                         |
| 6       | $[Pd(tfa)_2(L2)]$                                      | MeOH                               | 24                  | 87                         | 13                           | -                         |
| $7^{1}$ | $[Pd(tfa)_2(L2)]$                                      | MeOH                               | 48                  | 89                         | 9                            | -                         |
| 8       | $[PdCl_2(L2)]$                                         | MeOH                               | 96                  | 42                         | -                            | 43                        |
| 9       | Pd(tfa) <sub>2</sub>                                   | MeOH / DMSO = 3 / 1                | 72                  | -                          | 63                           | 23                        |
| 10      | Pd(tfa) <sub>2</sub>                                   | MeOH / DMSO = 1 / 1                | 48                  | -                          | 57                           | 31                        |
| 11      | Pd(tfa) <sub>2</sub>                                   | MeOH / DMSO = 5 / 1                | 61                  | -                          | 88                           | -                         |
| 12      | PdCl <sub>2</sub>                                      | MeOH / DMSO = 5 / 1                | 72                  | -                          | 28                           | 37                        |
| 13      | $Pd(OAc)_2$                                            | MeOH / DMSO = 5 / 1                | 74                  | -                          | 11                           | 75                        |

Table 1. Optimization of CCC-coupling and cyclization-carbonylation reactions of 1a

1) −20 ~ −10 °C

Having elucidated the optimum conditions for both reactions, we then employed a variety of propargylic *N*-hydroxylamines **1** in the CCC-coupling reaction (Table 2, entries 1-10, condition A). The influence of aryl substituents at the propargylic position ( $R^1 = aryl$ ) was investigated first (Table 2, entries 1-8). The substrate 1b gave good results, similar to that of the parent substrate 1a (Table 2, entry 2). The substrates 1c-1g, bearing an electron-donating or halogen (F, Cl) group at the *para* or *ortho* position, afforded good to excellent yields of 2c-2g (Table 2, entries 3-7). A good yield was obtained by using 1h, containing an alkyl group instead of an aryl group at the propargylic position (Table 2, entry 8). The substrate 1i, bearing an aryl substituent at the propargylic position and at the alkyne terminus, afforded a slightly lower yield (70%) of 2i (Table 2, entry 9). However, terminal alkyne 1j was ineffective under the optimized conditions (entry 10). The reaction pathways were switched by using condition B. Substrates bearing aryl substituents at the propargylic position were investigated; the substrate 1b gave good results (Table 2, entry 12). Propargylic N-hydroxylamines 1c-1g, containing an electron-donating or halogen (F, Cl) group transformed at the para or ortho position, were to the corresponding methyl

2,3-dihydroisoxazole-4-carboxylates **3c-3g** in good yield (Table 2, entries 11-17). The substrates **1h-1i**, bearing alkyl or aryl substituents at the propargylic position and alkyne terminus, afforded good yields of **3h-3i** (Table 2, entries 18 and 19). In contrast, terminal alkyne **1j** gave a complex mixture (Table 2, entry 20).

| Table 2.Substrate scope of CCC-coupling (condition A) and                                                                                                                     |                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                |                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------|-----------------------|--|--|--|--|--|
| cyclization–carbonylation reactions (condition B)                                                                                                                             |                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                |                       |  |  |  |  |  |
|                                                                                                                                                                               | Cbz <sub>N</sub> OH Pa                                         | alladium cat. (5 mol%)<br>benzoquinone (1.5 equ | $\frac{1}{2} \frac{1}{2} \frac{1}$ | $R^2$ $R^1$ $R^1$ | $\sim R^2$ $\bigcirc \downarrow \\ \bigcirc N$ |                       |  |  |  |  |  |
|                                                                                                                                                                               | $R^2$ S                                                        | olvent, CO balloon                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                 | OMe L2                                         |                       |  |  |  |  |  |
|                                                                                                                                                                               | 1                                                              |                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cbz 3             |                                                |                       |  |  |  |  |  |
| Condition A : [Pd(tfa) <sub>2</sub> ( <b>L2</b> )], MeOH (for entries 1-10, Table 2)<br>Condition B : Pd(tfa) <sub>2</sub> , MeOH / DMSO = 5 / 1 (for entries 11-20, Table 2) |                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                |                       |  |  |  |  |  |
| Entry                                                                                                                                                                         | $\mathbb{R}^1$                                                 | R <sup>2</sup>                                  | Temp (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time (h)          | Yield of $2^3$ (%)                             | Yield of <b>3</b> (%) |  |  |  |  |  |
| 1                                                                                                                                                                             | Ph                                                             | <i>n</i> -Bu                                    | -20 ~ -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48                | <b>2a</b> : 89                                 | <b>3a</b> : 9         |  |  |  |  |  |
| 2                                                                                                                                                                             | Ph                                                             | cyclopropyl                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                | <b>2b</b> : 89                                 | <b>3b</b> : 4         |  |  |  |  |  |
| 3                                                                                                                                                                             | 4-MeOC <sub>6</sub> H <sub>4</sub>                             | <i>n</i> -Bu                                    | -20 ~ -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46                | <b>2c</b> : 86                                 | <b>3c</b> : 5         |  |  |  |  |  |
| 4                                                                                                                                                                             | $4-FC_6H_4$                                                    | <i>n</i> -Bu                                    | -20 ~ -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76                | <b>2d</b> : 82                                 | <b>3d</b> : 9         |  |  |  |  |  |
| 5                                                                                                                                                                             | $4-ClC_6H_4$                                                   | <i>n</i> -Bu                                    | -20 ~ -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72                | <b>2e</b> : 81                                 | <b>3e</b> : 10        |  |  |  |  |  |
| 6                                                                                                                                                                             | $2-FC_6H_4$                                                    | <i>n</i> -Bu                                    | <i>−</i> 10 ~ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                | <b>2f</b> : 94                                 | -                     |  |  |  |  |  |
| 7                                                                                                                                                                             | $2-ClC_6H_4$                                                   | Me                                              | <i>−</i> 10 ~ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                | <b>2g</b> : 85                                 | <b>3g</b> : 8         |  |  |  |  |  |
| 8                                                                                                                                                                             | C <sub>6</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> | <i>n</i> -Bu                                    | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                | <b>2h</b> : 86                                 | <b>3h</b> : 13        |  |  |  |  |  |
| <b>9</b> <sup>1</sup>                                                                                                                                                         | Ph                                                             | $4-MeC_6H_4$                                    | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                | <b>2i</b> : 70                                 | <b>3i</b> : 17        |  |  |  |  |  |
| 10                                                                                                                                                                            | Ph                                                             | Н                                               | -20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                | Recovery o                                     | f <b>1j</b> : 44%     |  |  |  |  |  |
| 11                                                                                                                                                                            | Ph                                                             | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                | -                                              | <b>3a</b> : 88        |  |  |  |  |  |
| 12                                                                                                                                                                            | Ph                                                             | cyclopropyl                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                | -                                              | <b>3b</b> :83         |  |  |  |  |  |
| 13 <sup>1</sup>                                                                                                                                                               | 4-MeOC <sub>6</sub> H <sub>4</sub>                             | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                | -                                              | <b>3c</b> : 81        |  |  |  |  |  |
| 14                                                                                                                                                                            | $4-FC_6H_4$                                                    | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                | -                                              | <b>3d</b> : 85        |  |  |  |  |  |
| 15                                                                                                                                                                            | $4-ClC_6H_4$                                                   | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                | -                                              | <b>3e</b> : 88        |  |  |  |  |  |
| 16                                                                                                                                                                            | $2\text{-FC}_6\text{H}_4$                                      | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73                | -                                              | <b>3f</b> : 88        |  |  |  |  |  |
| 17 <sup>2</sup>                                                                                                                                                               | $2-ClC_6H_4$                                                   | Me                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                | -                                              | <b>3g</b> : 89        |  |  |  |  |  |
| 18                                                                                                                                                                            | C <sub>6</sub> H <sub>5</sub> -(CH <sub>2</sub> ) <sub>2</sub> | <i>n</i> -Bu                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                | -                                              | <b>3h</b> : 88        |  |  |  |  |  |
| 19 <sup>1</sup>                                                                                                                                                               | Ph                                                             | 4-MeC <sub>6</sub> H <sub>4</sub>               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                | -                                              | <b>3i</b> : 86        |  |  |  |  |  |
| 20                                                                                                                                                                            | Ph                                                             | Н                                               | 0 ~ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43                | complex                                        | mixture               |  |  |  |  |  |

1) 1,4-Benzoquinone (2.5 equiv) was used. 2) 1,4-Benzoquinone (3.0 equiv) was used.

3) Mixture of diastereomers (ratio =  $1:1 \sim 3:1$ )

Isoxazoles are a major class of five-membered heterocycles and are used for a variety of pharmaceutical and agrochemical products (Figure 2).<sup>13</sup> Accordingly, the synthetic utility of the obtained 2,3-dihydroisoxazoles was shown by conversion to isoxazoles (Scheme 2). Deprotection<sup>14</sup> of **2a** and **3g**, followed by oxidation, afforded the corresponding isoxazoles in 49-86% yield (2 steps).







A plausible mechanism for the CCC-coupling and cyclization–carbonylation reactions of **1** is shown in Scheme 3. Nucleophilic attack by the oxygen atom at the electrophilically activated triple bond is followed by CO insertion to produce the acyl palladium intermediate **I-1**. Under condition A (L = box), coordination of the triple bond of a second molecule (**I-2**) induces the second cyclization, and reductive elimination then leads to the formation of a ketone bearing two 2,3-dihydroisoxazole groups. We believe that the box ligand enhances the  $\pi$ -electrophilicity of palladium(II),<sup>12</sup> thus promoting coordination of the second triple bond to the acyl palladium intermediate **I-1** and leading to the dimerization reaction. Under

condition B, DMSO acts as a neutral ligand instead of a box.<sup>11g,h</sup> Methanolysis of the acyl palladium intermediate **I-1** should be facilitated, giving 2,3-dihydroisoxazole-4-carboxylates **3** in good yields.



Scheme 3. Plausible mechanism for the CCC-coupling and cyclization-carbonylation reactions of 1

In conclusion, we developed an efficient way of switching between CCC-coupling and cyclization–carbonylation reactions of propargylic *N*-hydroxylamines (1) catalyzed by  $Pd^{II}$ . The use of  $[Pd(tfa)_2(box)]$  as a catalyst in MeOH afforded symmetric ketones bearing two 2,3-dihydroisoxazoles in good to excellent yields, whereas replacing the catalyst and solvent with  $Pd(tfa)_2$  and MeOH/DMSO led to the formation of methyl 2,3-dihydroisoxazole-4-carboxylates in good yields. These reactions were general for a wide range of propargylic *N*-hydroxylamines. We have shown that these products can serve as precursors for the preparation of isoxazoles. We are currently investigating additional cascade reactions based on the reaction strategy of CCC-coupling and cyclization–carbonylation presented here for the synthesis of ketones containing two heterocyclic groups and heterocycles-carboxylates.

### **EXPERIMENTAL**

The propargylic *N*-hydroxylamines **1** were prepared by FeCl<sub>3</sub>-catalyzed nucleophilic substitution of corresponding propargylalcohol with Cbz-NHOH according to known literature procedures<sup>15</sup> except **1h**. The propargylic *N*-hydroxylamine **1a**, **1d**, **1e**, **1f**, **1i** were all known compounds.<sup>16</sup>

**Benzyl (3-cyclopentyl-1-phenylprop-2-yn-1-yl)(hydroxy)carbamate** (**1b**): colorless solid; mp 89-91 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.72-0.82 (4H, m), 1.29-1.36 (1H, m), 5.23 (2H, s), 5.86 (1H, br-s), 6.08 (1H, d, *J* = 2.0 Hz), 7.25-7.37 (8H, m), 7.49-7.50 (2H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  -0.5, 8.4, 8.4, 55.7, 68.4, 69.8, 90.5, 127.9 (2C), 128.2 (2C), 128.2, 128.4 (3C), 128.7 (2C), 135.6, 136.2, 157.1; IR (KBr): 3375, 3017, 2241, 1665, 1597, 1413, 1348, 1290, 753, 691 cm<sup>-1</sup>; HRMS-ESI: calcd for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup>: 344.1263; found: 344.1269.

**Benzyl hydroxy**(**1**-(**4**-methoxyphenyl)hept-2-yn-1-yl)carbamate (**1c**): brown oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.91 (3H, t, *J* = 7.2 Hz), 1.38-1.56 (4H, m), 2.27 (2H, dt, *J* = 7.2, 2.0 Hz), 3.78 (3H, s), 5.23 (2H, s), 5.83 (1H, br-d), 6.06 (1H, t, *J* = 2.0 Hz), 6.84-6.87 (2H, m), 7.25-7.45 (7H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6, 18.5, 22.0, 30.7, 55.2, 55.3, 68.3, 74.9, 87.3, 113.7 (2C), 128.2 (2C), 128.4, 128.4, 128.6 (2C), 129.3 (2C), 135.7, 157.1, 159.5; IR (KBr): 3335, 2961, 2220, 1707, 1612, 1509, 1248, 1099, 746 cm<sup>-1</sup>; HRMS-ESI: calcd for C<sub>22</sub>H<sub>25</sub>NNaO<sub>4</sub> [M+Na]<sup>+</sup>: 390.1681; found: 390.1654.

**Benzyl hydroxy**(**1-(2-chlorophenyl)but-2-yn-1-yl)carbamate** (**1g**): colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.90 (3H, d, J = 2.4 Hz), 5.25 (2H, s), 5.86 (1H, br-d), 6.40 (1H, q, J = 2.4 Hz), 7.26-7.40 (8H, m), 7.86-7.89 (1H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  3.7, 53.2, 68.4, 73.6, 83.1, 126.6, 128.1 (2C), 128.3, 128.5 (2C), 129.5, 129.8, 131.5, 133.6, 133.7, 135.7, 157.0; IR (KBr): 3299, 2234, 1704, 1582, 1407, 1286, 1101, 749 cm<sup>-1</sup>; HRMS-ESI: calcd for C<sub>18</sub>H<sub>16</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup>: 352.0716; found: 352.0696.

# Benzyl hydroxy(1-phenylnon-4-yn-3-yl)carbamate (1h)

To a solution of 1-phenyl-4-nonyn-3-ol<sup>17</sup> (0.50 g, 2.31 mmol) and Ph<sub>3</sub>P (1.21 g, 4.62 mmol) in MeCN (15 mL) was added CBr<sub>4</sub> (1.53 g, 4.62 mmol) at 0 °C. The solution was stirred at 0 °C for 1.5 h, then filtered, rinsed with AcOEt (20 mL), and dried over MgSO<sub>4</sub>. Concentration by rotary evaporation furnished a by silica gel chromatography crude mixture that was purified (hexane) to afford 3-bromo-4-nonyn-1-yl-benzene (90%). Yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.92 (3H, t, *J* = 7.6 Hz), 1.39-1.55 (4H, m), 2.25-2.30 (4H, m), 2.83-2.87 (2H, m), 4.48-4.52 (1H, m), 7.19-7.30 (5H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ 13.6, 18.6, 21.9, 30.5, 33.5, 37.8, 41.7, 79.0, 88.8, 126.2, 128.5 (2C), 128.6 (2C), 140.3; IR (KBr): 2958, 2933, 2233, 1724, 1709, 1603, 1453, 748, 699 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>15</sub>H<sub>19</sub>Br [M+]: 278.0670; found: 278.0668.

To a solution of 3-bromo-4-nonyn-1-yl-benzene (0.50 g, 1.79 mmol) in 1-methyl-2-pyrrolidone (6 mL) was added NH<sub>2</sub>OH (50% in water, 2 mL), and the mixture was stirred at rt for 18 h. The mixture was diluted with AcOEt (40 mL), washed with water and brine, dried over MgSO<sub>4</sub>, and concentrated *in vacuo*. The crude product was dissolved in dioxane (8 mL) and sat. a.q. NaHCO<sub>3</sub> (8 mL). Benzyl chloroformate (611 mg, 3.58 mmol) was added dropwise to the mixture at rt and stirred for 1 h. The mixture was diluted with AcOEt (20 mL) and washed with water (20 mL). The organic layer was dried over MgSO<sub>4</sub> and concentrated *in vacuo*. The crude product was purified by flash chromatography. The fraction eluted with

hexane/AcOEt (6 /1) afforded **1h** (66%, 2 steps). Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.89 (3H, t, J = 7.2 Hz), 1.35-1.50 (4H, m), 2.04-2.20 (4H, m), 2.71 (2H, t, J = 7.6 Hz), 4.74-4.78 (1H, m), 5.17 (1H, d, J = 12.4 Hz), 5.20 (1H, d, J = 12.4 Hz), 6.21 (1H, br-d), 7.15-7.37 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6, 18.3, 21.9, 30.7, 32.2, 34.5, 51.8, 68.2, 76.2, 85.6, 126.0, 128.1 (2C), 128.3, 128.4 (2C), 128.5 (2C), 128.5 (2C), 135.7, 141.0, 157.6; IR (KBr): 3276, 2952, 2235, 1704, 1596, 1102, 747, 698 cm<sup>-1</sup>; HRMS-ESI: calcd for C<sub>23</sub>H<sub>27</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup>: 388.1889; found: 388.1886.

**Benzyl hydroxy**(**1**-phenylprop-2-yn-1-yl)carbamate (**1**j): yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.56 (1H, d, J = 2.4 Hz), 5.24 (2H, s), 5.94 (1H, br-s), 6.14 (1H, d, J = 2.4 Hz), 7.34-7.55 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  55.3, 68.6, 74.8, 78.6, 128.0 (2C), 128.3 (2C), 128.5, 128.6 (3C), 128.6 (2C), 135.1, 135.4, 157.1; IR (KBr): 3288, 2118, 1705, 1286, 1100, 752, 722, 697 cm<sup>-1</sup>; HRMS-ESI: calcd for C<sub>17</sub>H<sub>15</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup>: 304.0950; found: 304.0936.

# TypicalprocedurefortheCCC-couplingreactionofbenzylhydroxy(1-phenylhept-2-yn-1-yl)carbamate (1a):condition A

А 30 mL two-necked round-bottom flask containing a magnetic stir bar. benzyl hydroxy(1-phenylhept-2-yn-1-yl)carbamate (1a) (135 mg, 0.40 mmol), p-benzoquinone (64.9 mg, 0.60 mmol), and MeOH (5 mL) was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pump-filling via the three-way stopcock. A MeOH (1 mL) suspension of [Pd(tfa)<sub>2</sub>(L2)] (10.3 mg, 0.02 mmol) was added to the stirred solution using a syringe at -20 °C. The remaining [Pd(tfa)<sub>2</sub>(L2)] was washed in MeOH (1 mL) twice and stirred for 48 h at -20 to -10 °C. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and washed with 5% a.q. NaOH (40 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (25 mL) and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane–ethyl acetate (40/1) afforded dimeric ketone 2a as a diasteromixture (ratio 1.5:1) (monomeric ester 3a, hexane-AcOEt =50/1).

**Compound 2a**: inseparable mixture of diastereomers (ratio = 1.5:1); yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 0.76 (12/5H, t, *J* = 7.2 Hz), 0.84 (18/5H, t, *J* = 7.2 Hz), 1.02-1.57 (8H, m), 2.23-2.50 (4H, m), 5.14-5.22 (4H, m), 5.89 (6/5H, s), 6.25 (4/5H, s), 7.13-7.35 (20H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ 13.6 (4/5C), 13.6 (6/5C), 22.3 (4/5C), 22.4 (6/5C), 25.3 (4/5C), 25.6 (6/5C), 28.9 (4/5C), 29.0 (6/5C), 68.5 (4/5C), 68.5 (4/5C), 68.6 (6/5C), 69.2 (6/5C), 113.9 (6/5C), 114.7 (4/5C), 126.6 (8/5C), 126.7 (12/5C), 128.1 (8/5C), 128.2 (12/5C), 128.2 (4/5C), 128.3 (6/5C), 128.4 (4/5C), 128.5 (6/5C), 128.5 (8/5C), 128.6 (12/5C), 128.7 (8/5C), 135.1 (2C), 139.4 (4/5C), 139.5 (6/5C), 156.3 (6/5C), 156.4 (4/5C), 162.1 (4/5C), 162.5 (6/5C), 182.3 (2/5C), 182.7 (3/5); IR (KBr): 2961, 1729, 1606, 1390,

1308, 1221, 1103, 745, 696 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>43</sub>H<sub>44</sub>N<sub>2</sub>O<sub>7</sub> [M<sup>+</sup>]: 700.3149; found: 700.3151.

**Compound 2b**: inseparable mixture of diastereomers (ratio = 1.2:1); yellow oil; <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  0.84-1.24 (8H, m), 2.06-2.20 (2H, m), 5.14-5.20 (4H, m), 6.08 (12/11H, s), 6.23 (10/11H, s), 7.18-7.37 (20H, m); <sup>13</sup>C-NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  8.1 (12/11C), 8.2 (10/11C), 8.4 (10/11C), 8.6 (12/11C), 8.7 (10/11C), 9.2 (12/11C), 68.8 (10/11C), 68.9 (12/11C), 70.1 (10/11C), 70.3 (12/11C), 114.2 (12/11C), 115.5 (10/11C), 127.1 (24/11C), 127.2 (20/11C), 128.3 (20/11C), 128.4 (24/11C), 128.5 (10/11C), 128.5 (12/11C), 128.7 (10/11C), 128.8 (12/11C), 128.9 (4C), 128.9 (20/11C), 128.9 (24/11C), 135.7 (2C), 140.1 (12/11C), 140.1 (10/11C), 157.2 (10/11C), 157.4 (12/11C), 162.7 (10/11C), 164.3 (12/11C), 181.9 (5/11C), 182.6 (6/11C); IR (KBr): 3033, 1732, 1624, 1596, 1456, 1392, 1306, 904, 750, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>41</sub>H<sub>36</sub>N<sub>2</sub>O<sub>7</sub> [M<sup>+</sup>]: 668.2523; found: 668.2523.

**Compound 2c**: inseparable mixture of diastereomers (ratio = 1:1); yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.79 (3H, t, *J* = 7.2 Hz), 0.85 (3H, t, *J* = 7.2 Hz), 1.01-1.60 (8H, m), 2.33-2.57 (4H, m), 3.75 (3H, s), 3.76 (3H, s), 5.14-5.22 (4H, m), 5.84 (1H, s), 6.18 (1H, s), 6.72-6.74 (2H, m), 6.77-6.79 (2H, m), 7.07-7.09 (2H, m), 7.12-7.14 (2H, m), 7.26-7.36 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (1C), 13.7 (1C), 22.3 (1C), 22.4 (1C), 25.5 (1C), 25.7 (1C), 29.0 (1C), 29.1 (1C), 55.2 (1C), 55.2 (1C), 68.1 (1C), 68.5 (1C), 68.5 (1C), 68.7 (1C), 113.8 (1C), 114.0 (2C), 114.0 (2C), 114.4 (1C), 128.1 (4C), 128.1(2C), 128.4 (2C), 128.5 (2C), 128.5 (2C), 128.6 (2C), 131.4 (1C), 131.6 (1C), 135.2 (2C), 156.3 (1C), 156.4 (1C), 159.5 (1C), 159.5 (1C), 162.5 (1C), 162.6 (1C), 182.6 (1/2C), 183.0 (1/2C); IR (KBr): 2961, 1726, 1606, 1509, 1311, 1176, 1004, 1030, 741 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>45</sub>H<sub>48</sub>N<sub>2</sub>O<sub>9</sub> [M<sup>+</sup>]: 760.3360; found: 760.3360.

# **Compound 2d**: diastereomeric ratio = 1.5:1

major diastereomer: yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.85 (6H, t, *J* = 7.2 Hz), 1.19-1.28 (4H, m), 1.39-1.60 (4H, m), 2.44-2.48 (4H, m), 5.17 (2H, d, *J* = 12.0 Hz), 5.21 (2H, d, *J* = 12.0 Hz), 5.90 (2H, s), 6.91-6.97 (4H, m), 7.10-7.15 (4H, m), 7.26-7.36 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (2C), 22.4 (2C), 25.7 (2C), 29.0 (2C), 68.5 (2C), 68.7 (2C), 113.6 (2C), 115.6 (4C, d, <sup>2</sup>*J*<sub>C-F</sub> = 20.9 Hz), 128.2 (4C), 128.5 (4C, d, <sup>3</sup>*J*<sub>C-F</sub> = 8.6 Hz), 128.6 (6C), 135.0 (2C), 135.4 (2C, d, <sup>4</sup>*J*<sub>C-F</sub> = 2.8 Hz), 156.3 (2C), 162.6 (2C, d, <sup>1</sup>*J*<sub>C-F</sub> = 246.0 Hz), 162.9 (2C), 182.6 (1C); IR (KBr): 2965, 1728, 1608, 1507, 1386, 1306, 1224, 1100, 744 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>43</sub>H<sub>42</sub>N<sub>2</sub>O<sub>7</sub>F<sub>2</sub> [M+]: 736.2960; found: 736.2964.

minor diastereomer: colorless solid, mp 111-112 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.79 (6H, t, *J* = 7.2 Hz), 0.84-1.48 (8H, m), 2.30-2.38 (2H, m), 2.46-2.54 (2H, m), 5.16 (2H, d, *J* = 12.0 Hz), 5.21 (2H, d, *J* = 12.0 Hz), 6.20 (2H, s), 6.85-6.91 (4H, m), 7.16-7.29 (4H, m), 7.25-7.36 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (2C), 22.3 (2C), 25.4 (2C), 28.9 (2C), 67.9 (2C), 68.7 (2C), 114.3 (2C), 115.6 (4C, d, <sup>2</sup>*J*<sub>C-F</sub> = 21.0 Hz), 128.2 (4C), 128.4 (4C, d, <sup>3</sup>*J*<sub>C-F</sub> = 8.6 Hz), 128.6 (6C), 135.0 (2C), 135.2 (2C, d, <sup>4</sup>*J*<sub>C-F</sub> = 2.9 Hz), 156.4 (2C), 162.4 (2C), 162.6 (2C, d, <sup>1</sup>*J*<sub>C-F</sub> = 246.0 Hz), 182.2 (1C); IR (KBr): 2957, 1727, 1644,

1605, 1509, 1391, 1225, 733 cm<sup>-1</sup>; HRMS-EI: calcd for  $C_{43}H_{42}N_2O_7F_2$  [M<sup>+</sup>]: 736.2960; found: 736.2959. **Compound 2e**: diastereomeric ratio = 1.3:1

major diastereomer: colorless solid; mp 50-52 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.79 (6H, t, *J* = 7.2 Hz), 0.87-1.47 (8H, m), 2.28-2.35 (2H, m), 2.43-2.50 (2H, m), 5.16 (2H, d, *J* = 12.0 Hz), 5.21 (2H, d, *J* = 12.0 Hz), 6.19 (2H, s), 7.12-7.34 (18H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (2C), 22.3 (2C), 25.4 (2C), 29.0 (2C), 68.0 (2C), 68.7 (2C), 114.3 (2C), 127.9 (4C), 128.2 (4C), 128.6 (6C), 128.9 (4C), 134.2 (2C), 134.9 (2C), 137.9 (2C), 156.3 (2C), 162.3 (2C), 182.0 (1C); IR (KBr): 2960, 1726, 1594, 1492, 1305, 1390, 1217, 1090, 755 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>43</sub>H<sub>42</sub>N<sub>2</sub>O<sub>7</sub>Cl<sub>2</sub> [M<sup>+</sup>]: 768.2369; found: 768.2366.

minor diastereomer: yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.84 (6H, t, *J* = 7.2 Hz), 1.18-1.26 (4H, m), 1.36-1.57 (4H, m), 2.42-2.46 (4H, m), 5.17 (2H, d, *J* = 12.0 Hz), 5.22 (2H, d, *J* = 12.0 Hz), 5.91 (2H, s), 7.07-7.11 (4H, m), 7.22-7.36 (14H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (2C), 22.4 (2C), 25.7 (2C), 29.1 (2C), 68.5 (2C), 68.8 (2C), 113.5 (2C), 128.1 (4C), 128.2 (4C), 128.6 (4C), 128.6 (2C), 128.8 (4C), 134.2 (2C), 134.9 (2C), 138.0 (2C), 156.2 (2C), 163.0 (2C), 182.3 (1C); IR (KBr): 2959, 1727, 1605, 1493, 1386, 1092, 752, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>43</sub>H<sub>42</sub>N<sub>2</sub>O<sub>7</sub>Cl<sub>2</sub> [M<sup>+</sup>]: 768.2369; found: 768.2363.

**Compound 2f**: inseparable mixture of diastereomers (ratio = 2:1); colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.80 (2H, t, *J* = 7.2 Hz), 0.85 (4H, t, *J* = 7.2 Hz), 1.10-1.63 (8H, m), 2.35-2.64 (4H, m), 5.14-5.23 (4H, m), 6.13 (4/3H, s), 6.51 (2/3H, s), 6.90-7.07 (4H, m), 7.15-7.35 (14H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (4/3C), 13.7 (2/3C), 22.3 (2/3C), 22.4 (4/3C), 25.3 (2/3C), 25.6 (4/3C), 28.9 (4/3C), 28.9 (2/3), 63.7 (4/3C, d, <sup>3</sup>*J*<sub>C-F</sub> = 2.9 Hz), 63.7(2/3C, d, <sup>3</sup>*J*<sub>C-F</sub> = 2.9 Hz), 68.6 (2/3C), 68.6 (4/3C), 112.7 (4/3C), 113.4 (2/3C), 115.7 (4/3C, d, <sup>2</sup>*J*<sub>C-F</sub> = 21.0 Hz), 115.8 (2/3C, d, <sup>2</sup>*J*<sub>C-F</sub> = 21.0 Hz), 124.4 (2C, d, <sup>4</sup>*J*<sub>C-F</sub> = 2.9 Hz), 126.3 (2/3C, d, <sup>2</sup>*J*<sub>C-F</sub> = 12.4 Hz), 126.6 (4/3C, d, <sup>2</sup>*J*<sub>C-F</sub> = 12.4 Hz), 128.1 (4/3C), 128.2 (8/3C), 128.4 (2/3C), 128.5 (4/3C), 128.6 (4C), 128.8 (4/3, d, <sup>3</sup>*J*<sub>C-F</sub> = 3.8 Hz), 129.4 (2/3C, d, <sup>3</sup>*J*<sub>C-F</sub> = 3.8 Hz), 130.1 (2/3C, d, <sup>3</sup>*J*<sub>C-F</sub> = 8.6 Hz), 130.1 (4/3C, d, <sup>3</sup>*J*<sub>C-F</sub> = 8.6 Hz), 135.0 (2C), 156.1 (2/3C), 156.2 (4/3C), 181.5 (1/3C), 182.1 (2/3C); IR (KBr): 2964, 1730, 1607, 1387, 1307, 1223, 1102, 897, 754 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>43</sub>H<sub>42</sub>N<sub>2</sub>O<sub>7</sub>F<sub>2</sub> [M<sup>+</sup>]: 736.2960; found: 736.2960.

**Compound 2g**: inseparable mixture of diastereomers (ratio = 2:1); colorless solid; mp 43-45 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.15 (6H, s), 5.11-5.25 (4H, m), 6.22 (4/3H, s), 6.66 (2/3H, s), 7.05-7.34 (18H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  11.8 (2/3C), 11.8 (4/3C), 66.1 (4/3C), 66.5 (2/3C), 68.8 (2/3C), 68.9 (4/3C), 114.0 (4/3C), 114.6 (2/3C), 127.4 (2/3C), 127.6 (4/3C), 128.5 (4/3C), 128.6 (10/3C), 128.7 (8/3C), 128.7 (4/3C), 129.2 (4/3C), 129.7 (2/3C), 129.8 (4/3C), 129.9 (4/3C), 129.9 (2/3C), 130.2 (2/3C), 132.8 (4/3C), 133.1 (2/3C), 135.1 (2/3C), 135.1 (4/3C), 136.2 (2/3C), 136.8 (4/3C), 155.6 (2/3C), 155.8 (4/3C), 159.1 (2/3C), 181.4 (1/3C), 182.2 (2/3C); IR (KBr): 1741, 1603, 1390, 1317, 1218, 1099, 896, 751 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>37</sub>H<sub>30</sub>N<sub>2</sub>O<sub>7</sub>Cl<sub>2</sub> [M<sup>+</sup>]: 684.1430; found: 684.1434.

**Compound 2h**: inseparable mixture of diastereomers (ratio = 1.5:1); yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.80 (12/5H, t, *J* = 7.2 Hz), 0.81 (18/5H, t, *J* = 7.2 Hz), 1.19-1.29 (4H, m), 1.42-1.58 (4H, m), 1.78-2.18 (4H, m), 2.37-2.74 (8H, m), 5.17-5.33 (6H, m), 7.07-7.37 (20H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.6 (4/5C), 13.6 (6/5C), 22.3 (4/5C), 22.4 (6/5C), 25.7 (6/5C), 25.7 (4/5C), 29.0 (2C), 31.4 (2C), 36.8 (4/5C), 37.2 (6/5C), 65.9 (6/5C), 66.9 (4/5C), 68.7 (2C), 113.5 (4/5C), 113.6 (6/5C), 125.9 (6/5C), 128.3 (8/5C), 128.3 (8/5C), 128.4 (16/5C), 128.6 (8/5C), 128,7 (4C), 135.1 (2C), 141.1 (6/5C), 141.3 (4/5C), 157.9 (4/5C), 158.0 (6/5C), 163.9 (6/5C), 164.2 (4/5C), 182.7 (3/5C), 183.4 (2/5C); IR (KBr): 2958, 1722, 1600, 1385, 1308, 1105, 1036, 744, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>47</sub>H<sub>52</sub>N<sub>2</sub>O<sub>7</sub> [M<sup>+</sup>]: 756.3775; found: 756.3772.

**Compound 2i**: inseparable mixture of diastereomers (ratio = 3:1); yellow amorphous; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 2.34 (9/2H, s), 2.36 (3/2H, s), 5.06-5.22 (4H, m), 6.08 (3/2, s), 6.22 (1/2H, s), 6.95-7.04 (8H, m), 7.23-7.35(20H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ 21.6 (2C), 68.3 (1/2C), 68.4 (3/2C), 70.3 (3/2C), 70.4 (1/2C), 112.2 (3/2C), 112.5 (1/2C), 122.6 (3/2C), 122.7 (1/2C), 127.0 (3C), 127.3 (1C), 127.9 (3C), 128.2 (1/2C), 128.3 (3/2C), 128.4 (1/2C), 128.5 (5/2C), 128.5 (1C), 128.6 (4C), 128.6 (3C), 128.8 (1C), 128.9 (3C), 129.1 (3C), 129.1 (1C), 135.1 (1/2C), 135.2 (3/2C), 138.9 (1/2C), 139.2 (3/2C), 141.8 (1/2C), 142.0 (3/2C), 155.9 (1/2C), 156.2 (3/2C), 158.8 (1/2C), 159.1 (3/2C), 182.0 (1/4C), 182.4 (3/4C); IR (KBr): 3033, 1724, 1607, 1508, 1386, 1307, 1104, 744, 697 cm<sup>-1</sup>; HRMS-ESI: C<sub>49</sub>H<sub>41</sub>N<sub>2</sub>O<sub>7</sub> [M+H]<sup>+</sup>: 769.2914; found: 769.2883.

# Typical procedure for the cyclization-carbonylation reaction of benzylhydroxy(1-phenylhept-2-yn-1-yl)carbamate (1a): condition B

А 30 mL two-necked round-bottom flask containing magnetic a stir bar, benzyl hydroxy(1-phenylhept-2-yn-1-yl)carbamate (1a) (100 mg, 0.40 mmol), p-benzoquinone (64.9 mg, 0.60 mmol), and MeOH/DMSO = 5/1 (5 mL) was fitted with a rubber septum and a three-way stopcock connected to a balloon filled with carbon monoxide. The apparatus was purged with carbon monoxide by pump-filling via the three-way stopcock. A MeOH/DMSO = 5/1 (1 mL) solution of Pd(tfa)<sub>2</sub> (6.6 mg, 0.02 mmol) was added to the stirred solution using a syringe at 0 °C. The remaining Pd(tfa)<sub>2</sub> was washed in MeOH/DMSO = 5/1 (1 mL) twice and stirred for 72 h at 0 °C. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (40 mL) and washed with 5% a.q. NaOH (40 mL). The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated in vacuo. The crude product was purified by column chromatography on silica gel. The fraction eluted with hexane–AcOEt (50/1) afforded monomeric ester 3a.

**Compound 3a**: colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.94 (3H, t, *J* = 7.2 Hz), 1.38-1.47 (2H, m), 1.64-1.69 (2H, m), 2.79-2.83 (2H, m), 3.60 (3H, s), 5.21 (2H, s), 6.08 (1H, s), 7.26-7.36 (10H, m);

<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) δ 13.7, 22.4, 25.4, 29.1, 51.2, 68.0, 68.5, 104.3, 127.2 (2C), 128.2 (2C), 128.2, 128.5, 128.5, 128.5 (2C), 128.6 (2C), 135.2, 139.9, 156.4, 163.4, 167.0; IR (KBr): 2957, 1714, 1658, 1223, 1113, 1031, 695 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>5</sub> [M<sup>+</sup>]: 395.1733; found: 395.1732.

**Compound 3b**: colorless solid; mp 120-122 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  1.03-1.31 (4H, m), 2.71-2.76 (1H, m), 3.63 (3H, s), 5.19 (2H, s), 6.09 (1H, s), 7.30-7.36 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  7.8, 7.9, 9.0, 51.2, 68.6, 68.6, 104.2, 127.1 (2C), 128.1, 128.2 (2C), 128.5 (2C), 128.5 (2C), 128.6, 135.2, 139.9, 156.9, 164.1, 167.6; IR (KBr): 1712, 1643, 1335, 1122, 1055, 700 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>22</sub>H<sub>21</sub>NO<sub>5</sub> [M<sup>+</sup>]: 379.1420; found: 379.1422.

**Compound 3c**: colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.94 (3H, t, *J* = 7.6 Hz), 1.38-1.47 (2H, m), 1.61-1.71 (2H, m), 2.78-2.82 (2H, m), 3.60 (3H, s), 3.79 (3H, s), 5.21 (2H, s), 6.04 (1H, s), 6.84-6.86 (2H, m), 7.24-7.33 (7H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 22.4, 25.4, 29.1, 51.2, 55.3, 67.6, 68.5, 104.3, 113.9 (2C), 128.2 (2C), 128.4 (2C), 128.4, 128.5 (2C), 132.1, 135.2, 156.4, 159.5, 163.5, 166.8; IR (KBr): 2956, 1714, 1658, 1512, 1248, 1227, 1113, 1033, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>24</sub>H<sub>27</sub>NO<sub>6</sub> [M<sup>+</sup>]: 425.1838; found: 425.1838.

**Compound 3d**: colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.94 (3H, t, *J* = 7.6 Hz), 1.37-1.46 (2H, m), 1.63-1.71 (2H, m), 2.78-2.82 (2H, m), 3.60 (3H, s), 5.21 (2H, s), 6.06 (1H, s), 6.98-7.02 (2H, m), 7.31-7.34 (7H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 22.4, 25.4, 29.1, 51.3, 67.4, 68.6, 104.1, 115.4 (2C, d, <sup>2</sup>*J*<sub>C-F</sub> = 21.0 Hz), 128.3 (2C), 128.6 (2C, d, <sup>3</sup>*J*<sub>C-F</sub> = 5.7 Hz), 128.9, 129.0 (2C), 135.1, 135.8 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.8 Hz), 156.3, 162.6 (d, <sup>1</sup>*J*<sub>C-F</sub> = 245.0 Hz), 163.3, 167.0; IR (KBr): 2958, 1717, 1655, 1510, 1227, 1114, 674 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>23</sub>H<sub>24</sub>NO<sub>5</sub>F [M<sup>+</sup>]: 413.1638; found: 413.1638.

**Compound 3e**: colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.93 (3H, t, *J* = 7.2 Hz), 1.37-1.46 (2H, m), 1.62-1.70 (2H, m), 2.77-2.83 (2H, m), 3.61 (3H, s), 5.21 (2H, s), 6.04 (1H, s), 7.26-7.36 (9H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 22.4, 25.4, 29.1, 51.3, 67.4, 68.7, 104.0, 128.3 (2C), 128.5 (2C), 128.6 (3C), 128.7 (2C), 134.0, 135.0, 138.5, 156.2, 163.2, 167.1; IR (KBr): 2957, 1717, 1658, 1345, 1222, 1113, 1032, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>23</sub>H<sub>24</sub>NO<sub>5</sub>Cl [M<sup>+</sup>]: 429.1343; found:429.1345.

**Compound 3f**: colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.94 (3H, t, J = 7.2 Hz), 1.38-1.48 (2H, m), 1.62-1.72 (2H, m), 2.79-2.84 (2H, m), 3.59 (3H, s), 5.21 (2H, s), 6.39 (1H, s), 7.00-7.13 (2H, m), 7.26-7.33 (7H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 22.4, 25.4, 29.0, 51.3, 62.3 (d, <sup>3</sup>*J*<sub>C-F</sub> = 3.9 Hz), 68.5, 103.3, 115.7 (d, <sup>2</sup>*J*<sub>C-F</sub> = 21.9 Hz), 124.3 (d, <sup>3</sup>*J*<sub>C-F</sub> = 3.8 Hz), 127.0 (d, <sup>2</sup>*J*<sub>C-F</sub> = 12.4 Hz), 128.2 (2C), 128.4, 128.5 (2C), 129.1 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.8 Hz), 130.0 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.6 Hz), 135.2, 156.0, 160.5, 163.2, 167.4; IR (KBr): 2957, 1715, 1659, 1222, 1114, 1035, 757 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>23</sub>H<sub>24</sub>NO<sub>5</sub>F [M<sup>+</sup>]: 413.1638; found: 413.1640.

**Compound 3g**: colorless solid; mp 163-164 °C; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 2.39 (3H, d, *J* = 1.2 Hz), 3.59 (3H, s), 5.15 (1H, d, *J* = 12.0 Hz), 5.22 (1H, d, *J* = 12.0 Hz), 6.59 (1H, d, *J* = 1.2 Hz), 7.20-7.33 (9H,

m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  11.6, 51.3, 64.8, 68.6, 104.8, 127.2, 128.4 (2C), 128.5, 128.5 (2C), 129.3, 129.4, 129.7, 133.4, 135.0, 137.2, 155.4, 163.1, 163.2; IR (KBr): 2952, 1719, 1655, 1405, 1337, 1230, 1119, 750, 701 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>20</sub>H<sub>18</sub>NO<sub>5</sub>Cl [M<sup>+</sup>]: 387.0873; found: 387.0874.

**Compound 3h**: yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.90 (3H, t, *J* = 7.6 Hz), 1.32-1.41 (2H, m), 1.54-1.61 (2H, m), 1.88-1.97 (1H, m), 2.11-2.18 (1H, m), 2.67-2.80 (4H, m), 3.71(3H, s), 5.20-5.30 (3H, m), 7.16-7.39 (10H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 22.3, 25.4, 29.0, 31.1, 35.9, 51.3, 65.4, 68.6, 103.3, 125.8, 128.3 (4C), 128.4 (2C), 128.5, 128.6 (2C), 135.2, 141.6, 158.0, 163.7, 168.0; IR (KBr): 2955, 1716, 1658, 1373, 1310, 1215, 1111, 1034, 698 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>25</sub>H<sub>29</sub>NO<sub>5</sub> [M<sup>+</sup>]: 423.2046; found: 423.2048.

**Compound 3i** : colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.41 (3H, s), 3.59 (3H, s), 5.27 (2H, s), 6.30 (1H, s), 7.24-7.26 (2H, m), 7.31-7.37 (8H, m), 7.44-7.46 (2H, m), 7.80-7.82 (2H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  21.7, 51.4, 68.7, 69.3, 103.8, 122.6, 127.2 (2C), 128.2 (2C), 128.3, 128.5 (2C), 128.6 (3C), 128.8 (2C), 130.0 (2C), 135.2, 139.9, 142.4, 157.1, 162.1, 163.0; IR (KBr): 3033, 1718, 1640, 1232, 1084, 821, 753, 698 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>26</sub>H<sub>23</sub>NO<sub>5</sub> [M<sup>+</sup>]: 429.1576; found: 429.1576.

### Preparation of bis(5-butyl-3-phenylisoxazol-4-yl)methanone (4a)

To a solution of **2a** (91.7 mg, 0.131 mmol) in THF/MeOH/H<sub>2</sub>O = 4/1/1 (3 mL) was added LiOH·H<sub>2</sub>O (33.0 mg, 0.786 mmol), and the mixture was stirred at rt. After 20 min, the mixture was neutralized with 5% a.q. citric acid. Sodium hypochlorite solution (0.5 mL) was then added to the mixture at rt, and stirred for 20 min. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and 10% a.q. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL). The organic layer was separated, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) twice, and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated *in vacuo*. The crude product was purified by flash chromatography. The fraction eluted with hexane/AcOEt (20/1-4/1) afforded **4a** (22.7 mg, 49%, 2 steps). Yellow oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.97 (6H, t, *J* =7.6 Hz), 1.38-1.47 (4H, m), 1.71-1.79 (4H, m), 2.89-2.93 (4H, m), 7.15-7.17 (4H, m), 7.26-7.30 (4H, m), 7.36-7.40 (2H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.7 (2C), 22.5 (2C), 26.6 (2C), 29.3 (2C), 116.6 (2C), 127.2 (2C), 128.2 (4C), 128.8 (4C), 130.1 (2C), 160.9 (2C), 177.8 (2C), 183.2; IR (KBr): 2960, 1652, 1590, 1570, 1410, 886, 768, 697 cm<sup>-1</sup>; HRMS-EI: calcd for C<sub>27</sub>H<sub>28</sub>N<sub>2</sub>O<sub>3</sub> [M<sup>+</sup>]: 428.2100; found: 428.2102.

#### Preparation of methyl 3-(2-chlorophenyl)-5-methylisoxazole-4-carboxylate (5g)

To a solution of **3g** (115.9 mg, 0.299 mmol) in THF/MeOH/H<sub>2</sub>O = 4/1/1 (9 mL) was added LiOH·H<sub>2</sub>O (37.6 mg, 0.897 mmol), and the mixture was stirred at rt. After 20 min, the mixture was neutralized with 5% a.q. citric acid. Sodium hypochlorite solution (0.5 mL) was then added to the mixture at rt, and stirred for 20 min. The mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and 10% a.q. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL). The organic

layer was separated, the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) twice, and the combined organic layers were dried over MgSO<sub>4</sub> and concentrated *in vacuo*. The crude product was purified by flash chromatography. The fraction eluted with hexane/AcOEt (20/1-4/1) afforded **5g** (64.4 mg, 86%, 2 steps). Colorless solid; mp 58-59 °C. (lit.<sup>18</sup> mp 58-59 °C); <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.76 (3H, s), 3.70 (3H, s), 7.35-7.47 (4H, m); <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  13.3, 51.7, 109.7, 126.6, 128.4, 129.4, 130.9, 130.9, 134.0, 160.8, 162.1, 175.2; IR (KBr):1728, 1607, 1450, 1318, 1107, 762 cm<sup>-1</sup>; HRMS-APCI: calcd for C<sub>12</sub>H<sub>11</sub>ClNO<sub>3</sub> [M+H]<sup>+</sup>: 252.0428; found: 252.0437.

### ACKNOWLEDGEMENTS

This work was supported by a JSPS KAKENHI grant (No.15K078771).

### REFERENCES

- (a) A. G. Habeeb, P. N. Rao, and E. E. Knaus, <u>J. Med. Chem.</u>, 2001, 44, 2921; (b) R. D. Cramer, R. J. Jilek, S. Guessregen, S. J. Clark, B. Wendt, and R. D. Clark, <u>J. Med. Chem.</u>, 2004, 47, 6777; (c) M. E. Fraley, R. M. Garbaccio, and G. D. Hartmann, Patent WO 2006023440, 2006.
- (a) J. P. Freeman, <u>Chem. Rev., 1983, 83, 241;</u> (b) T. M. V. D. Pinho e Melo, <u>Eur. J. Org. Chem., 2010,</u> <u>3363</u>.
- (a) M. Ehrlich and T. Carell, *Eur. J. Org. Chem.*, 2013, 77; (b) K. Grossmann and T. Ehrhardt, *Pest Manage. Sci.*, 2007, 63, 429; (c) H. Neumann, A. Brennführer, and M. Beller, *Chem. Eur. J.*, 2008, 14, 3645; (d) F. Jafarpour, P. Rashidi- Ranjbar, and A. O. Kashani, *Eur. J. Org. Chem.*, 2011, 2128; (e) M. J. Lo Fiego, G. F. Silbestri, A. B. Chopa, and M. T. Lockhart, *J. Org. Chem.*, 2011, 76, 1707; (f) Y.-S. Wu, M. S. Coumar, J.-Y. Chang, H.-Y. Sun, F.-M. Kuo, C.-C. Kuo, Y.-J. Chen, C.-Y. Chang, C.-L. Hsiao, J.-P. Liou, C.-P. Chen, H.-T. Yao, Y.-K. Chiang, U.-K. Tan, C.-T. Chen, C.-Y. Chu, S.-Y. Wu, T.-K. Yeh, C.-Y. Lin, and H.-P. Hsieh, *J. Med. Chem.*, 2009, 52, 4941; (g) K. Kobayashi, Y. Nishimura, F. Gao, K. Gotoh, Y. Nishihara, and K. Takagi, *J. Org. Chem.*, 2011, 76, 1949, and references cited therein.
- For selected recent examples, see: (a) S. M. M. Lopes, C. M. Nunes, and T. M. V. D. Pinho e Melo, *Tetrahedron*, 2010, 6, 6078; (b) H. Valizadeh and L. Dinparast, <u>Synth. Commun.</u>, 2011, 41, 291; (c) X. Cai, C. Wang, and J. Suna, <u>Adv. Synth. Catal.</u>, 2012, 354, 359; (d) M. P. Sibi, K. L. Dunkle, and D. Rane, <u>Heterocycles</u>, 2014, 88, 1639; For the reaction of nitrones with vinyldiazoacetates, see: (e) C. Qin and H. M. L. Davies, <u>J. Am. Chem. Soc.</u>, 2013, 135, 14516.
- 5. M. Fabio, L. Ronzini, and L. Troisi, *<u>Tetrahedron</u>*, 2008, **64**, 4979.
- 6. X. Yu, B. Du, K. Wang, and J. Zhang, *Org. Lett.*, 2010, **12**, 1876.
- 7. P. Li, B.-T. Teng, F.-G. Jin, X.-S. Li, W.-D. Zhu, and J.-W. Xie, *Org. Biomol. Chem.*, 2012, 10, 244.

- S. Madabhushi, K. R.y Godala, R. Jillella, K. K. R. Mallu, and N. Chinthala, <u>*Tetrahedron Lett.*</u>, 2014, 55, 514.
- 9. For recent reviews, see: (a) X.-F. Wu, H. Neumann, and M. Beller, *Chem. Rev.*, 2013, 113, 1; (b) H. Clavier and H. H. Pellissier, Adv. Synth. Catal., 2012, 354, 3347; (c) T. Vlaar, E. Ruijter, and R. V. A. Orru, Adv. Synth. Catal., 2011, 353, 809; For the palladium catalyzed carbonylative coupling reactions, see: (d) A. Brennführer, A. H. Neumann, and M. Beller, *ChemCatChem*, 2009, 1, 28; (e) C. Torborg and M. Beller, Adv. Synth. Catal., 2009, 351, 3027; (f) C. F. J. Barnard, Organometallics, 2008, 27, 5402; (g) X.-F. Wu, H. Neumann, and M. Beller, Angew. Chem., 2009, 121, 4176 (Angew. Chem. Int. Ed., 2009, 48, 4114); (h) X.-F. Wu, H. Neumann, and M. Beller, Angew. Chem., 2010, 122, 5412 (Angew. Chem. Int. Ed., 2010, 49, 5284); (i) R. Grigg and S. P. Mutton, Tetrahedron, 2010, 66, 5515; (j) X.-F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. Jiao, and M. Beller, J. Am. Chem. Soc., 2010, 132, 14596. For the tandem dimerization and cyclization of acetylenic compounds, see: (k) A. Jeevanandam, K. Narkunan, and Y.-C. Ling, J. Org. Chem., 2001, 66, 6014; (1) H. A. Wegner, S. Ahles, and M. Neuburger, Chem. Eur. J., 2008, 14, 11310; (m) M. G. Auzias, M. Neuburger, and H. A. Wegner, *Synlett*, 2010, 2443. For oxidative carbonylation reactions, see: (n) S. T. Gadge and B. M. Bhanage, RSC Adv., 2014, 4, 10367; (o) X.-F. Wu, H. Neumann, and M. Beller, ChemSusChem, 2013, 6, 229; (p) B. Gabriele, R. Mancuso, and G. Salerno, Eur. J. Org. Chem., 2012, 6825.
- (a) E. J. Stoner, B. A. Roden, and S. Chemburkar, <u>*Tetrahedron Lett.*</u>, <u>1997</u>, <u>38</u>, <u>4981</u>; (b) P. Aschwanden, D. E. Frantz, and E. M. Carreira, <u>*Org. Lett.*</u>, <u>2000</u>, <u>2</u>, <u>2331</u>; (c) O. Debleds, C. D. Zotto, E. Vrancken, J.-M. Campagne, and P. Retailleau, <u>*Adv. Synth. Catal.*</u> 2009, <u>351</u>, <u>1991</u>; (d) E. Gayon, O. Quinonero, S. Lemouzy, E. Vrancken, and J.-M. Campagne, <u>*Org. Lett.*</u>, <u>2011</u>, <u>13</u>, <u>6418</u>.
- (a) S. Yasuhara, M. Sasa, T. Kusakabe, H. Takayama, M. Kimura, T. Mochida, and K. Kato, <u>Angew.</u> <u>Chem., 2011, 123, 3998 (Angew. Chem. Int. Ed., 2011, 50, 3912);</u> (b) T. Kusakabe, Y. Kawai, R. Shen, T. Mochida, and K. Kato, <u>Org. Biomol. Chem., 2012, 10, 3192;</u> (c) T. Kusakabe, E. Sekiyama, S. Motodate, S. Kato, T. Mochida, and K. Kato, <u>Synthesis, 2012, 1825;</u> (d) T. Kusakabe, K. Kawaguchi, M. Kawamura, N. Niimura, R. Shen, H. Takayama, and K. Kato, <u>Molecules, 2012, 17, 9220;</u> (e) T. Kusakabe, H. Sagae, and K. Kato, <u>Org. Biomol. Chem., 2013, 11, 4943;</u> (f) Y. Jiang, T. Kusakabe, K. Takahashi, and K. Kato, <u>Org. Biomol. Chem., 2014, 12, 3380;</u> (g) R. Shen, T. Kusakabe, K. Takahashi, and K. Kato, Org. Biomol. Chem., 2014, 12, 4533; (h) Y. D. Dhage, H. Daimon, C. Peng, T. Kusakabe, K. Takahashi, Y. Kanno, Y. Inouye, and K. Kato, <u>Org. Biomol. Chem., 2014, 12, 8619</u>.
- (a) K. Kato, S. Motodate, T. Mochida, T. Kobayashi, and H. Akita, <u>Angew. Chem.</u>, 2009, 121, 3376 (<u>Angew. Chem. Int. Ed.</u>, 2009, 48, 3326); (b) S. Motodate, T. Kobayashi, M. Fujii, T. Mochida, T. Kusakabe, S. Katoh, H. Akita, and K. Kato, <u>Chem. Asian J.</u>, 2010, 5, 2221; (c) K. Kato, R. Teraguchi, S. Yamamura, T. Mochida, H. Akita, T. A. Peganova, N. V. Vologdin, and O. V. Gusev, <u>Synlett</u>, 2007,

638; (d) K. Kato, R. Teraguchi, S. Motodate, A. Uchida, T. Mochida, T. A. Peganova, N. V. Vologdin, and H. Akita, *Chem. Commun.*, 2008, 3687; (e) T. Kusakabe, T. Takahashi, R. Shen, A. Ikeda, A. Y. D. Dhage, Y. Kanno, Y. Inouye, H. Sasai, T. Mochida, and K. Kato, *Angew. Chem.*, 2013, **125**, 7999 (*Angew. Chem. Int. Ed.*, 2013, **52**, 7845).

- D. Giomi, F. M. Cordero, and F. Machetti, <u>'In Comprehensive Heterocyclic Chemistry III, Vol. 4, ed.</u> by A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor, Elsevier, Oxford, 2008, pp. 365-485.
- F. Benfatti, G. Cardillo, S. Contaldi, L. Gentilucci, E. Mosconi, A. Tolomelli, E. Juaristi, and G. R-Rangel, <u>*Tetrahedron*</u>, 2009, 65, 2478.
- Z.-P. Zhan, J.-L. Yu, H.-J. Liu, Y.-Y. Cui, R.-F. Yang, W.-Z. Yang, and J.-P. Li, <u>J. Org. Chem., 2006</u>, <u>71, 8298</u>.
- E. Gayon, M. Szymczyk, H. Gérard, E. Vrancken, and J.-M. Campagne, <u>J. Org. Chem.</u>, 2012, 77, 9205.
- 17. T. Harada and E. Kutsuwa, J. Org. Chem., 2003, 68, 6716.
- 18. L. C. Cheney and L. B. Crast Jr., Patent FR 1535810, 1968.