STRICTLY REGIO-CONTROLLED METHOD FOR α-ALKENYLATION OF CYCLIC KETONES VIA PALLADIUM-CATALYZED CROSS COUPLING

Ei-ichi Negishi,^{*} Zbyslaw R. Owczarczyk, and Douglas R. Swanson Department of Chemistry, Purduc University, West Lafayette, Indiana 47907, USA

Summary: Cyclic α -iodoenones and α -triflyloxyenones, but not α -bromoenones, smoothly react with alkenylzinc and related derivatives in the presence of a catalytic amount of a palladium-phosphine complex, such as Pd(PPh₃)₄ or Cl₂Pd(PPh₃)₂ treated with *n*-BuLi (2 equiv), to give α -alkenylenones which can be conjugately reduced to the corresponding α -alkenyl ketones with complete retention of both enone regiochemistry and alkenyl stereochemistry.

Methods of introducing an E- or Z-alkenyl group in an α -position of ketones with strict control of regiochemistry are highly desirable but rare.^{1,2} We recently reported an indirect method requiring conversion of conjugated enones into α -bromoenones protected as their cyclic ketal derivatives.¹ Besides being somewhat cumbersome, the conversion of conjugated enones into their cyclic ketal derivatives has proved to be problematical in some cases even with a modified procedure using bis(trimethylsiloxy)ethane.³ We now report that cyclic α -iodoenones and α -triflyloxyenones, but not α bromoenones, directly react with alkenylmetal derivatives containing Zn, Al, or Sn in the presence of a catalytic amount of a palladium-phosphine complex, such as Pd(PPh₃)₄ or Cl₂Pd(PPh₃)₂ treated with 2 equiv of *n*-BuLi, to give α alkenylenones which can be conjugately reduced to the corresponding α -alkenyl ketones (eq. 1).

$$\bigcup_{\substack{\text{cat. PdL}_n\\\text{THF and/or DMF}}} (OTf) \xrightarrow{\text{XZnCH=CHR}} OCH=CHR \xrightarrow{\text{O}} CH=CHR \xrightarrow{\text{O}} CHR \xrightarrow{\text{O}} CH=CHR \xrightarrow{\text{O}} CHR \xrightarrow{\text{$$

X = halogen or alkenyl, $PdL_n = Pd(PPh_3)_4$, $Cl_2Pd(PPh_3)_2 + 2 n$ -BuLi, etc.

In trying to assess the relative reactivity of α - and β -haloenones, we compared the reactions of 0.55 equiv of $(E) \cdot (n-BuCH=CH)_2 Zn$ derivatives with α -bromo-2-cyclohexenone, β -bromo-2-cyclohexenone, and 1-bromocyclohexene in the presence of 3 mol% of Pd(PPh₃)₄ in DMF. The reaction of β -bromo-2-cyclohexenone was complete within 1 h at 25°C, producing 3-[(*E*)-1-hexenyl]-2-cyclohexenone in 77% yield. Although much more sluggish, the reaction of 1-bromocyclohexene also gave 1-[(*E*)-1-hexenyl]cyclohexene in 46% yield along with an 8% yield of bis(1-cyclohexenyl) in 24 h at 75°C. On the other hand, the reaction of α bromo-2-cyclohexenone did not yield the cross coupling product, even though the starting α -bromoenone was totally consumed within 1 h at 25°C. The lower reactivity and higher instability of α -haloenones relative to the β -halo isomers^{4,5} were also demonstrated by the results of a competitive experiment shown in eq. 2. These results mandate that the desired cross coupling reaction of α -haloenones be faster than their decomposition reaction.

The experimental results of α -alkenylation of cyclic α -iodoenones and α -triflyloxyenones are summarized in Table I. The required α -iodocnones, such as 1 and 2, can be prepared in 50-60% yields by treating the corresponding enones with NaN₃ and ICl in MeCN.⁶ The preparation of 3 was achieved via Zr-promoted bicyclization-iodination of 7-(trimethylstannyl)-1,6-heptenyne.7 Commercially available 2-hydroxy-3-methyl-2-cyclopenten-1-one was treated with (CF₃SO₂)₂O and NEt₃⁸ to give 4 in 53% yield. The relative efficiency of several metals widely used in Pd-catalyzed cross coupling was determined using 1 as a test α -iodoenone. The alkenylmetal derivatives were prepared from the parent alkenvilithium via transmetallation, except in cases where hydrometallation provides directly the required reagents. As indicated in Table I, alkenyl derivatives containing $Zn^{9,10}$ and $Al^{9,11}$ yielded very satisfactory results. (E)-1-Hexenyltri(nbutyl)stannane¹² did not react with 1 at 25°C, but the reaction proceeded at 65°C to give, after 13 h, 5 in 64% yield. The other (E)-1-hcxenylmetal derivatives containing $ZrCp_2Cl^{4,10a}$ (27%), Cu•MgBr₂¹³ (<2%), BO₂C₆H₄¹⁴ (<2%), MgBr¹⁵ (<2%), and Li^{16} (<2%) were unsatisfactory in our hands, producing 5 in yields indicated in parentheses. We also successfully achieved coupling between 6 and (E)-n-HexCH=CHI in 80% (61% isolated) yield¹⁷ (eq. 3), but failed to achieve cross coupling in a related reaction with 7. The present method appears to be satisfactory for α -arylation as well. On the other hand, preliminary results indicate that the corresponding reactions of $n-Bu_{2}Zn$ and $(n-BuC\equiv C)_{2}Zn$ may not produce the desired coupling products in significant yields.¹⁸ In most cases, a Pd catalyst generated in situ by treating Cl₃Pd(PPh₃)₂ with 2 equiv of n-BuLi is used. This n-BuLi procedure has proved to be a convenient way of generating an active Pd catalyst from thermally stable $Cl_P Pd(PPh_3)_2$. For the conversion of 3 into 8, however, it was necessary to use a catalyst generated in situ by treating $Cl_2Pd[P(2-furyl)_3]_2^{19}$ with 2 equiv of *n*-BuLi. Tetrahydrofuran (THF), which is satisfactory for many cases of Pd-catalyzed alkenyl-alkenyl cross coupling,^{4,9-11} is unsatisfactory for the desired α-alkenylation. The use of DMF, DMSO, and N-methylpyrrolidonc (NMP) has proved to be essential. In favorable cases, the dimers of enones have not been detected in more than trace quantities. The use of a 10% excess of the alkenylmetal reagents has usually led to the formation of the corresponding conjugated dienes in roughly 5-15% yields.

We have previously demonstrated¹ that α -alkenylenones can be conjugately reduced with freshly prepared LiAlH(OMe)₃ (4 equiv) and CuBr (4 equiv).²⁰ Workup with 2N HCl is satisfactory in most cases, leading to exclusive α -protonation without causing regio- and/or stereo-scrambling of the *E* or *Z* alkenyl side chain. In the case of **9**, the use of methanolic NH₄Cl led to the formation of **10** in 90% yield. On the other hand, workup with HOAc-THF at -20°C immediately followed by quenching with saturated NaHCO₃ at -20°C cleanly provided **11** in 80% yield. Unfortunately, we have thus far been unsuccessful in conjugately reducing either **8** or **12**, even though the reaction of **12** with LiCuMc₂ (3 equiv) afforded **13** in 85% yield.

$$\underset{6}{\mathsf{Me}_{3}\mathsf{Sn}} \overset{\circ}{\underset{\mathsf{HMPA, 50^{\circ}C, 1h}}{\overset{\circ}{\underset{\mathsf{MMPA, 50^{\circ}C, 1h}}}} \xrightarrow{n-\text{hex}} \overset{\circ}{\underset{\mathsf{80\%} (61\% \text{ isolated })}{\overset{\circ}{\underset{\mathsf{Solated }}}}$$
(3)

Table I. Palladium-Catalyzed α -Alkenylation of α -Iodo- and α -Triflyloxyenones^a

(RCH=CH) _n M ^b						Cross-coupled	RCH=CH-)2
R	М	n	Enone	Catalyst	Solvent	product, % ⁴	%*
(<i>E</i>)- <i>n</i> -Bu	Zn	2	1	I	THF	31	12
(E)-n-Bu	Zn	2	1	I	THF-DMF (1:1) 87	6
(E)-n-Bu	Zn	2	1	I	DMF	100(86)	10
(<i>E</i>)- <i>n</i> -Bu	Zn	2	1	II	DMF	88	5
(<i>E</i>)- <i>n</i> -Bu	Zn	2	1	I	NMP	74	24
(E)-n-Bu	Zn	2	1	I	DMSO	80	4
(<i>E</i>)- <i>n</i> -Bu	AlMe ₂	1	1	I	DMF	71	7
(<i>E</i>)- <i>n</i> -Bu	$Al(Bu-i)_2$	1	1	I	DMF	89	3
(<i>E</i>)- <i>n</i> -Bu	$Al(Bu-i)_2^f$	1	1	I	DMF	44	2
(E)-n-Bu	SnBu₃	1	1	I	DMF	trace	trace
(<i>E</i>)- <i>n</i> -Bu	$SnBu_3$	1	1	I	DMF	64 ⁸	64
(<i>E</i>)- <i>n</i> -Bu	ZrCp ₂ Cl ^f	1	1	I	DMF	27	6*
(Z)- <i>n</i> -Bu	Zn	2	1	I	DMF	99(89)	8
(E)-n-Bu	Zn	2	2	I	DMF	81(75)	12
(<i>E</i>)- <i>n</i> -Bu	Zn	2	i	Ι	DMF	83	6
k	ZnBr	1	1	Ι	DMF	89	8
(<i>E</i>)- <i>n</i> -Bu	Zn	2	4	I	DMF	58(45)	10
(<i>E</i>)- <i>n</i> -Bu	Zn	2	3	Ι	DMF	82(66)	18
j	ZnBr	1	3	I	DMF	13	32
j	ZnBr	1	3	III	DMF	51	18
k	ZnBr	1	3	Ι	DMF	52	28
k	ZnBr	1	3	III	DMF	81(63)	20
m-Tolyl	Zn	2	1	I	DMF	92	11

^aUnless otherwise mentioned, the reaction was carried out at 25°C for 1 h using a 10% excess of the alkenylmetal reagent. ^bUnless otherwise mentioned, the reagent was prepared by treatment of the corresponding alkenyllithium with an appropriate metal halide. ^cI = Cl₂Pd(PPh₃)₂ + 2 *n*-BuLi. II = Pd(PPh₃)₄. III = Cl₂Pd[P(2-furyl)₃]₂ + 2 *n*-BuLi. The amount of a catalyst was 3-5 mol%. ^dBy ¹H NMR and/or GLC. The number in parentheses is an isolated yield. ^eUnless otherwise mentioned, the yield of the enone dimer and the amount of the starting enone remaining unreacted are both <2-3%. ^fPrepared by hydrometallation of alkynes. ^sThe reaction was run at 60-65°C for 13 h. ^kThe starting enone 1 remained unreacted to the extent of 18%. ⁱ2-Triflyloxy-2-cyclohexenone. ⁱ(*E*)-*n*-C₅H₁₁CH(OTHP)CH=CH-. ^k(*E*)-*n*-C₅H₁₁CH(OMOM)CH=CH-. Acknowledgments. We thank the National Institutes of Health (GM 36792) for support of this research and Johnson Mathey for a loan of PdCl₂.

REFERENCES AND NOTES

- (1) For our earlier paper, see Negishi, E.; Akiyoshi, K. Chem. Lett. 1987, 1007.
- (2) For regio-controlled α-alkenylation of ketones with selective introduction of a stereo-defined alkenyl group, see (a) Hudrlik, P. F.; Kulkarni, A. K. J. Am. Chem. Soc. 1981, 103, 6251. The regiochemical aspect of the method is unclear. (b) Kosugi, M.; Hagiwara, I.; Migita, T. Chem. Lett. 1983, 839. This method appears to be satisfactory only for α-alkenylation of methyl ketones. (c) Wender, P. A.; Holt, D. A.; Sieburth, S. M. J. Am. Chem. Soc. 1983, 105, 3348. The stereochemistry of the alkenyl group is limited to that which is accessible via LiAlH reduction of propargyl alcohols. (d) Moloney, M. G.; Pinhey, J. T. J. Chem. Soc., Chem. Comm. 1984, 965; J. Chem. Soc., Perkin Trans. 1988, 2847. (e) Hashimoto, S.; Miyazaki, Y.; Shinoda, T.; Ikegami, S. Tetrahedron Lett. 1989, 1100.
- (3) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
- (4) For an early example of Pd-catalyzed cross coupling of β-bromoenones, see Okukado, N.; Van Horn, D. E.; Klima, W. L.; Negishi, E. Tetrahedron Lett. 1978, 1027.
- (5) For related reactions that can be viewed as either α- or β-alkenylation, see (a) Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359. (b) Liebeskind, L. S.; Wang, J. Tetrahedron Lett. 1990, 31, 4293.
- (6) McIntosh, J. M. Can. J. Chem. 1971, 49, 3045.
- (7) Negishi, E.; Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336.
- (8) Stang, P. J.; Treptow, W. Synthesis 1980, 283.
- (9) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393.
- (10) (a) Negishi, E.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254.
 (b) Negishi, E.; Luo, F. T. J. Org. Chem. 1983, 48, 1560.
- (11) (a) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729. (b) Negishi, E.; Takahashi, T.; Baba, S. Org. Synth. 1987, 66, 60.
- (12) (a) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 4630. (b) Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033. (c) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813.
- (13) Jabri, N.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1981, 22, 959.
- (14) (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (b) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972.
- (15) Dang, H. P.; Linsturmelle, G. Tetrahedron Lett. 1978, 191.
- (16) Murahashi, S. I.; Yamamura, M.; Yanagisawe, K.; Mita, N.; Kondo, K. J. Org. Chem. 1979, 44, 2408.
- (17) We acknowledge that this experiment was performed by Dr. K. Akiyoshi.
- (18) We have previously noted that alkyl- and alkynylmetals can be considerably less reactive than their alkenyl and aryl counterparts. See, for example, Negishi, E.; Takahashi, T.; Akiyoshi, K. J. Organomet. Chem. 1987, 334, 181.
- (19) Farina, V.; Baker, S. R.; Sapino, C., Jr. *Tetrahedron Lett.* 1988, 29, 6043. We thank Drs. V. Farina, W. J. Scott, and L. S. Liebeskind for useful information regarding P(2-furyl)₂.
- (20) Semelhack, M. F.; Stauffer, R.; Yamashita, A. J. Org. Chem. 1977, 42, 3180.

(Received in USA 13 May 1991)