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Al~lract 

Solutions of cis.di~ido.bis(triphenylphosphine) platinum( !! ) (('is- i Pt"( PPh~ ).,( N~)., I ) and diazido- 1,3-bis(diphenylphosphino)- 
propaneplatinum(ll) ( [PtU(dppp)(N~).,I) were studied by time-resolved IR and UV-Vis absorption spectroscopy alter excitation by 308 
nm la i r  pul~s. Pholoinduced electron transfer reduces [ P#(dppp) ( N~ )_, I to [ Ptt(dppp) N~ ! ( IR maximum 2045 cm ~ ) which decays in 
~veral ~lvents at room temperature ( half-life ~ 0.3 ms) via intramolecular electron wansl'er to coordinatively unsaturated [ Pt"(dppp) ]. 
With cis-I Pt'( PPh~)_,( N~)_,], photoimmed~,~tion to trans.[ Pt"( PPh~),( N~).,] (IR maximum 2050 cm-~) and photoreduction compete as 
primary phol;~re~tion.~, whereas Ihe decay of [ PlY( PPh~ ).,N.~ ] is analogous to that of I Ptl(dppp) N~ ]. Oxygen scavenges I I~t( PPh~ )_,N~ I and 
I Plqdppp)N~l wilh rate constants k,,, ~ (i.3=2.8) x IO ~ M ~ s ~. The photochemistry of ('is-I plu( PPh~ L,( N~).,I and I I~"(dppp)( N~).,I 
in Ihe absence and pre~nce ofO~ is di~u.~sed. © 1998 El~vier Science S.A. 

Key~'.rfh: Pl.ltnum ¢omp1¢~¢~: A,~Ido complcsc.~: I~l¢clr;m Ir~n~t~r 

I .  Introduction 

Mixed.ligand transition metal azido complexes distinguish 
themselves by a large variety of photochemical reaction path- 
ways. P h o t o i n d ~  substitution, isomerization and redox 
re,f inns can take place d©pending on the nature ofthecentral 
ion, the wavelength of irradiation and the ,solvent u,~d [ i I. 
The central ion strongly influences the path of intramolecular 
c l i f ton  transfer reactions when a~ide ligands are participat- 
ing, The formation of azidyl radicals ( N~ ) [ 21 and nitrene 
intermediates [3,4] has ~ n  described along with the gen- 
eration of nitrido complexes I 5 I. However, the mechanism 
of photoinduced electron transfer reactions, where azide 
ligands are involved, has received little attention I 1,6=9 I, No 
I~re t ica l  approach, except lbr Basolo's rather tentative rule 
1101, exists which allows a pr~iction of the redox properties 
of metal ~ i ~  complexes. Clearly, furtber investigation of 
various kinds of transition metal azido complexes is required 
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to gain a satisl~ctory insight inlo their photochemical 
behaviour. 

In completing our earlier results 16--91, this paper deals 
with further experimental lindings concerning the primary 
photoreaction of cis-diazido-bis( tdphenylphosphine)plati. 
num(ll) (cis-I pill( PPh~).,(N~).,I,PPh~ ~= triphenylphosphine) 
in comparison with diazido-l,3.bis(diphenylphosphino)- 
propaneplatinum( Ii ) ( I ptil(dppp) ( N~ ), I, dppp ~= 1,3-bis- 
(diphenylphosphinoipropane), where the bidentately coor- 
dinated diphos ligand dppp prevents c,is ~ r a m s  isomeriza- 
tiov~ Because the IR absorption of these two complexes in 
the 2100.-2000 cm - * range is very sensitive to changes within 
their first coordination sphere, time.resolved IR absorption 
spectroscopy was used to distinguish between intramolecular 
el~tron transfer and cis ~ trmls photoisomerization. So far 
as we know, these are the lirst results in the detection of 
photocbemically generated intermediates based on Wemer- 
type complexes by means of time-resolved IR spectroscopy. 

2. Experimental 

(,is- [ Pt"( PPh~ )., ( N.~ ), ] and l Pt"( dppp ) ( N~ ), ] were syn- 
thesized according to the literature [121. 2-Methyltetra- 
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hydrofuran (MeTHF) was purified by distillation. The other 
solvents (Merck) were used as commercially available. 

The ground state absorption data of (,is- [ Pt( PPh~), ( N.~ )_~ I 
in CH~CN are A.,,,,, = 267 nm, ~,-~ = 2,4 X 104 M - ~ c m - '  
( e3o, = 4.5 X 103 M -  ' cm- ' ) and e =  4 x I 0 ~ M ' cm- ' at 
2060 c m - ' .  Those of [Pt(dppp)(N~)2] are A.,,,, = 265 rim, 
~ , s  = 2.2 × I04 M -  ' cm- ' (e3os = 1.6 × i 0 ~ M - ' cm-  ' ) 
and e= 3 × I O 3 M - '  cm-~ at 2060 c m - ' .  The values in 
CH:CI2 are e3,s = 5.8 x IO 3 and 2.2× lO 3 M - '  cm- ' forcis- 
[ Pt(PPh~) :(N~) 2 ] and [ Pt(dppp) ( N3),~ ! respectively. 

An XeC! excimer laser (Lambda Physik, EMG 200), with 
a pulse width of 20 ns and a maximum energy of 0.2 J, was 
used for excitation at 308 nm. Time-resolved UV-Vis and IR 
transient absorption spectra were obtained by means of laser 
flash photolysis. For IR detection ( r i se  time ~ 2 p.s, I mm 
CaF, cell) essentially the same set-up was used as described 
previously 113l. The laser beam was lightly focused by a 
cylindrical quartz lens ( local length 30 cm), which took into 
account the rather large divergence. The excitation intensity, 
which was reduced by wire-mesh filters, was limited to ~ 30 
MW cm - :  because of shock waves at higher intensities under 
our conditions. The absorbances where kept to A.~,~ = 0.2- 
0.6 ( path length I mm), corresponding to concentrations of 
0.2-4).6 mM and I-4 mM for cis-lPt(PPh~),(N~),l  and 
I Pt(dppp) ( N.~ )., I respectively. The samples were saturated 
by purging with Ar (20-30 rain), air or O,, and fresh solu- 
tions were used for each flash via a flaw through system. For 
UV-Vis detection (rise time 10 ns. I cm quartz cell) two 
transient digitizers (Tektronix 7912AD and 390AD) and a 
computer ( Archimedes 440) were used J 14 I. The laser hearrl 
was Ibcused by a spherical and a cylindrical quartz lens ( focal 
leugths I m and l0 cm respectively). The (lirst) half-lil'e 
( t~, ) at|d the Ill'clinic ('r) in the absence or presence ot' O~. 
respectively, refer to the changes af ter  the pulse and the quasi° 
constallt absorption chauges al'ler appropriate times. It should 
be noted that too high a dose ot' the analysing light beam 
leads to an increase in AA~o in the 0.01-1 s time range. Such 
an artifact may account for the previously reported increase 
in AA in the 320~450 nm range between 0.0 I-0.9 s tbr cis- 
[ Pt( PPh~).,( N~)., I in CH~CN 161. All measurements were 
carried out in solution at 23 ± 2°C. 

3. Results and discussion 

3. I. Tittle.resohr.ed IR absmT,tio, sl,ectr¢~s,'¢~py 
( I Pt( dppl '  )( N, ~ ) : l ) 

The transient IR difference spectrum ot" i Pt(dppp) (N~) ~ I 
in Ar-saturated CH,CI: solution shows strong bleaching in 
the 2080--2050 cm =' range within 2-3 p,s after the exciting 
308 nm pulse. The maximum at 2064 c m '  and a weak 
absorption around 2040 cm -; disappear within several mil- 
liseconds (Fig. I). The bleaching is attributed to photode- 
composition, rather than to an observable intermediate, in 
view of the fact that the spectra of the transient difference at 
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Fig. !. Transient difference IR spectra (AA ...... .-- - 0,06) of  I Pt( dppp).. 
( N ~ L~ ] in At-saturated CH.,CI~ at 0.005 ms ( © L 0.3 ms ( • ) and 2 ms ( [] 
after the 308 nm pulse. Inset: ki,etics at 2040 cm '. The upper curves refer 
the ground slate spectrum prior to and after *- 30 pulses ( lull and dashed 
lines respectively ). 

1-10 ms and of the ground state are practically identical, i.e. 
the stable photoproducts do not absorb in the 2100-2000 

.... I cm range. 
The kinetics in the bleaching and absorption area are essen- 

tially the same within experimental error. They follow a 
mixed first- and second-order law at higher excitation inten- 
sity ( > l0 MW cm--')  and essentially a first-order law at 
lower intensity ( < 5 MW cm- -~). the rate constant being 
~ 2 × IO ~ s ~ '. These observations reflect the existence of 
two species, one IR-absorbing intermediate after the pulse IA 
( [ Pt~(dppp) N~ ] ) and a second intermediate l ,  not absorbing 
in the IR region monitored (!.~ IPt"(dppp)]; bleaching of 
the IR ground state spectrum). IA and ! .  arc formed 
consecutively: 

h i '  

I Pt(dppp) ( N ~ ) ~ I =' IA ( I PI'(dppp) N, I ) 

~, i,( I Pt"(dppp) I ) ( I 

Similar results and a half.life oft,/., = 0,3 ms were obtained 
ft.' I Pt(dppp) ( N~ )~1 in Ar.saturated CH~CN solutions. The 
spectral changes are similar in air.saturated CH~CN, while 
both the decay of the initial transient and the Ibrmation of the 
second bleaching component are faster. From the half-life 
under Ar and the lifetimes in air- and O,-s'.~turated CHo~CN 
(Table I). a rate constant for scavenging by O: of 
k,,,~ .~. 1.5 X l0  7 M - ' s ~ ~ was obtained. From these results we 
conclude that the reaction of IA with O: leads to a species 
which, like I Pt"(dppp) I. has no absorption in the IR region 
monitored. In tetrahyJrofuran (THF) and CHCI~ the spectra 
are similar, and in all four solvents a trend to shorter t~/., 
values was found on going from At- to air- and O,-saturated 
solution. 

3.2. Time-resah'ed IR absarptimt spectrascapy (cis- 
[ Pt( PPh.~):( N.~):I ) 

The transient ditTerence spectrum o1' cis-lPt(PPh~):- 
(N~): I in Ar-saturated CH:CI: within 2-3 Ixs after the pulse 
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Table I 
~f.,llve~ under Ar and lifetimes in the pre.~nce of O,, obtaim.'d from IR 
Illlg~lMIr~llnlcIIt~ ~ 

C o n f o u n d  Solvent t~/2 ~' ( I ts )Ar  r (ps)air 

IPudppp)(N,);l THF 300 21 
CHCh ~ 28 
CH,O, 3.-;0 42 
CH~CN 300 35 

,'i,~-I Pt( PPhO:(N~): I THF .t00 22 
CHCh 250 < 40 
CH=,CI; 290 43 
CH~CN .t00 35 

~ A~, -0 .2~0.6  ( I ram), A,.,~ - . ~ 8  am: the ~dutions were i~arged with Ar 
,w air: the l i f e f i ~  in Orsalurated ~lutions are generally < I0 Its. 
~' N~n¢ that 1h¢ excitation inten,~ity was kept constant. 

. ~  ~. ~ ./~,' 

Fi~. ~. Tr,,~i~,~ dtffetvm:e IR ~p~tra (..IA"" .. =0.0~ of ('~.~=lPto 
{ PPh,)~( N, )~ t 1. Ar:~lur~ted CH~CI~ at 0.00.~ m~ ( © ). 0.3 t.~ ( w ) and 

I,,, (~I) tiller Ihe ,~()14 nm pul~. The upper ~:,rve~ rel~r to the ~mu,d ~t~tie 
~ l r~m prt~w to ~nd ,her ,. 30 pul~ ( full ~fld d~hed line.~ re~l~l lvely 1, 

shows strong bleaching in the range 2080-2050 cm J with 
a maximum at around 2064 cm ~ and a weak absorption 
between 20.~;0 and 2020 cm ~ ~ (Fig, 2). Alter 2 ms the spec- 
trum changes, showing major and minor bleaching maxima 
at 2064 and 2040 cm = * respectively. The spectrum, which 
remains e~entially unchanged for a period of at least I s, 
differs strikingly from that of the ground state, indicating a 
permanent photopagluct with an absorption maximum 
amend 2052 cm = *, The kinetics in the bleaching and absorp- 
tion areas follow es~ntially a first-order law at lower intensity 
(5  and 6 in Fig. 3). the rate constant is k = 2,5 x I0  "~ s ~ ' and 
contains a second-order component at four times higher inten- 
sity (3  and 4 in Fig. 3 ). ~ ob~rvations reflect the exis- 
tence of ( i )  an IR-absorbin8 stable photoproduct. 
tr(ms- j Pt ( PPh~). ( N ~ ).. J J 2,8 J. responsible for t ~  perma- 
nent bleaching of the ground state ~mple, ( ii ) an IR-absorb. 
ing transient !^ (IPtt(PPh~)~N~I), and (iii) a ,~'cond 
photopix~ducl It;, coordinatively un~turated J Pt"( PPh~)~ I, 
which does not ab,~rb between 2 I00 and 2000 cm ~ *: 

¢i,~-I Pt(PPh~)d N~ L, I -~  mm,~.l Pt(pph~),(N~), i (2) 

° " "  . -  

Ttme--------e~ 

Fig. 3. Kinetics ofcis-lPt(PPh~l,.(N~),l in CH.,Ci, at 2052 cm t {upper 
traces) and 2040 cm - ~ ( lower traces); air-saturated (1,2)  and Ar-saturated 
(3-.6); note that the laser intensity in 5 and 6 is four times lower than ill the 
other c a ~ s .  I "~' '-, 8 M W  cm - " 

('is-[ PI(PPh.~),(N~), I -*  l,x( I Pt'( PPh.~):N~ I ) 

• "* In([Pt"(PPh~)_~l)  (3 )  

Similar si~ctral and kinetic results, e.g. tz/.~ = 0.3 ms, were 
obtained in several solvents under Ar (Table I ). In air-satu- 
rated MeTHF, THF, CHCI~, CH.,CI, ( I and 2 in Fig. 3) and 
CH~CN, both the decay of the initial transient and the tbr- 
mation of the second bleaching component are faster 
(Table I ). Thus, a value ofk,, = 1.3 x I0 ? M ++ ~ s + ~ was esti- 
mated from the kinetics in At'-, air- and O.,-saturated CH.,CI., 
solutions. Furthermore, the reaction of i^ with O, leads again 
to a species that does not absorb in the 2080-2050 cm = 

range. 

3.3. Steady.state IR absm?uiou .~7)ectroscrq;y 

In order to study the c/s ==, troths photoisomerization and 
photodecomposition, the ground slate IR absorption spectra 
were recorded after repeated Ilashing of c,is. 
I Pt(PPh~).4N~)~I in air- and At-saturated CH~CN, Under 
both conditions, the shoulder at 2045 cm" '  disappears al'ter 
30-$0% overall conversion, and the maximum is shifted from 
2060 to .,, 2054 ,:m ~ t (Fig.  2) ;  eventually ( > 90% conver- 
sion) this IR absorption disappears completely owing to the 
loss of the two azide ligands. This shift would be consistent 
with Eqs, (2) and ( 3 ) with trans. I Pt ( PPh.~ ).~ ( N ~ )., ] absorb- 
ing at 2052 cm ~ '. and i ,  being coordinatively unsaturated 
[ Pt°( PPh~).,I under Ar which does not absorb in this region. 
Similar experiments with I Pt(dppp) (N,)z I in Ar-saturated 
CH,,CI:o however, show a small shift of the maximum I~m) 
2060 to --2057 cm ~ * alter 30-50% overall conversion 
( Fig. I ). A spectral shift rather than a complete disappear- 
ance of this IR band is surprising because of the lixed ('i.~ 
conlbrmation of the complex, it might be due to CI abstraction 
from the solvent or photoinduced generation of a di-/t-azido 
complex of the kind { (dppp) Pt°(N~):ptU(dppp) I. 

3.4. Time.resoh'ed UV-Vis absorl~tion .~Twctroscrq~y 

The transient OV-Vis absorption spectra of 
I Pt(dppp) ( N~):I and cis-I Pt( PPh~).4 N~):I in Ar- and 0:-  
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saturated CH2CI2 are shown on a short time-scale in Figs. 4 
and 5. The spectra, which generally increase in AA during 
the 308 nm pulse, exhibit a maximum around 380 nm and a 
flank extending to ~ 550 nm. in several At-saturated sol- 
vents, e.g. MeTHF, THF, CHCI~, CH.~CI, and CH:,CN for 
cis-lPt(PPh~),_(N~)2!, the main effect is an increase in 
absorption in the 320-500 nm range after the laser pulse. 
Only a minor part of the increase in AA shows a time depend- 
ence ( Fig:;. 4 (a) and 5 (at) ,  i.e. there is no simple correlation 
with the kinetics in the IR region. Subsequent formation of 
several intermediates with similar spectra mainly leads to the 
permanent changes ( see below). 

The behaviour is different in the presence of O> since only 
the initial increase in absorption in the 320-500 nm range is 

1.0 ................. - 
(a 

0.5 

/sA mx 

1.0 ~ (b) ..,~, r ~ r - r - i - ' - ~  
..~ r,'~ I ~ -  

° I t '  
..' ,,~P,~;.~"~ I I IOI!s 

~00 3~0 4IX) ~, (rim) 4~0 ; 500 5511 

Fig. 4. Trm~sk, nl al'~m'.'plion t I V W i s  Sl)eClr,. { ~A'""'  '-- 0.2 ) ol' l PI( dppl* )+ 
! N ~1 +>i lit ! a ) At'+ told ( b ) O,+,,slitllrllh:d ( ,H,( ' I  +, at 0..~ ( O ). I0 ( • ) anti 
I00 iks (K]) lll~i~l' lh¢ pulm:, hls¢Is: kint~lics al 380 nili (a) told .'d, lO llnd 

,4(!0 l |It! ( 11 )+ 
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" ° '  (b) . ,  o ' ,  I 
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Fig. 5. Transient absorption UV-Vis  spectra (AA ...... ~0,2) of cis- 
I Pl( PPh~ )2( N.~ ), 1 in ( a )Ar-  and (b) O:-saturated CH,CI, at 0.5 ( 0 ). I0 
( • ) and I(H) IXS ( [ ] )  after the pulse. Insets: kinetics at 390 n,n (a t  and 370 

and 460 n m ( b ) .  

Table 2 

Lifetimes in the presence o f  O:, obtained from UV-Vis  measurements ~ 

¢"ompound Soh'ent ~" ! p.s ) 

Air O_. 

IP t (dppp) (N, )z l  

('is-I Pt( PPh~ L,( N~ )21 

CHCi ~ 22 5 
CH2Ci2 42 8 
CH ~CN 36 
MeTHF ! 5 2.8 
THF 25 4 
CHCI ~ 25 4 
CH2CI. 48 8 
CH~CN 35 

"Decay observed at ... 460 nm (same kinetics within experimental error 
were observed from the increase at -.. 380 nm): A ~,m = 0.2-0.6 ( i nun }: the 
solutions were purged with air or O:: in all cases the half-lift: under Ar is 
longer than I ms. 

comparable with the spectrum in deoxygenated solution. 
Instead. after the pulse. AA in air- or O2-saturated solution 
increases further in the 320-400 nm range, but decreases 
above 430 nm (Figs. 4(b) and 5(b)) .  The kinetics of for- 
marion of this second transient around 380 nm and decay at 
450-500 nm are the same (or very similar) and depend both 
on the O2 concentration and also marginally on the solvent. 
The spectral and kinetic changes for cis-i Pt( PPh~ ):( N;):  i 
are in rough agreement with those reported before for air- 
saturated CH;CN 161. Moreover. the kinetics in the UV-Vis 
region are identical (within experimental error) with the 
decay of transient IA (IPt~P.,N~I. P~-~(PPh~), and dppp 
respectively. Table 2 ) in the IR. The rate constants for scav- 
enging I PIIP,N~I by O: are k,,, + (1.3=2.8) x 107 M ~ s '. 
From these results we conclude that ( i ) 1Pt~P~N; I is formed 
within 20 ns. tit) J PI"P: J, formed subsequently, absorbs also 
in Ihe UV. and (iii) J PllP~,N~ J is scavenged by O,. 

After the initial photoreaction, a major part of the transient 
UV=Vis absorption spectrum of both complexes under Ar 
remains on a I ms to I s timescale. In the presence of O~. 
however, only a minor part of AA is permanent, whereas the 
major part decays subsequently. This is illustrated in Fig. 6 
for I Pt(dppp) (N~), I in CH,CI:. 

Examples of'the changes in AA~m~ on a I Ixs to I s timescale 
are shown in Fig. 7 for the two complexes in At- and O:- 
saturated CHaCI,,. For I Pt(dppp) ( N~ ) ~ I under Ar virtually 
no change could be detected and for cis-I Pt(PPh~) :(N~): ] 
only a slight increase was Ibund within I ms followed by a 
permanent signal. This behaviour is strongly influenced by 
the presence of O:, where AA+m) decreases strongly between 
0.3-10 ms. The pattern ot" the kinetics in Ar-, air- or O:- 
saturated solution is somewhat solvent dependent, but in all 
cases the major part of the increase after the pulse remains 
permanent in the absence of O., :rod decays in its presence. 

3.5. Steady-slate UV-Vis ahsoq~li,m q,ecllv~scopy 

Generally. upon repeated flashing at 308 nm ot" cis- 
[Pt(PPh~)2(N;)2] under Ar. the steady-state spectra 
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Fig. 6. Transient absorption UV-Vis SlXn:tra of I Pt(dppp) (N,) ,  I in (a) 
At- and (h) O:-~laraled C'H:CI: at 0.2 ms (open symbols) and 20 ms 
( I.II symbols) after the pui.~: ground state spectrum prior to and after '.- 30 
pul~s ( lull and dashed lines respectively ). 

I I I I I ~/I 

~ A  u 1.0 ~ -  - -rs, d , ~ , - ~ . ~ i . . ~ . ~ . ~  

A A ~  

0,9 ~`" &" 

o ~ , , 1  
Time (s) 

Fi~. ?, ~ln.~tenl ~h~wplk)l~ si~o~d~ ( m ) ~ l l i ~ )  at ,180 ~m as a t~nctk), 
of l i ~  (m)t¢ Io~ s¢~l¢) fi)r ci,~'-II~(PPh~)~,(N~)+l (circles) and 
I El(dPPl)) ( N ~ ) ~ ] ( trtaa~I¢,~ ) In At- and O~o~tur+ltcd CH .,C L, ( full and Olin 
~ym~h resistively), 

decrea~ below 300 nm and increase above 330 nm. This is 
due to pholo&g'omposilion and formation of the dimer, 
I llt:(PPh~) ~ I, respectively I f~9 I, The increase in absorption 
at +~ > 330 nm is much smaller in O:- or air-,~turated than 
Ar-~turated solution: in particular, isoshestic points were 
found under air at 321,326 and 319 nm in THF, CHCI~ and 
CH~CN reSlg'ctively, Photodecomposition was also observed 
for IP~(dppp)(N~):I in ~veral solvents, The absorption 
sierra of I Pl(dppp) (N,~): I in At- and O.,-~turat~ CH:CI: 
ace :~)wn in Fig, 6(a) and (b) reSl~,'ctively, They are similar 
to those of oh'. I PI( PPh~ ):(N~): I, The quantum yields ofthe 
d i ~ a r a ~  of cis-IPI(PPh~):(N~):I in Ar-~turated 
CH~CI: ~ q~-0,07, 0,10 and 0,095 Ibr irradiation wave- 
lengths of 254, ~ 13 and 366 nm respectively 19 I, Similar @ 
values (0.07~4),10) under these irradiation conditions have 
been oblain~l in THF and ethanol I I~1; i,e, different tran- 

sitions in the complex as well as solvents of medium and 
strong polarity have only a small eft~ct on (it). 

3.6. Discussion 

The two compounds under examination are representative 
examples of mixed-ligand platinum(It) azido complexes 
which differ by their coordination of monophosphine and 
diphosphine ligands. The intense IR absorption of these com- 
plexes in the 2100-2000 cm- ~ range, attributed to the stretch- 
ing frequencies of the azide iigands [8 , I l l ,  render the 
dynamics of the two primary photoprocesses of cis- 
[ lt(PPh.~):(N~).~I, photoisomerization and intramolecular 
electron transfer, accessible to IR monitoring. 

Si nee [ Pt(dppp) ( N ~ ): I cannot photoisomerize 
(Scheme I ), electron transfer with tbrmation of 
[Pt~(dppp)N.~l as the transient la and I Pt"(dppp)] as the 
product in are the obvious alternatives (P, = dppp, Figs. I 
and 8): 

h i '  

IPI"P:(N~).,I -~ IWP;N~I + "N~ 

I ptip.,N~ I ~ ! PI"P21 + "N~ 

N~+ 'N~-)3N: 

(4) 

(5) 

(6) 

~(PPhah(N~l* 

~ P h s ) a N J  

/ ' /  1""< .  
[ptOlpphnb I lptUlPPhahOJ 

IP~IPPh~tN~! tP,.~°CPPh~d 
Schen~ I, 

. . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T ~  ........... 

Fig. 8. CLllcuhlled transient difference spectrum of I I t(dppp) ( N~ ); I in Ar- 
~turaled CH,CI, at the end of the .'~08 I|lll pul.~ ( - -  - - - )  as~UIIlillg Ihe 
ah~}rl~ion speclruui oi IW(dppp)N~l (---): the lull line relbrs Io the 
grtmand ,qale of I PH dppp) ( N ~ ) ~ I, 



H. Hcmti~ el a/./Inort'anict+ ('/ffmh'. Acre 2; ' / t /vg , '~ l /60- /66  It,.'; 

The observation o1' the generation ol" azidyl radicals and 
platinum( I ) complex fraglneiltS in the priinary photopn)cess 
of  [ ptu( PPh~ )2( N: ~21 by illeans of  ESR .,;pin trapping 161 
and UV-Vis  Ilash photolysis 17 I. as well as Iow-tetnperature 
huninescetlce 191 and steady-state IR absorption spectros- 
copy l S I. have ah'eady been reported. The azidyl radical 
absorbs in the UV. A,,,,,=274 nnl. ~ _ , = 2 . 0 × 1 0  ~ 
M - '  cnl '. and the rate constant 2k, is known fi'onl pulse 
radiolysis to be 9 x I O" ~.4 ~ | s ~ in aqueous sohltion I 161. 
In order to account for the intensity dependence of  the bleach- 
ing recovery kinetics. Eq. (7)  is considered: 

I PI'P.+N., I + N~ ---) I Pt"P_+( N.~ )_~1 (7)  

Another reaction of tile azidyl radicals is unlikely under 
our condit ions. Recently, the addit ion o f  azidyl radicals to 
olelins in CH ~CN yielding transients with absorption illilXillla 
around 2000 tin ' has heen reported I 17 I. 

Electron transfer via E(.is. ( 4 ) and ( 5 ) and involvenleilt o f  
Eq. ( 7 ) in the case o f  l PI(dppp) ( N,  )_, I is also supported by 
the fol lowing. The laser-induced spectral cilanges are due to 
A A I / =  { ~COtlC.( I ) , -  t:.,,ACOilC.( 2 ), }. where cone.( I ), is 
the concelltratiOll (~.1" I Pt~(dppp) N, I at tile t ime t = 3 ItS or 2 
Ills i l l l d  ¢ O l I C , 1 2 ) ,  t i l e  ¢ o r l ' e S p o l l d i l l g  CO l lCe l l t r a t iO l l  o f  

I Pt"(dPl~l I t (  N~),  I. i.e. the values an: cone.( I ), = cone.( 2 ), 
a! t = 3 p.s. Tile observed spectrum ( circles in Fig. 8 ) can he 
composed hy using t:, ( A,,,,,, = 2045 cm '. dotted line ) and 

,,,'. ( full line ). The reduced bleaching after 2 ills ( squares in 

Fig. 8) in the 2080~2060 on) ~ nttlge is due most probably 

tO [I dcc l ' e { I se  i l l  ,.~COItC.( 2 ),, i .e. Ll|lc I() Eq. 17 ), Since the 
,~1)¢¢11't111) al'ler -~ Ills is ilol ftil ly that which one CXl')ect,~ froni 
pholodeconil ' losil ion llloll¢ ( I:i~, 8 ) al|tl ileqlltl,se i,)l' lilt: shifl 
il l ' l i lt ' M~|lLlyoMlltP I R band ( Fig, I ), Ilalo~en ab,~ll'{lctJoll rr¢)nl 
Ihe solvent yielding I I)til(dl~r)r I )N ~('11, dJlni.,ri/alion of  
I I)ll( dl lpp)N~ I or a ~u-l'ar LlllkliOWit rdlol¢)indut.,~.,d I'PliL'lJOll 

) 1 |  ) o1' I I I I dPl p ) I and I Ill"(dpl')l'~) ( IN ~ ), I to I ( dpl'~l' I)1 ''- 
(N~)zPt"(dl ' )Pr)) l  may l'~e consid~.,red Iilld relllllJlis tO be 
elucidated eXl')erintelttally. 

Tile ev~tlttlal st~ps o1' Ille c~lordinatively tlllstltLIr~,lt~d i')hit- 
inuni(O) coniplexes leading to tile stable i')rodtl¢l(~) in tile 
abSellCe o1' O;  ( Scheme I ) have beell pronosed to be a reac- 
l ion with the solveltt,~ S. Eq. ( 8 ). and dinl¢l'iZ:ition. Eq. ( 9 ) 
I 1.7.al '  

I Pt"P: I + 2S --+ I Pt"l):S: I (S)  

21Pt"P.,S: I --~ I lit'.,'( P, ): I  + 4S ( 9~ 

Platinun)(O) conir~l~x I'ragnlent~ have b~.'en detected by 
lunlinescence spectroscopy at h)w t~:inl~)el'atLu'¢s J 9. I 8.19 i. 
The role ol'the solvent in Eqs. ( 8 ) and ( 9 ) has been discussed 
previously I 1.7.8 I. By tinle-rcsolvcd U V-Vis  stlldies o1'('/,~- 
I Pill( PPi l , ) : (  N,)21 :ind I l ) t " (dp l~p ) (N , ) ,  i. we couhJ tlOt 
ob.~el'vc any significant change.,; in tile time range o1" I his 
to I s in several solvents tlllder At' ( Figs. 4( at,  5( at. 6(a) 
and 7 ). Other  nlelhods are required to investigate tile eVelltLlal 

reaction processes. 

For ('/.~-I PIt PPII, 1_.1 N.  I . I .  ('L~ ~ t r , , ~  ph()loi.,,Onleriza- 
lion. Eq. ( 2 I. has to be postulated to account for lhe lime- 
resolved IR spectra ( Fig.~. 3 and 9 ). In addit ion Eqs. ( 41 and 
( 51 are suggested. Tile a.~signnlent o f  tlle initial tnulsient to 
I PIt( PPll~ )_.N~ I is supported hy the linding.,; thai tranxient !., 
is fornled within 2-3 Ix.', and decays with t, _. ~. 0.3 ms and 
thai lhe IR spectrunl is virtually the same as that obtained 
from I Pt( dppp)( N~ )21 ( Figs. i and 2 ). Note that srnall dif-- 
ferences between the spectra of  tile initial transient~,. 
[ PI*P_,N~I. are due to the fact that in the case P =  PPh~ a 
certain amount o f  the ('ix isomer is photoconve~led into tlle 
wa,.~" isomer which may slowly isonlerize back. 

The decrease in bleacllill,g in the 2080-206(I cn) ~ range 
for ris-I PI( PPll~ )_,( N~ )_,1 between 3 Ixs and 2 ills ( Fig. 9. 
circles and squares i'eSl'~ectively ) is attributed to an i,crea.,,e 
in the concentration o f  I PI ' (  PPh ~ l _,( N ~ ), I ( (.is and possibly 
wa,s isomer), i.e. [-':q. ( 7 ). The spectral changes are due to 
A A / I  = { ~hconc.( I ), + ,~:,conc.( t r ( m s ) ,  - ,% A c o n c . I  ('is 1, }. 

w h e r e  c o n c . (  I j r ,  COl lC.(  D'[IIL~' )~ t l l l d  COl lC.(  ( ' /x  }~ ;.Ire t i le  COi l -  

cenlrations of  I PI'( PI)II~ ),N ~ I. , ' , , . , - I  PI"( Pl)h, l :l N, I: i 
and cis-I PI"( P P I I , I : ( N , ) : I  at appropriate time.,, respec- 
l ively, and Atone. ( ( ' /s ) ,  =conc.(  I ), + cone.( trims ),. The 
observed sp~Ct l 'L ln l  at  t = "~ _ ills ( where COtlC,( I ), is ;/ero ) c;itl 
he conll')OSed hv those using ,,:, (A,,,.,, = 2044 cm '. dashed 

line i and ,% ( full line i. The cllangcs at z = .I IX,, can be cal- 

culalcd from Ill,: Sl')eclra in FJ,~. 9 ( A ...... = 2('.;() cn) ' for ,%. 

doll~d ctirve ) by using lhe fern) ~:, + ~:~ - r~,%. where lh~ con- 

Sl i l l l t  ¢I' = 1.4 l 'el~'t 's t o  t i l e  l i n d i n g  l h i l l  t i l e  a n l o u t l t  ()l'bleaclling. 
Aconc.( ('is),, i.~ reduced l')ehveen 3 ~s told 2 Ills. l|en.'. ~,.e 
a.',.,,ume thal Eq. (7)  h:ads Io tll~.' ('is rath~.'r than lhe w,n~ 
i,,mucr, i.~.'. ~.'onc.( mm.~ i, is iml~'l~e,dent of  ~. 

To account for the .~caven~ing of internlediat~: i ~ I~) (), 
(Tablu's I mid 2) and tll~' l'twlh~.'r efl'~'cl,, cmi,,ed lls (). 
(I:i~s, 41 h i .  51 by. r~( bl  and °/l. x~, p,'Ol~O,,~' I~q, ( I(11 I 1.71' 

I PI' I):N ~ I + ( ) ,  =+ I l)t"l)o,(), I + N~ 

I PI"I): l + ()-  ~ I l)t"l).,(), l 

(I(I) 

(II) 

t~, t ~, 

! 

"4 

"I 

,4 

i . . . . . . . . . . .  

• ILII 

4 V I¢ln'l I 

I ' ig. O. ( 'a lcuhl led Irlill.qVnl di l tvre,c~' ~pvcml 4~1 ~/~- I lh l  P P h  I,~ ~ D, I ,1 
Al'-~alUl'al~'d ('11 ,('1, ;ll IhL' cml ol'lhL' .Ills roll pulpy g - - ~ and a/h:r 'L achifl F' 
IhL' , ' , l i l l iO I I i l l ' } '  I l l iMI . I I 'L '  I . . . . . . . .  I I I M I I ~  Ih~' 1111~,o1"1~11Oll ~l~C¢lr', ~ o l  ~ /~-  

I Pll I~Ph, I ,I N, I, I ( r, l ine I. H'+m~-I I't( I 'Ph, I ,G N, }. I ~ r, line ~ ~ ,,ml 
I I )Ill Pith, ) ,N~ I ( z.:, l i ,¢ 1. 
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~nerally. the dift~rences in the steady-state UV-Vis 
a ~ t i e n  spectra in the ab~nce and presence of O., may be 
due to Eqs. (8)/(9) and Eqs. ( 10)/( I I ) respectively. 
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4. Conclusions 

The primary photoreduction of cis-diazido-bis(triphenyl- 
phosphine)platinum(ll) (cis-[Pt"(PPh~),(N~)~]) com- 
petes with the i~merization to trans- [ PtU( PPh~);( N.~)_, ]. 
Trees- 1Pt"( PPhs),.( N.~),. ] it~lf is reduced photochemically 
to the ~me intermediates, namely monoazido-bis(triphenyl- 
phosphine)platinum(i) and the azidyl radical. Sub~quent 
dark reactions yield the coordinately un.,~turated [Pt °- 
(PPh~),! complex fragment and [Pt.,(PPh:~)4] as stable 
product as sum~rized in Scheme !. The primary photo- 
reaction of diazido- i .3-his(diphenylphosphino) propaneplazi- 
hum(I!) ( [ It"(dppp) ( N~), ] ) leads to the azidyl radical and 
the corresponding platinum(I) intermediate which decays 
subsequently in ~veral steps to [Pt:(dppp).,]. The plati- 
num(i) / (0) intermediates of both complexes are efficiently 
scavenged by oxygen, 
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