AGRICULTURAL AND FOOD CHEMISTRY

Article

Design, Synthesis and Antifungal Activities of 3-Acyl thiotetronic Acid Derivatives: New Fatty Acid Synthase Inhibitors

Pei Lv, Yiliang Chen, Zheng Zhao, Taozhong Shi, Xiangwei Wu, Jiaying Xue, Qing X. Li, and Rimao Hua J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b05491 • Publication Date (Web): 01 Jan 2018 Downloaded from http://pubs.acs.org on January 1, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 Design, Synthesis and Antifungal Activities of 3-Acyl Thiotetronic Acid

2 Derivatives: New Fatty Acid Synthase Inhibitors

- Pei Lv,[†] Yiliang Chen,[†] Zheng Zhao,[‡] Taozhong Shi,[†] Xiangwei Wu,[†] Jiaying, Xue,[†] Qing X. Li,
 ^{†, §} Rimao Hua^{*,†}
- 5
- 6 [†] Key Laboratory of Agri-food Safety of Anhui Province, School of Resource & Environment,
- 7 Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui 230036, China
- ⁸ [‡] High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei,
- 9 Anhui 230031, China
- 10 [§] Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa,
- 11 1955 East-West Road, Honolulu, Hawaii 96822, United States
- ^{*}Corresponding author: Tel: +86 551 65786320; Fax: +86 551 65786296; E-mail:
- 13 <u>rimaohua@ahau.edu.cn</u>
- 14

15	ABSTRACT. Emerging fungal phytodiseases are increasingly becoming a food security threat.
16	Twenty-six new 3-acylthiotetronic acid derivatives were designed, synthesized, characterized,
17	and evaluated for activities against Valsa mali, Curvularia lunata, Fusarium graminearum and
18	Fusarium oxysporum f. sp. lycopersici. Among the 26 compounds, 6f was the most effective
19	against V. mali, C. lunata, F. graminearum and F. oxysporum f. sp. lycopersici with median
20	effective concentrations (EC $_{50}$) of 4.1, 3.1, 3.6 and 4.1 μ g/mL, respectively, while the
21	corresponding EC ₅₀ were 0.14, 6.7, 22.4, and 4.3 μ g/mL of the fungicide azoxystrobin, 4.2, 41.7,
22	0.42 and 0.12 μ g/mL of the fungicide carbendazim, and >50, 0.19, 0.43, >50 μ g/mL of the
23	fungicide fluopyram. The inhibitory potency against V. mali fatty acid synthase agreed well with
24	the <i>in vitro</i> antifungal activity. The molecular docking suggested that the 3-acylthiotetronic acid
25	derivatives targeted the C171Q KasA complex. The findings help understanding the mode of
26	action and design and synthesis of novel potent fungicides.
27	
28	Keywords: Thiotetronic acid; Fatty acid synthase; Antifungal activity; Fungicide

30 INTRODUCTION

Natural products have long been used as pesticides and have often served as a source of 31 inspiration in the discovery of commercial synthetic pesticides as they could aid in identification 32 of new mode of action and be used as lead structures to derive new potent pesticides.¹⁻⁷ The 33 heterocyclic cores of tetronic acids (2,4-furanodione), thiotetronic acid (2,4-thiophenedione) and 34 35 tetramic acids (pyrrolidine-2,4-dione) have attracted significant attention over the years due to their occurrence as naturally bioactive products isolated from bacteria, molds, algae, fungi, 36 lichens and sponges (Figure 1),⁸ which display a wide range of biological functions. Tetronic 37 acids are antioxidant,⁹ antiepileptic,¹⁰ antitumor,¹¹ anti-inflammatory,^{12,13} and insecticidal.¹⁴ 38 Tetramic acids exhibit antibacterial,¹⁵ antiviral,¹⁶ anticancer,¹⁷ and herbicidal activities.¹⁸ 39 Thiolactomycin is a unique thiolactone and specifically inhibits biosynthesis of fatty acids and 40 mycolic acid, by which exhibits anti-mycobacterial activities.^{19, 20} 41 Fatty acid synthesis in fungi is compartmentalized in the large multifunctional fatty acid 42 synthases (FAS). FAS function as molecular assembly lines and increase the time of synthesis by 43 channeling substrates between the active sites and achieving high local concentrations of 44 intermediates.²¹⁻²³ In fatty acid synthesis, extension of a growing fatty acyl chain by two carbons 45 at a time is initiated by the coupling of a malonylated acyl carrier protein (ACP) with a thioester 46 linked acyl group at the active site of β -ketoacyl synthase (KAS).²⁴ There are two tandem 47 48 KAS-type enzymes, KasA and KasB. KasA specifically elongates palmitoyl-CoA to C38-42 monounsaturated acyl chains, whereas KasB extends up to 54 carbons on average in the presence 49 of KasA to produce longer chain multi unsaturated hydrocarbons.^{19, 25} In previous studies, the 50

51	acylated enzyme intermediate was mimicked by a C171Q KasA variant in which Gln-171 forms
52	hydrogen bonds with the KasA oxyanion hole. ²⁶⁻²⁸ Considering the importance of fatty acids in
53	fungal survival, this acyl enzyme mimic could be particularly important for the design of new
54	anti-fungal agents to inhibit KAS by binding preferentially to the acyl-enzyme.
55	In our efforts to screen for agricultural fungicides from natural products, attempts have been
56	made to test whether modulation of the five membered ring systems could lead to high fungicidal
57	activity. Based on the proven potencies of tetramic acid, tetronic acid, thiotetronic acid natural
58	products and the mode of action of thiotetronic acid antibiotics inhibiting fatty-acid
59	synthases, ^{19,20} 26 novel thiotetronic derivatives were designed and synthesized targeting KasA
60	and KasB to inhibit the biosynthesis of fatty acids and mycolic acid and to reveal the structure
61	and fungicidal activity information. In addition, docking simulations were performed on the basis
62	of the X-ray crystallographic structure of the C171Q KasA to explore the binding mode of the
63	compounds in the active site.
64	

65 MATERIALS AND METHODS

66 **Chemicals**. Azoxystrobin (98%) and carbendazim (98%) were purchased from J&K

67 Chemical Ltd. (Shanghai, China). Fluopyram (99%) was purchased from Anpel Laboratory

68 Technologies, Inc. (Shanghai, China). Azoxystrobin, carbendazim and fluopyram are commercial

- 69 fungicides and were used as positive controls. The other reagents were all purchased from J&K
- 70 Chemical and were analytically or chemically pure. All solvents and liquid reagents were dried
- 71 by standard methods in advance and distilled prior to use.

72	Fungi. The plant pathogenic fungi, Valsa mali, Curvularia lunata, and Fusarium
73	graminearum, and Fusarium oxysporum f. sp. lycopersici were kindly provided by the
74	Department of Plant Pathology, Anhui Agricultural University, China. These fungi were grown
75	on potato dextrose agar (PDA) plates at 28 °C and maintained at 4 °C with periodic
76	sub-cultivations.
77	Instruments. ¹ H NMR and ¹³ C NMR spectra were recorded on an Agilent 600M DD2
78	(Agilent Technologies Co. Ltd., Shanghai, China) spectrometer at 25 °C and referenced to
79	tetramethylsilane (Me ₄ Si). Chemical shifts were reported in ppm (δ) using the residual solvent
80	line as an internal standard. The purity was determined on an Agilent LC-MS Symmetry 3 under
81	a gradient elution of 5-90% aqueous acetonitrile containing 0.05% trifluoacetic acid (TFA) over
82	8 min (10 min run time) at a flow rate of 2 mL/min. The column used was a 50 mm x 4.6 mm i.d.
83	5 μ M, C18 column (Agilent). High resolution mass spectrometry (HRMS) data were obtained on
84	a Varian QFT-ESI instrument (Varian, Inc., Alto Palo, CA). Melting points were determined on a
85	XT4 MP apparatus (Taike Corp., Beijing, China) and were un-corrected. Analytical thin-layer
86	chromatography (TLC) was performed on glass-backed silica gel GF254 sheets (Yantai Jiangyou
87	Silica Gel Development Co. Ltd., China). All compounds were detected at 254 nm or 365 nm.
88	Synthesis. The synthetic route of the target compounds 5a-5d, 6a-6h, 7a-7e and 8a-8i was
89	outlined in Figure 2 using thioacetic acid as a starting material.
90	Synthesis of 2-(acetylthio)acetic acid, 2. A mixture of p-dioxane (200 mL) and Et ₃ N (161 g,
91	1.58 mol) was chilled in an ice-water bath to ca. 10 °C. To this solution thioacetic acid (120 g,

92 1.58 mol) was added dropwise while the temperature was maintained between 10-15 °C. The

93	resulting brick red solution of thiolacetic acid and triethylamine (Et ₃ N) was added dropwise to a
94	solution of bromoacetic acid (220 g, 1.58 mol) in <i>p</i> -dioxane (500 mL) with vigorous stirring. A
95	resulting precipitate of triethylamine hydrobromide slowly formed. During the course of addition,
96	the reaction mixture became warm and was stirred at ambient temperature for 16 h. The reaction
97	mixture was filtered to remove Et ₃ NHBr. The filtrate was evaporated and the residue was
98	dissolved in saturated aqueous K ₂ CO ₃ . The aqueous K ₂ CO ₃ was washed twice with diethyl ether
99	(Et ₂ O). The aqueous phase was separated and acidified cautiously to pH 3 by the dropwise
100	addition of concentrated HCl. The product was extracted several times into Et_2O . The combined
101	Et ₂ O extract was washed with H ₂ O and brine, dried over MgSO ₄ , filtered, and concentrated. The
102	residue was distilled under reduced pressure (1 Torr), and the fraction boiling between 118 and
103	122 °C was collected to afford pure 2-(acetylthio)acetic acid, 2 , as a pale yellow oil. Yield, 90%;
104	yellow oil; ¹ H NMR (600 MHz, CDCl ₃) δ: 3.76 (s, 2H), 2.43 (s, 3H). ¹³ C NMR (150 MHz,
105	CDCl ₃) δ: 193.9, 174.7, 31.3, 30.1.
106	Synthesis of 3-acetyl-4-hydroxythiophen-2(5H)-one, 4. Oxalyl chloride (5.44 g, 55.5 mmol,
107	1.5 equiv) was added dropwise over 1 h at 0 °C to a solution of 2-(acetylthio)acetic acid 2 (5.00
108	g, 37 mmol) and DMF (0.38 mL, 4.82 mmol) in anhydrous CH_2Cl_2 (100 mL). The mixture was
109	stirred at ambient temperature for 8 h. After solvent removal, the crude oil was distilled at 7 mbar
110	to give pure 2-(acetylthio)acetic chloride as an orange oil. The acyl chloride (5.65 g, 37 mmol)
111	was then added to a solution of toluene (80 mL) and cooled to 0 $^\circ$ C by means of an ice bath.
112	Methyl acetoacetate sodium salt (15.33 g, 111 mmol) was then added dropwise, while the
113	temperature was maintained between 5-10 °C for 3 h. The final slurry was washed with 1 M $_6$

114	aqueous HCl (3 \times 100 mL). The toluene layer was extracted with dilute Na ₂ CO ₃ (3 \times 100 mL)
115	aqueous solution. To the aqueous phase was added NaOH (2.40 g, 60 mmol). The solution was
116	kept overnight. The aqueous phase was then acidified cautiously to pH 3 by the dropwise
117	addition of concentrated HCl. The precipitated crude product was extracted with Et ₂ O several
118	times. The combined Et_2O extract was concentrated <i>in vacuo</i> and purified by silica gel column
119	chromatography (EtOAc/MeOH, 15:1, v/v) ($R_f 0.4$) to give the pure intermediate 4. Yield, 67%;
120	white solid; m.p. 82-83 °C; ¹ H NMR (600 MHz, DMSO- d_6) δ : 4.17 (s, 2H), 2.42 (s, 3H). ¹³ C
121	NMR (150 MHz, DMSO- <i>d</i> ₆) δ: 197.0, 194.7, 193.2, 110.8, 35.4, 25.4; HRMS [ESI] <i>m/z</i> : calcd
122	for ([M-H] ⁻): 156.9960; found: 156.9965.
123	General procedure for the synthesis of compounds, 5a-5d.
124	To a solution of 158 mg (1 mmol) of the intermediate 4, PPh ₃ (314 mg, 1.2 mmol) and the
125	corresponding alcohol (1.2 mmol) were dissolved in 10 mL of dry THF, followed by addition of
126	0.19 ml (1.2 mmol) of diisopropyl azodicarboxylate in 5 mL of THF. The reaction was stirred
127	overnight at room temperature and then concentrated in vacuo. The residue was purified by a
128	silica gel column with hexane/EtOAc (2:1, v/v) as the eluant. The crude product was then
129	recrystallized from hexane to give 5a-5d .
130	3-Acetyl-4-ethoxythiophen-2(5H)-one, 5a. Yield, 56%; green solid; m.p. 82-83 °C; ¹ H NMR
131	(600 MHz, CDCl ₃) δ : 4.33 (q, J = 6.9 Hz, 2H), 4.01 (s, 2H), 2.45 (s, 3H), and 1.51 (t, J = 6.9 Hz,
132	3H). ¹³ C NMR (150 MHz, CDCl ₃) δ: 193.8, 193.5, 192.2, 118.1, 67.8, 31.4, 30.8, and 14.8;

- 133 HRMS [ESI] m/z: calcd for ([M+H]⁺), 187.0429; found: 187.0432.
- 134 *3-Acetyl-4-isopropoxythiophen-2(5H)-one*, **5b**. Yield, 60%; green solid; m.p. 76-78 °C; ¹H

135	NMR (600 MHz, CDCl ₃) δ : 4.84 (m, 1H), 4.02 (s, 2H), 2.43 (s, 3H), and 1.45 (d, $J = 6.1$ Hz, 6H).
136	¹³ C NMR (150 MHz, CDCl ₃) δ: 193.5, 192.0, 182.7, 118.3, 75.8, 31.2, 30.9, and 22.7; HRMS
137	[ESI] m/z : calcd for ([M+H] ⁺), 201.0585; found: 201.0592.
138	<i>3-Acetyl-4-propoxythiophen-2(5H)-one</i> , 5c . Yield, 73%; green solid; m.p. 72-73 °C; 1 H
139	NMR (600 MHz, CDCl ₃) δ: 4.21 (t, <i>J</i> = 6.4 Hz, 2H), 4.01 (s, 2H), 2.44 (s, 3H), 1.91 – 1.84 (m,
140	2H), and 1.06 (t, $J = 7.4$ Hz, 3H). ¹³ C NMR (150 MHz, CDCl ₃) δ : 193.5, 192.1, 183.9, 117.9,
141	73.3, 31.4, 30.8, 22.6, and 10.2; HRMS [ESI] <i>m/z</i> : calcd for ([M+H] ⁺), 201.0585; found:
142	201.0592.
143	3-Acetyl-4-(benzyloxy)thiophen-2(5H)-one, 5d. Yield, 45%; green solid; m.p. 94-95 °C; ¹ H
144	NMR (600 MHz, CDCl ₃) δ: 7.40 (dt, <i>J</i> = 14.0, 7.4 Hz, 5H), 5.34 (s, 2H), 4.03 (s, 2H), and 2.43 (s,
145	3H). ¹³ C NMR (150 MHz, CDCl ₃) δ: 193.8, 192.3, 183.1, 134.0, 129.1, 127.2, 118.8, 110.0, 73.1,
146	31.7, and 30.9; HRMS [ESI] <i>m/z</i> : calcd for ([M+H] ⁺), 249.0585; found: 249.0587.
147	General Procedure for the Preparation of Compounds 6a-6h
148	A solution of 1.58 g (10 mmol) of 3-acetyltetrahydrothiophene-2,4-dione, 4, 11 mmol of the
149	corresponding aromatic aldehyde, and 30 mg of <i>p</i> -toluenesulfonic acid in 50 mL of toluene was
150	heated under reflux until water no longer separated as an azeotrope (10-12 h, TLC). The mixture
151	was cooled to room temperature. The precipitate (3-acetyl-5-benzylidene derivatives), 6a-6h ,
152	was filtered off and recrystallized from MeOH/EtOAc.
153	3-Acetyl-5-benzylidene-4-hydroxythiophen-2(5H)-one, 6a. Yield, 42%; yellow solid; m.p.
154	151-152 °C; ¹ H NMR (600 MHz, DMSO- d_6) δ : 7.81 (s, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.50 (t, J =
155	7.5 Hz, 2H), 7.45 (t, $J = 7.3$ Hz, 1H), and 2.47 (s, 3H), ¹³ C NMR (150 MHz, DMSO- d_6) δ : 195.9, 8
	ACS Paragon Plus Environment

- 156 187.1, 186.0, 134.2, 131.1 (2C), 130.8, 130.7, 129.7 (2C), 127.3, 108.2, and 26.7; HRMS [ESI]
- 157 *m/z*: calcd for ([M-H]⁻), 245.0272; found: 245.0275.
- 158 *3-Acetyl-4-hydroxy-5-(4-nitrobenzylidene)thiophen-2(5H)-one*, **6b**. Yield, 65%; yellow solid;
- 159 m.p. 204-205 °C; ¹H NMR (600 MHz, DMSO- d_6) δ : 8.28 (d, J = 8.8 Hz, 2H), 7.83 (d, J = 8.8 Hz,
- 160 2H), 7.69 (s, 1H), and 2.39 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 193.2, 186.2, 185.9,
- 161 147.1, 141.6, 135.1, 131.3 (2C), 124.6, 124.5 (2C), 106.8, and 27.7; HRMS HRMS [ESI] *m/z*:
- 162 calcd for ([M-H]⁻), 290.0123; found: 290.0128.

163 *3-Acetyl-5-(4-fluorobenzylidene)-4-hydroxythiophen-2(5H)-one*, **6c**. Yield, 53%; yellow

- 164 solid; m.p. 181-183 °C; ¹H NMR (600 MHz, DMSO- d_6) δ: 7.79 (s, 1H), 7.71 (dd, J = 8.6, 5.6 Hz,
- 165 2H), 7.35 (t, J = 8.8 Hz, 2H), and 2.46 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 195.6, 186.9,
- 166 186.0, 164.0, 162.4, 133.5, 131.0, 129.4, 127.4, 116.9, 116.7, 108.0, and 26.8; HRMS [ESI] *m/z*:
- 167 calcd for ([M-H]⁻), 263.0178; found: 263.0180.

168 *3-Acetyl-4-hydroxy-5-(4-methoxybenzylidene)thiophen-2(5H)-one*, **6d**. Yield, 56%; yellow

- 169 solid; m.p. 186-187 °C; ¹H NMR (600 MHz, DMSO- d_6) δ : 7.79 (s, 1H), 7.63 (d, J = 8.7 Hz, 2H),
- 170 7.08 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), and 2.46 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 187.1,
- 171 185.9, 161.5, 133.3, 131.2, 126.8, 115.4, 108.1, 56.0, and 27.1; HRMS [ESI] *m/z*: calcd for
- 172 ([M-H]⁻), 275.0378; found: 275.0381.
- 173 *3-Acetyl-5-(4-chlorobenzylidene)-4-hydroxythiophen-2(5H)-one*, **6e**. Yield, 45%; yellow
- 174 solid; m.p. 172-174 °C; ¹H NMR (600 MHz, DMSO- d_6) δ : 7.73 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H),
- 175 7.55 (d, J = 8.5 Hz, 2H), and 2.44 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 195.0, 186.7,
- 176 186.0, 135.0, 133.4, 132.5, 129.7, 129.1, 128.4, 107.8, and 27.0; HRMS [ESI] *m/z*: calcd for

- 177 ([M-H]⁻), 278.9883; found: 278.9886.
- 178 *3-Acetyl-4-hydroxy-5-(4-(trifluoromethyl)benzylidene)thiophen-2(5H)-one*, **6f**. Yield, 55%;
- 179 yellow solid; m.p. 162-164 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 7.84–7.79 (m, 4H), 7.71 (s,
- 180 1H), and 2.40 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 193.8, 186.5, 186.0, 138.9, 132.8,
- 181 131.1, 129.3, 126.3, 126.0, 110.0, 107.2, and 27.5; HRMS [ESI] *m/z*: calcd for ([M-H]⁻),
- 182 313.0146; found: 313.0149.
- 183 *4-((4-Acetyl-3-hydroxy-5-oxothiophen-2(5H)-ylidene)methyl)benzonitrile*, **6g**. Yield, 54%;
- 184 yellow solid; m.p. 214-215 °C; ¹H NMR (600 MHz, DMSO- d_6) δ : 7.91 (d, J = 8.2 Hz, 2H), 7.76
- 185 (d, J = 8.2 Hz, 2H), 7.70 (s, 1H), and 2.42 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 194.0,
- 186 186.4, 186.0, 139.3, 133.2, 133.1 (2C), 126.3, 119.0, 111.5, 107.2, and 27.2; HRMS [ESI] *m/z*:
- 187 calcd for ([M-H]⁻), 270.0225; found: 271.0230.
- 188 *3-Acetyl-4-hydroxy-5-(4-methylbenzylidene)thiophen-2(5H)-one*, **6h**. Yield, 57%; yellow
- solid; m.p. 182-183 °C; ¹H NMR (600 MHz, DMSO- d_6) δ : 7.72 (s, 1H), 7.53 (d, J = 7.5 Hz, 2H),
- 190 7.31 (d, J = 7.4 Hz, 2H), 2.43 (s, 3H), and 2.33 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 186.0,
- 191 187.0, 140.6, 131.8, 131.1 (2C), 130.3 (2C), 129.8, 27.3, and 21.5; HRMS [ESI] *m/z*: calcd for
- 192 ([M-H]⁻), 259.0429; found: 259.0431.
- 193 *General procedure for the synthesis of* **7a-7e**
- A stirred solution of 1 mmol of **6b** or **6d**, 1.2 mmol of the corresponding alcohol and 314 mg
- 195 (l.2 mmol) of PPh₃ was dissolved in 10 mL of dry THF, followed by addition of 0.19 mL (1.2
- 196 mmol) of diisopropyl azodicarboxylate in 5 mL of THF. The reaction mixture was stirred
- 197 overnight at room temperature and then concentrated *in vacuo*. The residue was purified by a 10

198	silica gel column eluted with hexane/EtOAc (6:1, v/v). The crude product was then recrystallized
199	from hexane to give 7a-7e .
200	3-Acetyl-4-methoxy-5-(4-methoxybenzylidene)thiophen-2(5H)-one, 7a. Yield, 65%; yellow

- 201 solid; m.p. 103-104 °C; ¹H NMR (600 MHz, CDCl₃) δ : 7.58 (s, 1H), 7.50 (d, J = 8.7 Hz, 2H),
- 202 6.96 (d, J = 8.8 Hz, 2H), 4.04 (s, 3H), 3.86 (s, 3H), and 2.58 (s, 3H). ¹³C NMR (150 MHz,
- 203 CDCl₃) δ: 196.4, 189.5, 175.3, 161.2, 132.6 (2C), 131.3, 127.0, 124.2, 116.7, 114.7 (2C), 63.4,
- 204 55.5, and 31.6; HRMS [ESI] m/z: calcd for ([M+H]⁺), 291.0691; found: 291.0693.
- 205 *3-Acetyl-4-ethoxy-5-(4-nitrobenzylidene)thiophen-2(5H)-one*, **7b**. Yield, 57%; yellow solid;
- 206 m.p. 156-158 °C; ¹H NMR (600 MHz, CDCl₃) δ : 8.28 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8.8 Hz,
- 207 2H), 7.61 (s, 1H), 4.25 (q, J = 7.0 Hz, 2H), 2.58 (s, 3H), and 1.49 (t, J = 7.0 Hz, 3H). ¹³C NMR
- 208 (150 MHz, CDCl₃) δ: 196.3, 188.2, 172.7, 147.6, 140.5, 132.2, 130.8 (2C), 127.3, 124.1 (2C),
- 209 117.6, 72.8, 31.6, and 15.2; HRMS [ESI] m/z: calcd for ([M+H]⁺), 320.0592; found: 320.0594.
- 210 *3-Acetyl-5-(4-methoxybenzylidene)-4-propoxythiophen-2(5H)-one*, **7c**. Yield, 62%; yellow
- 211 solid; m.p. 104-106 °C; ¹H NMR (600 MHz, CDCl₃) δ: 7.58 (s, 1H), 7.56–7.48 (m, 2H),
- 212 7.02–6.93 (m, 2H), 4.11 (t, J = 6.4 Hz, 2H), 3.85 (s, 3H), 2.56 (s, 3H), 1.91 1.80 (m, 2H), and
- 213 1.05 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 196.4, 189.5, 174.7, 161.1, 132.6 (2C),
- 214 131.0, 127.0, 124.6, 116.8, 114.6 (2C), 78.2, 55.5, 31.5, 23.1, and 10.4; HRMS [ESI] *m/z*: calcd
- 215 for $([M+H]^+)$, 319.1004; found: 319.1006.

216 *3-Acetyl-4-butoxy-5-(4-nitrobenzylidene)thiophen-2(5H)-one*, **7d.** Yield, 58%; yellow solid;

- 217 m.p. 108-109 °C; ¹H NMR (600 MHz, CDCl₃) δ : 8.28 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.7 Hz,
- 218 2H), 7.59 (s, 1H), 4.18 (t, *J* = 6.4 Hz, 2H), 2.58 (s, 3H), 1.88 1.79 (m, 2H), 1.57 1.45 (m, 2H),

- and 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 196.3, 188.2, 173.0, 147.6, 140.5,
- 220 132.3, 130.8 (2C), 127.2, 124.1 (2C), 117.5, 76.7, 31.6 (2C), 19.1, and 13.7; HRMS [ESI] *m/z*:
- 221 calcd for ([M+H]⁺), 348.0905; found: 347.0908.
- 222 *3-Acetyl-4-(benzyloxy)-5-(4-nitrobenzylidene)thiophen-2(5H)-one*, **7e**. Yield, 63%; yellow
- solid; m.p. 101-102 °C; ¹H NMR (600 MHz, CDCl₃) δ : 8.27 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.7
- 224 Hz, 2H), 7.59 (s, 1H), 7.42 (t, *J* = 6.4 Hz, 3H), 7.38 7.33 (m, 2H), 5.29 (s, 2H), and 2.45 (s,
- 225 3H). ¹³C NMR (150MHz, CDCl₃) δ: 196.3, 188.2, 172.4, 147.6, 140.4, 134.3, 132.2, 130.9 (2C),
- 226 129.9, 129.2, 129.0 (2C), 128.3 (2C), 128.1, 127.8, 124.1 (2C), 118.3, 77.7, and 31.4; HRMS
- 227 [ESI] m/z: calcd for ([M+H]⁺), 382.0749; found: 382.0752.
- 228 General procedure for the synthesis of Compounds 8a-8i
- A mixture of **6a-6d** (1 mmol), the corresponding aromatic amine (1.1 mmol), TsOH (30 mg)
- 230 in 40 mL methanol was heated at 65 °C for 4 h. After cooling, the precipitated product was
- filtered and recrystallized from a mixture of methanol and chloroform (1:1) to afford **8a-8i**.
- 232 *5-Benzylidene-3-(1-(4-(trifluoromethyl)phenylamino)ethylidene)*
- 233 thiophene-2,4(3H,5H)-dione, 8a. Yield, 80%; yellow solid; m.p. 202-203 °C; ¹H NMR (600
- 234 MHz, CDCl₃) δ : 13.76 (s, 1H), 7.76 (d, J = 8.8 Hz, 3H), 7.60 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.6
- 235 Hz, 2H), 7.37 (d, J = 7.9 Hz, 3H), and 2.66 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 189.7, 189.2,
- 236 168.8, 138.8, 134.5, 130.5, 130.3, 129.4, 129.0, 128.5, 127.0, 126.1, 125.9, 124.4, 122.6, 102.3,
- and 16.9. HRMS [ESI] m/z: calcd for ([M+H]⁺), 390.0775; found: 390.0778.
- 238 *5-Benzylidene-3-(1-(4-methoxyphenylamino)ethylidene)thiophene-2,4(3H,5H)-dione*, **8b**.
- 239 Yield, 75%; yellow solid; m.p. 182-184 °C; ¹H NMR (600 MHz, CDCl₃) δ: 13.76 (s, 1H), 7.73 (s,

240	1H), 7.59 (d, <i>J</i> = 7.6 Hz, 2H), 7.44 (t, <i>J</i> = 7.7 Hz, 2H), 7.35 (t, <i>J</i> = 7.4 Hz, 1H), 7.13 (d, <i>J</i> = 8.6
241	Hz, 2H), 6.98 (d, $J = 8.7$ Hz, 2H), 3.85 (s, 3H), and 2.57 (s, 3H). ¹³ C NMR (150 MHz, CDCl ₃) δ :
242	189.5, 189.2, 169.4, 159.4, 134.8, 130.4, 130.0, 129.1, 128.8, 128.1, 127.7, 126.8, 114.9, 101.6,
243	55.6, and 16.8; HRMS [ESI] <i>m/z</i> : calcd for ([M+H] ⁺), 352.1007; found: 352.1010.
244	5-(4-Nitrobenzylidene)-3-(1-(phenylamino)ethyl)thiophene-2,4(3H,5H)-dione, 8c. Yield,
245	78%; yellow solid; m.p. 254-256 °C; ¹ H NMR (600 MHz, CDCl ₃) δ : 13.79 (s, 1H), 8.27 (d, $J =$
246	8.4 Hz, 2H), 7.70 (t, <i>J</i> = 9.3 Hz, 3H), 7.51 (t, <i>J</i> = 7.4 Hz, 2H), 7.44 (t, <i>J</i> = 7.2 Hz, 1H), 7.24 (q, <i>J</i>
247	= 7.8 Hz, 2H), and 2.63 (s, 3H). ¹³ C NMR (150 MHz, CDCl ₃) δ: 189.0, 187.8, 169.6, 147.1,
248	141.2, 135.3, 134.7, 130.7, 129.8, 128.7, 125.6, 125.2, 124.5, 124.0, 101.3, and 16.9; HRMS
249	[ESI] <i>m/z</i> : calcd for ([M+H] ⁺), 369.0909; found: 369.0911.
250	5-(4-Fluorobenzylidene)-3-(1-(4-(trifluoromethyl)phenylamino)ethylidene)thiophene-2,4(3H, Compared to the set of the se
251	<i>5H)-dione</i> , 8d . Yield, 85%; m.p. 181-183 °C; yellow solid; ¹ H NMR (600 MHz, CDCl ₃) δ: 14.05
252	(s, 1H), 7.76 (d, <i>J</i> = 8.1 Hz, 2H), 7.71 (d, <i>J</i> = 9.3 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.36 (t, <i>J</i> = 7.5
253	Hz, 2H), 7.13 (t, $J = 8.5$ Hz, 2H), and 2.66 (s, 3H). ¹³ C NMR (150 MHz, CDCl ₃) δ : 189.6, 188.8,
254	168.9, 162.2, 138.8, 132.4, 132.1, 130.8, 129.2, 127.2, 127.0, 125.9, 116.2, 116.0, 102.2, and
255	16.9; HRMS [ESI] m/z : calcd for ([M+H] ⁺), 408.0681; found: 408.0685.
256	5-(4-Fluorobenzylidene)- 3 -(1-(phenylamino)ethylidene)thiophene- 2 ,4(3H,5H)-dione, 8e.
257	Yield, 88%; yellow solid; m.p. 175-176 °C; ¹ H NMR (600 MHz, CDCl ₃) δ: 13.89 (s, 1H), 7.70
258	(d, J = 9.5 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.41 (t, J = 7.2 Hz, 1H), 7.22 (d,
259	J = 7.5 Hz, 2H), 7.13 (t, $J = 8.3$ Hz, 2H), and 2.62 (d, $J = 30.8$ Hz, 3H). ¹³ C NMR (150 MHz,
260	CDCl ₃) δ: 189.5, 188.9, 169.2, 162.1, 135.5, 132.3, 132.1, 131.0, 129.8, 128.4, 126.6, 125.6,
	15

261	116.1, 115.9, 101.6, and 16.8; HRMS [ESI] m/z : calcd for ([M+H]), 340.080/; found: 340.0810.

- 262 *5-(4-Fluorobenzylidene)-3-(1-(4-fluorophenylamino)ethylidene)thiophene-2,4(3H,5H)-dione,*
- 263 **8f**. Yield, 73%; yellow solid; m.p. 175-177 °C; ¹H NMR (600 MHz, CDCl₃) δ: 13.80 (s, 1H),
- 264 7.68 (d, *J* = 13.4 Hz, 1H), 7.56 (s, 2H), 7.19 (dd, *J* =10.3 Hz, 4H), 7.12 (s, 2H), and 2.58 (s, 3H).
- ¹³C NMR (150 MHz, CDCl₃) δ: 189.5, 188.8, 169.5, 162.5, 132.3, 132.1, 131.5, 131.0, 129.4,
- 266 127.5, 126.8, 116.8, 116.0, 101.7, and 16.7; HRMS [ESI] *m/z*: calcd for ([M+H]⁺), 358.0713;
- 267 found: 358.0716.
- 268 *5-(4-Fluorobenzylidene)-3-(1-(4-methoxyphenylamino)ethylidene)thiophene-2,4(3H,5H)-dio*
- 269 *ne*, **8g**. Yield, 65%; yellow solid; m.p. 164-165 °C; ¹H NMR (600 MHz, CDCl₃) δ: 13.73 (s, 1H),
- 270 7.67 (d, J = 13.4 Hz, 1H), 7.63 7.46 (m, 2H), 7.12 (t, J = 9.2 Hz, 4H), 6.97 (d, J = 8.1 Hz, 2H),
- 271 3.84 (s, 3H), and 2.58 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 189.4, 188.8, 169.4, 163.7, 162.0,
- 272 159.4, 133.3, 132.1, 131.1, 129.7, 128.1, 127.0, 126.8, 126.4, 116.1, 115.9, 114.9, 101.5, 55.6,
- and 16.7; HRMS [ESI] m/z: calcd for ([M+H]⁺), 370.0913; found: 370.0915.

274 *5-(4-Methoxybenzylidene)-3-(1-(4-methoxyphenylamino)ethylidene)thiophene-2,4(3H,5H)-d*

- 275 *ione*, **8h**. Yield, 79%; yellow solid; m.p. 156-157 °C; ¹H NMR (600 MHz, CDCl₃) δ: 13.95 (s,
- 276 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.55 (t, *J* = 9.8 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.4
- 277 Hz, 1H), 7.21 (t, J = 7.0 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 3.85 (s, 3H), and 2.65 (s, 3H). ¹³C
- 278 NMR (150 MHz, CDCl₃) δ: 189.6, 189.4, 169.0, 160.4, 135.6, 132.2, 132.0, 129.7, 128.3, 127.9,
- 279 127.4, 127.2, 125.8, 125.6, 114.4 (2C), 101.8, 55.4, and 16.8; HRMS [ESI] *m/z*: calcd for
- 280 $([M+H]^+)$, 382.1113; found: 382.1116.
- 281 *5-(4-Methoxybenzylidene)-3-(1-(phenylamino)ethylidene)thiophene-2,4(3H,5H)-dione*, **8i**.

Yield, 86%; yellow solid; m.p. 190-192 °C; ¹H NMR (600 MHz, CDCl₃) δ: 13.80 (s, 1H), 7.69 (s,
1H), 7.55 (d, *J* = 7.1 Hz, 2H), 7.13 (d, *J* = 6.4 Hz, 2H), 6.97 (s, 4H), 3.85 (s, 6H), and 2.59 (s,
3H). ¹³C NMR (150 MHz, CDCl₃) δ: 189.6, 189.3, 169.2, 160.4, 159.3, 132.2, 128.2, 127.7,
127.5, 127.3, 127.0, 126.8, 114.8, 114.4, 101.7, 55.6, 55.4, and 16.7; HRMS [ESI] *m/z*: calcd for
([M+H]⁺), 352.1007; found: 352.1009.

Bioassays. Fungicidal activities of 5a-5d, 6a-6h, 7a-7e and 8a-8i were tested in vitro against 287 V. mali, C. lunata, F. graminearum, and F. oxysporum f. sp. lycopersici. Their inhibition (%) was 288 determined according to the mycelium growth rate method. The test fungi grown on PDA 289 medium slants were subcultured for 48 h in Petri dishes prior to testing and used for inoculation 290 of fungal strains on PDA plates. The test compound was completely dissolved in 0.5 mL of 291 DMSO and then added to 9.5 mL of sterile water. The resulting solution was mixed with 90 mL 292 of sterile molten PDA to obtain the final concentrations of 50 µg/mL for the activity screening 293 test. PDA with different compounds was poured into 90 mm Petri dishes (15 mL/dish), on which 294 a 5 mm thick and 6 mm diameter disc of fungus cut from previously subcultured Petri dishes was 295 placed at the center of the semisolid medium after the medium in the plate was partially 296 solidified. The final concentration of DMSO was 0.5%, which was proven to have no significant 297 effect on the growth of target fungi. DMSO alone and the widely used commercial fungicides 298 azoxystrobin, fluopyram, carbendazim (50 µg/mL) dissolved in DMSO were used as a solvent 299 300 control and positive controls, respectively. The DMSO concentration in both cases was 0.5% in the culture medium. The dishes were kept in an incubator at 28 °C for 72 h. Each experiment was 301 carried out in triplicate. After the mycelia fully covered the control group Petri dishes, the 302

303	diameters (in mm) of fungal colony in the treatment Petri dishes were measured with a caliper in
304	three different directions. The growth inhibition percentages were calculated according to the
305	following formula and expressed as means \pm standard deviations (SD).
306	Inhibition rate (%) = $[(d_c - d_0) - (d_s - d_0)]/(d_c - d_0) \times 100$
307	where d_0 is the diameter of the fungus cut; d_c is the diameter of a fungal colony in the solvent
308	control plates; and d _s is the diameter of a fungal colony in the compound-treated plates.
309	Based on the results of <i>in vitro</i> antifungal activity, highly active compounds were further
310	determined for their median effective concentrations (EC ₅₀) according to the same method
311	described above. The stock solution was mixed with the autoclaved PDA medium to prepare a
312	set of media containing 0.625, 1.25, 2.5, 5, 10, and 20 μ g/mL of the test compound, while the
313	media containing 0.0781, 0.312, 1.25, 5, 20, and 50 μ g/mL of the positive control fungicide.
314	Similarly, 0.5% DMSO in culture medium was used as a solvent control. Each test was
315	performed in triplicate. EC_{50} values and their confidence intervals at 95% probability (95% CI)
316	were calculated with DPS software ver. 7.05 (Hangzhou Ruifeng Information Technology Co.,
317	Ltd., Hangzhou, China).
318	Fatty Acid Synthase Activity Assay. FAS activity was spectrophotometrically determined
319	by measuring the malonylcoenzyme A (CoA)-dependent oxidation of nicotinamide adenine
320	dinucleotide phosphate reduced form (NADPH) according to the method of Nepokroeff et al. ²⁹
321	Mycelia of <i>V. mali</i> were inoculated at 0.05 OD _{600 nm} and grown on a reciprocal shaker (180 rpm,
322	25 °C) for 5 d in Sabouraud maltose broth (SMB) medium that contained different
323	concentrations (1.25, 2.5, 5, 10, 20, and 50 μ g/mL) of 6a , 6c , 6e , 6f . Mycelia were harvested by 16

324	vacuum filtration and disrupted in liquid nitrogen using a mortar and pestle. The resultant
325	powder was resuspended to 10% w/v in mitochondrial extraction buffer (10 mM of KHPO ₄ pH
326	7.2, 10 mM of KCl, 10 mM of MgCl ₂ , 0.5 M of sucrose, 0.2 mM of EDTA, 2 mM of PMSF).
327	The extract was centrifuged twice at 5000g, 4 °C and 10 min, and intact mitochondria were then
328	pelleted at 10000g for 20 min at 4 °C and resuspended in the same buffer. The supernatant was
329	used to evaluate the FAS activity at 340 nm (before/after malonyl-CoA). The assay solution
330	without malonyl-CoA served as a background for the assay. Each sample was assayed in
331	triplicate.
332	X-ray Diffraction. Single crystals of $C_{15}H_{13}NO_5S$ (7b) were grown from MeOH. A suitable
333	crystal was selected and mounted on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer
334	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data
334 335	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data collection. Using Olex2, ³⁰ the structure was solved with the ShelXT ³¹ structure solution program
334335336	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data collection. Using Olex2, ³⁰ the structure was solved with the ShelXT ³¹ structure solution program using Direct Methods and refined with the ShelXL ³² refinement package using Least Squares
334335336337	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data collection. Using Olex2, ³⁰ the structure was solved with the ShelXT ³¹ structure solution program using Direct Methods and refined with the ShelXL ³² refinement package using Least Squares minimization.
 334 335 336 337 338 	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data collection. Using Olex2, ³⁰ the structure was solved with the ShelXT ³¹ structure solution program using Direct Methods and refined with the ShelXL ³² refinement package using Least Squares minimization. Molecular Modeling. Molecular docking of 6f to the C171Q KasA enzyme was performed
 334 335 336 337 338 339 	(Rigaku Oxford Diffraction, Tokyo, Japan). The crystal was kept at 290 (2) K during data collection. Using Olex2, ³⁰ the structure was solved with the ShelXT ³¹ structure solution program using Direct Methods and refined with the ShelXL ³² refinement package using Least Squares minimization. Molecular Modeling. Molecular docking of 6f to the C171Q KasA enzyme was performed with the software YetiX 8.3. ³³ The enzyme domain with an active conformation (PDB code: 4c6u)

340 was used as the receptor structure for the docking experiments. **6f** was constructed using BioX

341 4.6³⁴ and the atomic partial charges were calculated by AmberTools. The docking modes were

342 optimized by the directional Yeti force field.³⁵

343

344 **RESULTS AND DISCUSSION**

345	Chemistry. The synthetic route for 5a-5d, 6a-6h, 7a-7e and 8a-8i was outlined in Figure 2.
346	As an initial material, thioacetic acid 1 was reacted with bromoacetic acid to prepare
347	acetothioacetic acid 2 . ³⁶ Treatment of acetothioacetic with oxalyl chloride followed by Claisen
348	condensation with methyl acetoacetate sodium salt produced acetylthio diketoester 3 . ³⁷
349	Hydrolysis of acetylthio diketoester formed γ -mercapto diketoester, followed by cyclization and
350	acidification to provide 3-acetyl-4-hydroxy-5H-furan-2-ones 4. The target compounds 6a-6h
351	were synthesized via the reaction of 4 with the corresponding substituted benzaldehydes in
352	toluene under reflux. The compounds 5a-5d and 7a-7e were prepared via the Mitsunobu reaction
353	of 4 and 6a-6e with appropriate alcohols. The compounds 8a-8i were synthesized by the
354	nucleophilic reaction of 6a-6e with an amine.
355	Crystal Structure of 7b. The crystal data of 7b were presented in Table 1. Figure 3 shows a
356	perspective view of 7b with the atomic labelling system. ³⁸ The result demonstrated that 6a-6e
357	adopt a Z-configuration rather than E-conformation in the formation of double bond by
358	dehydration of aldol reaction products. However, crystal structures of 6a-6e could not be
359	obtained in the present study.
360	Antifungal Activity. Table 2 shows the <i>in vitro</i> antifungal activity of 5a-5d , 6a-6h , 7a-7e
361	and 8a-8i at the concentration of 50 µg/mL against the fungi V. mali, C. lunata, F. graminearum,
362	and F. oxysporum f. sp. Lycopersici. All compounds possess antifungal activities in various
363	degrees against each of the tested fungi.
364	The commercial fungicides azoxystrobin, carbenzazim and fluopyram were used as positive
365	controls to compare the potency of the synthetic chemicals because they are commonly used to 18

366	control the four fungal pathogens. Azoxystrobin is a systemic and broad-spectrum fungicide. It
367	prevents production of ATP by binding tightly to Complex III of the mitochondrial electron
368	transport chain. ³⁹ Carbendazim is also a broad-spectrum fungicide. It probably binds to tubulin
369	and suppresses microtubule assembly dynamic, although the exact mechanism of action is
370	unclear. ⁴⁰ Fluopyram inhibits the succinate dehydrogenase and is a broad spectrum fungicide
371	registered for use in USA in 2012 and in the EU in 2013. ⁴¹ To each fungus, at the concentration
372	of 50 μ g/mL, some compounds were more active than the positive control of azoxystrobin.
373	Carbenzazim showed high activity against V. mali, C. lunata and F. graminearum except F.
374	oxysporum f. sp. Lycopersici, while fluopyram showed higher potency to C. lunata and F.
375	graminearum than V. mali and F. oxysporum f. sp. lycopersici. In order to further explore the
376	antifungal potential and structure-activity relationship, the compounds with inhibition >50% at
377	50 μ g/mL were further examined to determine their EC ₅₀ against the four fungal strains (Table
378	3).
379	Tests of fungicidal activity (Table 2) indicated that at the concentration of 50 μ g/mL, 4 and
380	5a-5d showed low inhibitions (approximately < 35%) against <i>V. mali, C. lunata, F. graminearum,</i>
381	and F. oxysporum f. sp. lycopersici. The compounds 6a-6h exhibited high activities (> 70%
382	inhibition at 50 μ g/mL), with EC ₅₀ of 3.1–20.3 μ g/mL against <i>V. mali</i> . In contrast, 6a , 6b , 6c and
383	6e, 6f at 50 µg/mL inhibited greater than 83% against <i>V. mali</i> , while the inhibitions by
384	azoxystrobin, fluopyram and carbendazim were 81.6%, 6.0% and 97.9%, respectively. For C.
385	<i>lunata</i> , some of 6a-6h with EC ₅₀ of 3.1–42.2 μ g/mL showed higher activity than azoxystrobin
386	$(EC_{50} = 6.7 \ \mu g/mL)$ and carbendazim $(EC_{50} = 41.2 \ \mu g/mL)$ against <i>C. lunata</i> . Fluopyram showed 19

387	the highest potency to C. lunata with an EC_{50} of 0.18 µg/mL. Considering F. graminearum,
388	6a-6h had moderate potencies (35%-70% inhibition) at 50 μ g/mL, with EC ₅₀ of 3.1–46.6 μ g/mL.
389	6e showed the highest activity with an EC ₅₀ of 3.1 μ g/mL, while EC ₅₀ of fluopyram and
390	carbendazim were 0.43 and 0.42 µg/mL, respectively. For <i>F. oxysporum</i> f. sp. <i>lycopersici</i> , 6a-6h
391	exhibited high activities (> 70% inhibition at 50 μ g/mL), with EC ₅₀ of 4.1–16.0 μ g/mL. 6f
392	showed the highest activity with an EC_{50} value of 4.1 µg/mL, being similar to azoxystrobin
393	(EC ₅₀ = 4.3 μ g/mL) and 33 fold higher than carbendazim (EC ₅₀ = 0.123 μ g/mL). Table 1 shows
394	that at a concentration of 50 μ g/mL, 7a-7d exhibited low (< 35%) to moderate inhibitions
395	(35%-70%) against the target fungi. It was noteworthy that 7e was highly active (73.4%
396	inhibition at 50 µg/mL) against <i>V. mali</i> , whereas 8a-8i had weak inhibitions (approximately
397	<35%) against V. mali, C. lunata, F. graminearum and F. oxysporum f. sp. lycopersici.
398	Tables 2 and 3 show that the type and position of substituents on the 3-acylthiotetronic acid
399	had significant effects on the activity. The general trend is that the presence of benzylidene at the
400	5-position increased the activity against the four target fungi, while 4-alkoxy substituents, 5a-5d ,
401	did not improve the activity in comparison with a hydroxyl moiety. Further optimization of 6 , by
402	alkylation of 3-acylthiotetronic acid at 4-hydroxy and condensation of 3-acetyl with amine of
403	3-acylthiotetronic acid, led to a decrease of the activity against the four fungi. Studies on the
404	antifungal activities of 3-acylthiotetronic acid derivatives could provide useful information for
405	evaluating the structure-activity relationship. The 4-hydroxyl and 3-acetyl groups played an
406	important role in the fungicidal activity.
407	Comparison of 6a and 6b-6h , which contained different substituents on the benzene ring,

408	indicated that the presence of a fluorine atom (6c) or a trifluoromethyl group (6f) led to higher
409	activity than 6a against V. mali, C. lunata, F. graminearum, while showing similar activities
410	against F. oxysporum f. sp. lycopersici. This result suggested that the presence of 4'-F and CF ₃
411	improved the activity. The methyl-substitution and methoxy-substitution reduced the activities
412	against all four fungi. The presence of -CN group decreased the activities against V. mali, C.
413	lunata, F. graminearum. The introduction of -Cl atom improved the activity against both F.
414	graminearum and C. lunata, but had weak influence on the activity against V. mali and F.
415	oxysporum f. sp. lycopersici.
416	Inhibition of Fungal Fatty Acid Synthase. The synthetic compounds possess the scaffold
417	of thiolactone as thiolactomycin does, which inhibits fatty-acid synthases. The compounds 6a, 6c,
418	6e and 6f had EC ₅₀ of 4.4, 3.1, 4.5, and 4.1 μ g/mL, respectively, against <i>V. mali</i> . They were
419	selected and tested against FAS in vitro. As demonstrated in Figure 4, 6a, 6c, 6e and 6f strongly
420	inhibited FAS with an half maximum inhibition concentration (IC ₅₀) of 6.1, 5.3, 6.2 and 4.9
421	μ g/mL, respectively, and showed the similar inhibition profile as that using the mycelium growth
422	inhibition assay in vitro. The results proved the hypothesis and design of thiotetronic acid
423	derivatives as FAS inhibitors.
424	Molecular docking. Figure 5 shows the binding pose and features of 6f with the target
425	protein. First, the hydroxyl group on the thiophene ring may form two hydrogen bonds with the
426	nitrogen atoms from the imidazole of His311 and His345, while another hydrogen bond may be
427	formed between the 3-acyl group with the nitrogen atom of His345. Therefore, 4-hydroxy group
428	and 3-acyl group of thiophene are likely the important part of the pharmacophore. Secondly, a 21

429	π - π stacking probably occurs between the thiophene ring and the benzyl ring of Phe404, which
430	plausibly explains the activity enhancement by the introduction of benzylidene at 5-position on
431	the thiophene ring. Thirdly, the hydrophobic benzyl trifluoride group may reside deeply at the
432	hydrophobic pocket, which provides a strong hydrophobic interaction. Additionally, a π - π
433	stacking between the benzyl trifluoride group and the benzyl group of Phe402 further stabilized
434	the interaction. Such specific binding features reasonably made 6f a potent inhibitor to the target
435	In summary, a series of novel 3-acylthiotetronic acid derivatives were designed and
436	synthesized. Those compounds exhibited good to excellent fungicidal activities against the four
437	fungi. The compound 6f showed the highest fungicidal activity against the four tested fungal
438	pathogens with EC_{50} of 3.1-4.1 µg/mL. The EC_{50} of the commercial fungicides azoxystrobin,
439	carbenzazim and fluopyram ranged between 0.12 and >50 µg/mL against V. mali, C. lunata, F.
440	graminearum, and F. oxysporum f. sp. lycopersici. 6f and its analogs are potent FAS inhibitors.
441	6f is non-selective to the four fungal species, whereas the commercial fungicides azoxystrobin,
442	carbenzazim and fluopyram is selective to one or two of the four tested fungal species. The
443	results revealed that the compounds are potent fungicide candidates, which could be further
444	optimized and developed as lead compounds.

446 **Supporting Information**

Characterization data, ¹H NMR, ¹³C NMR spectra for products **5a-5d**, **6a-6h**, **7a-7e**, **8a-8i** and
X-Ray diffraction data are provided. This material is available free of charge via the Internet at
<u>http://pubs.acs.org</u>.

450	
451	Funding
452	This project was supported in part by the National Key Research and Development Program of
453	China (No. 2016YFD0200205) and the Public Sector (Agriculture) Research Program of China
454	(201303088-11).
455	Conflicts of Interest
456	The authors declare no conflict of interest.
457	Author Contributions
458	P.L. and R.H. conceived and designed the experiments; Y.C. performed the experiments; Z.Z.
459	performed the molecular docking. T.S. and X.W. analyzed the data; P.L. wrote the paper. Q.L.
460	interpreted the data and revised the manuscript. J.X. revised the manuscript.
461	Reference
462	1. Gerwick, B.C.; Sparks, T.C. Natural products for pest control: an analysis of their role, value
463	and future. Pest Manag. Sci. 2014, 70, 1169-1185.
464	2. Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: state of the art and future
465	opportunities. J. Agric. Food Chem. 2014, 62, 11613-11619.
466	3. Sparks, T.C.; Hahn, D.R.; Garizi, N.V. Natural products, their derivatives, mimics and
467	synthetic equivalents: role in agrochemical discovery. Pest Manag. Sci. 2016, 73, 700-715.
468	4. Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat.
469	<i>Prod.</i> 2012 , <i>75</i> , 1231-1242.
470	5. Chen, L.; Zhu, Y. J.; Fan, Z.; Guo, X. F.; Zhang, Z. M.; Xu, J. H.; Song, Y. Q.; Morzherin, Y. 23

471	Y.; Belskaya, N. P.; Bakulev, V. A. Synthesis of 1,2,3-thiadizole and thiazole based
472	strobilurins as potent fungicide candidates. J. Agric. Food Chem. 2017, 65, 745-751.
473	6. Zhang, S.; Li, D.; Song, Z.; Zang, C.; Zhang, L.; Song, X.; Li, S. "Carbon assimilation"
474	inspired design and divergent synthesis of drimane meroterpenoids mimics as novel
475	fungicidal leads. J. Agric. Food Chem. 2017, 65, 9013-9021.
476	7. Zhao, P. L.; Liu, C. L.; Huang, W.; Wang, Y. Z.; Yang, G. F. Synthesis and fungicidal
477	evaluation of novel chalcone-based strobilurin analogues. J. Agric. Food Chem. 2007, 55,
478	5697-5700.
479	8. Schobert, R.; Schlenk, A. Tetramic and tetronic acids: an update on new derivatives and
480	biological aspects. Bioorgan. Med. Chem. 2008, 16, 4203-4221.
481	9. El-Gendy, K.S.; Aly, N.M.; Mahmoud, F.H.; Kenawy, A.; El-Sebae, A.K. The role of vitamin
482	C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem.
483	<i>Toxicol.</i> 2010 , <i>48</i> , 215-221.
484	10. Zhang, C.L.; Chatterjee, S.S.; Stein, U.; Heinemann, U. Comparison of the effects of
485	losigamone and its isomers on maximal electroshock induced convulsions in mice and on
486	three different patterns of low magnesium induced epileptiform activity in slices of the rat
487	temporal cortex. Naunyn-Schmiedeberg's Arch. Pharmacol. 1992, 345, 85-92.
488	11. Hamaguchi, T.; Sudo, T.; Osada, H. RK-682, a potent inhibitor of tyrosine phosphatase,
489	arrested the mammalian cell cycle progression at G1phase. Febs Lett. 1995, 372, 54-58.
490	12. Habrant, D.; Poigny, S.; Ségur-Derai, M.; Brunel, Y.; Heurtaux, B.; Le, G. T.; Strehle, A.;
491	Saladin, R.; Meunier, S.; Mioskowski, C. Evaluation of antioxidant properties of 24

492	monoaromatic derivatives of pulvinic acids. J. Med. Chem. 2009, 52, 2454-2464.
493	13. Weber, V.; Rubat, C.; Duroux, E.; Lartigue, C.; Madesclaire, M.; Coudert, P. New 3- and
494	4-hydroxyfuranones as anti-oxidants and anti-inflammatory agents. Bioorg. Med. Chem.
495	2005 , <i>13</i> , 4552-4564.
496	14. Liu, Z.; Lei, Q.; Li, Y.; Xiong, L.; Song, H.; Wang, Q. Design, synthesis, structure, and
497	acaricidal/insecticidal activity of novel spirocyclic tetronic acid derivatives containing an
498	oxalyl moiety. J. Agric. Food Chem. 2011, 59, 12543-12549.
499	15. Tan, S. W.; Chai, C. L.; Moloney, M. G. Mimics of pramanicin derived from pyroglutamic
500	acid and their antibacterial activity. Org. Biomol. Chem. 2017, 15, 1889-1912.
501	16. Paparin, J. L.; Amador, A.; Badaroux, E.; Bot, S.; Caillet, C.; Convard, T.; Da, C. D.; Dukhan,
502	D.; Griffe, L.; Griffon, J. F. Discovery of benzophosphadiazine drug candidate IDX375: A
503	novel hepatitis C allosteric NS5B RdRp inhibitor. Bioorg. Med. Chem. Lett. 2017, 27,
504	2634-2640.
505	17. Yao, S.; Gallenkamp, D.; Wölfel, K.; Lüke, B.; Schindler, M.; Scherkenbeck, J. Synthesis and
506	SERCA activities of structurally simplified cyclopiazonic acid analogues. Bioorg. Med. Chem.
507	2011 , <i>19</i> , 4669-4678.
508	18. Chen, S.; Qiang, S. Recent advances in tenuazonic acid as a potential herbicide. Pestic.
509	Biochem. Physiol. 2017, 143, 252-257.
510	19. Kremer, L.; Douglas, J.D.; Baulard, A.R.; Morehouse, C.; Guy, M.R.; Alland, D.; Dover,
511	L.G.; Lakey, J.H.; Jacobs, W.R. Jr.; Brennan P.J.; Minnikin, D.E.; Besra, G.S. Thiolactomycin
512	and related analogues as novel anti-mycobacterial agents targeting KasA and KasB

- 513 condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 2000, 275,
- 514 16857-16864.
- 515 20. Schiebel, J.; Kapilashrami, K.; Fekete, A.; Bommineni, G.R.; Schaefer, C.M.; Mueller, M.J.;
- 516 Tonge, P.J.; Kisker, C. Structural basis for the recognition of mycolic acid precursors by
- 517 KasA, a condensing enzyme and drug target from Mycobacterium tuberculosis. *J. Biol. Chem.*518 **2013**, *288*, 34190-34204.
- 519 21. Jenny, S.; Leibundgut, M.; Maiert, T.; Bant, N. Architecture of a fungal fatty acid synthase at
- 520 5 A resolution. *Science* **2006**, *311*, 1263-1267.
- 521 22. Wakil, S.J.; Stoops, J.K.; Joshi V.C. Fatty acid synthesis and its regulation. Annu. Rev.
- 522 Biochem. **1983**, *52*, 537-579.
- 523 23. Schweizer, E.; Hofmann, J. Microbial type I fatty acid synthases (FAS): major players in a
- network of cellular FAS systems. *Microbiol. Mol. Biol. Rev.* **2004**, *68*, 501-517.
- 525 24. Smith, S.; Witkowski, A.; Joshi, A.K. Structural and functional organization of the animal
- 526 fatty acid synthase. *Prog. Lipid. Res.* **2003**, *42*, 289-317.
- 527 25. Slayden, R. A.; and Barry, C. E. 3rd. The role of KasA and KasB in the biosynthesis of
- 528 meromycolic acids and isoniazid resistance in *Mycobacterium tuberculosis*. *Tuberculosis*
- **2002**, *82*, 149–160.
- 530 26. Luckner, S.R.; Machutta, C.A.; Tonge, P.J.; Kisker, C. Crystal structures of Mycobacterium
- tuberculosis KasA show mode of action within cell wall biosynthesis and its inhibition by
- thiolactomycin. *Structure* **2009**, *17*, 1004–1013.
- 533 27. Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.;

534	Parthasarathy, G.; Tang, Y.S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.;
535	Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J.R.;
536	Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S.H.; Michael, B.; Felcetto, T.; Gill,
537	C.; Silver, L.L.; Hermes, J.D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J.W.; Cully, D.;
538	Singh, S.B. Platensimycin is a selective FabF inhibitor with potent antibiotic properties.
539	<i>Nature</i> 2006 , <i>441</i> , 358–361.
540	28. Witkowski, A.; Joshi, A.K.; Smith, S. Mechanism of the beta-ketoacyl synthase reaction
541	catalyzed by the animal fatty acid synthase. Biochemistry 2002, 41, 10877–10887
542	29. Nepokroeff, C.M.; Lakshmanan, M.R.; Poter, J.W. Fatty acid synthase from rat liver. Method.
543	Enzymol. 1975, 35, 37-44.
544	30. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J; Howard, J.A.K.; Puschmann, H. OLEX2: a
545	complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42,
546	339-341.
547	31. Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta
548	Crystallogr. A 2015, 71, 3-8.
549	32. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71,
550	3-8
551	33. Rossato, G.; Ernst, B.; Smiesko, M.; Spreafico, M.; Vedani, A. Probing small-molecule
552	binding to cytochrome P450 2D6 and 2C9: an in silico protocol for generating toxicity alerts.
553	<i>ChemMedChem</i> 2010 , <i>5</i> , 2088–2101.
554	34. Dobler, M. BioX, a Versatile Molecular-Modeling Software; Biographics Laboratory 3R: 27

555	Basel, Switzerland, 2012; http://www.biograf.ch/index.php?id=software (updated Nov 8,
556	2014).
557	35. Vedani, A.; Huhta, D.W. A new force field for modeling metalloproteins. J. Am. Chem. Soc.
558	1990 , <i>112</i> , 4759–4767.
559	36. Skiles, J.W.; Suh, J.T.; Williams, B.E.; Menard, P.R.; Barton, J.N.; Loev, B.; Jones, H.; Neiss,
560	E.S.; Schwab, A. Angiotensin-converting enzyme inhibitors: new orally active
561	1,4-thiazepine-2,5-diones, 1,4-thiazine-2,5-diones, and 1,4-benzothiazepine-2,5-diones
562	possessing antihypertensive activity. J. Med. Chem. 1986, 29, 784-796.
563	37. Yuki, H.; Tsujimoto, T.; Sawada, T.; Takiura, K.; Yamaguchi, T. Studies on tenuazonic acid
564	analogs. III. Syntheses and antitumor activities of derivatives of tetramic acid, tetronic acid
565	and thiotetronic acid, and others (Japanese). Yakugaku Zasshi 1976, 96, 536-543.
566	38. CCDC-1586389 contains the supplementary crystallographic data for this paper. These data
567	can be obtained free of charge from the Cambridge Crystallographic Data Centre via
568	www.ccdc.cam.ac.uk/data_request/cif.
569	39. Fisher, N.; Meunier, B. Re-examination of inhibitor resistance conferred by Qo-site
570	mutations in cytochrome b using yeast as a model system. Pest Manage. Sci. 2005, 61,
571	973-978.
572	40. Chen, C. J.; Yu, J. J.; Bi, C. W.; Zhang, Y. N.; Xu, J. Q.; Wang, J. X.; Zhou, M. G. Mutations
573	in a β -tubulin confer resistance of <i>Gibberella zeae</i> to benzimidazole fungicides.
574	Phytopathology 2009, 99, 1403-1411.
575	41. Wang, J.; Bradley, C.; Stenzel, O.; Pedersen, D. K.; Reuter-Carlson, U.; Chilvers, M. I. 28

576 Baseline sensitivity of *Fusarium virguliforme* to fluopyram fungicide. *Plant Dis.* **2017**, *101*,

577 576-582.

578 FIGURE CAPTIONS

- 579 Figure 1. Structures of tenuazonic acid, RK-682, and thiolactomycin showing the cores of
- 580 tetramate, tetronate, and thiotetronate
- 581 Figure 2. Synthesis of 5a-5d, 6a-6h, 7a-7e and 8a-8i
- 582 Figure 3. X-ray single crystal structure of 7b
- 583 Figure 4. Dose-response curve of 6a, 6c, 6e and 6f on fungal FAS inhibition
- 584 **Figure 5.** Predicted docking poses of **6f** in complex with C171Q Kas A enzyme (PDB: 4c6u)

Empirical formula	C ₁₅ H ₁₃ NO ₅ S
Formula weight	319.32
Temperature/K	290(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.1146(2)
b/Å	13.3325(5)
c/Å	14.3250(4)
α/°	81.416(3)
β/°	89.944(2)
γ/°	77.457(2)
Volume/Å ³	1495.06(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.419
μ/mm^{-1}	2.146
F(000)	664.0
Crystal size/mm ³	$0.280 \times 0.250 \times 0.220$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	6.872 to 142.584
Index ranges	$-6 \le h \le 9, -16 \le k \le 14, -15 \le l \le 17$
Reflections collected	9811
Independent reflections	5628 [$R_{int} = 0.0249, R_{sigma} = 0.0301$]
Data/restraints/parameters	5628/0/401
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2σ (I)]	$R_1 = 0.0420, wR_2 = 0.1155$
Final R indexes [all data]	$R_1 = 0.0473, wR_2 = 0.1233$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.23

586 **Table 1.** Crystal data and structure refinement for **7b**

Comp	Average inhibition (%) \pm SD (n = 3)				
	V. mali	C. lunata F. graminearum		F. oxysporum f.	
				sp. <i>lycopersici</i>	
5a	5.8 ± 0.2	7.4 ± 0.1	4.3 ± 3.8	6.2 ± 0.9	
5b	6.5 ± 0.1	18.9 ± 0.5	8.6 ± 0.9	5.6 ± 3.0	
5c	7.3 ± 0.1	8.3 ± 2.0	11.1 ± 0.0	4.9 ± 1.7	
5d	5.4 ± 0.1	11.1 ± 2.6	17.9 ± 3.1	3.7 ± 1.5	
6a	90.4 ± 0.2	91.2 ± 0.8	72.8 ± 0.9	79.0 ± 0.9	
6b	84.7 ± 0.5	88.7 ± 1.5	63.9 ± 0.8	79.6 ± 1.5	
6c	83.7 ± 0.3	92.5 ± 3.1	67.9 ± 0.9	80.2 ± 0.9	
6d	73.1 ± 0.3	83.7 ± 3.9	47.5 ± 0.9	74.1 ± 0.0	
6e	83.8 ± 0.8	93.7 ± 1.8	69.1 ± 0.9	80.8 ± 0.9	
6f	85.7 ± 0.3	92.5 ± 0.0	68.0 ± 0.9	79.6 ± 1.5	
6g	78.7 ± 0.5	76.7 ± 3.6	54.4 ± 0.0	74.1 ± 0.0	
6h	77.4 ± 1.2	73.0 ± 5.0	66.7 ± 1.5	79.0 ± 0.9	
7a	47.4 ± 0.4	33.5 ± 3.6	27.2 ± 0.9	31.5 ± 1.5	
7b	13.7 ± 0.0	7.40 ± 0.1	3.1 ± 0.9	11.11 ± 0.0	
7c	24.3 ± 0.5	20.8 ± 0.4	4.3 ± 0.9	8.0 ± 0.9	
7d	30.0 ± 0.0	24.9 ± 0.4	1.85 ± 0.0	13.0 ± 1.5	
7e	73.4 ± 1.1	58.6 ± 0.6	49.4 ± 0.9	57.0 ± 0.9	
8a	23.6 ± 0.2	19.9 ± 0.8	4.9 ± 0.9	8.6 ± 0.9	
8b	7.6 ± 0.5	14.1 ± 0.3	4.9 ± 0.9	4.9 ± 0.9	
8c	6.0 ± 0.3	11.9 ± 0.4	11.1 ± 0.0	10.5 ± 0.9	
8d	6.9 ± 0.3	10.5 ± 0.2	3.7 ± 0.0	9.9 ± 1.7	
8e	14.6 ± 0.1	25.0 ± 4.3	1.9 ± 0.0	8.0 ± 0.9	
8f	15.7 ± 0.8	18.1 ± 3.0	9.9 ± 0.9	1.2 ± 0.9	
8g	4.1 ± 0.3	10.4 ± 3.6	35.2 ± 0.0	31.5 ± 0.0	
8h	3.5 ± 0.3	9.2 ± 0.6	6.2 ± 0.9	9.9 ± 0.9	
8i	54.1 ± 2.1	10.9 ± 0.6	6.2 ± 0.9	4.3 ± 0.9	
4	20.8 ± 0.5	2.7 ± 0.0	32.7 ± 0.0	12.6 ± 0.0	
Azoxystrobin	81.6 ± 0.0	54.7 ± 0.6	69.1 ± 0.0	79.8 ± 0.0	
Fluopyram	6.0 ± 1.2	97.7 ± 0.0	97.8 ± 0.8	41.6 ± 0.7	
Carbendazim	97.9 ± 0.4	100 ± 0.0	100 ± 0.9	58.0 ± 0.9	

587 **Table 2**. Antifungal activities of the target compounds at 50 µg/mL

Table 3. EC₅₀ values (µg/mL) of 6a~6h and 7e against *V. mali*, *C. lunata*, *F. graminearum* and *F.*

Fungi	Compd ^a	Toxicity regression equation *	R ²	EC ₅₀ (μg/mL)	95% CI ^b of EC ₅₀
V. mali	6a	y=1.611x-1.041	0.837	4.43	2.30-9.89
	6b	y=1.303x-1.201	0.954	8.35	6.76-10.8
	6c	y=1.417x-0.688	0.906	3.06	1.73-5.19
	6d	y=1.364x-1.260	0.982	8.38	6.85-10.7
	6e	y=1.799x-1.172	0.988	4.48	3.86-5.22
	6f	y=1.328x-0.817	0.970	4.12	3.41-5.02
	6g	y=1.675x-1.233	0.837	5.44	2.84-13.8
	6h	y=0.919x-1.203	0.826	20.3	8.68-42.0
	7e	y=1.564x-1.981	0.959	18.5	14.5-25.6
	Azoxystrobin	y=0.583+0.304	0.916	0.30	0.034-0.872
	Fluopyram			>50.0	
	Carbendazim	y=1.876x-1.173	0.908	4.22	1.13-14.4
C. lunata	6a	y=1.252x-1.586	0.971	18.5	13.8-27.7
	6b	y=1.478x-2.164	0.948	29.1	19.0-57.7
	6c	y=1.602x-1.476	0.953	8.40	6.00-12.9
	6d	y=1.535x-2.123	0.947	24.2	18.2-36.3

589 *oxysporum* f. sp. *lycopersici*

	6e	y=1.515x-1.091	0.975	5.30	4.43-6.31
	6f	y=0.844x-0.411	0.923	3.10	2.27-4.09
	6g	y=1.175x-1.909	0.933	42.2	26.7-87.8
	6h	y=0.985x-1.152	0.814	14.8	6.73-18.2
	Azoxystrobin	y=0.055x-0.366	0.896	6.70	4.61-11.8
	Fluopyram	y=0.891x+0.669	0.974	0.178	0.112-0.259
	Carbendazim	y=1.425x-2.308	0.842	41.7	19.8-48.6
F. graminearum	6a	y=0.996x-0.935	0.989	8.70	6.63-12.2
	6b	y=0.835x-0.939	0.978	13.3	9.29-22.6
	6c	y=0.873x-0.635	0.965	5.30	4.05-7.36
	6d	y=0.967x-1.279	0.965	21.1	14.4-37.2
	6e	y=0.731x-0.355	0.979	3.10	2.15-4.25
	6f	y=0.708x-0.396	0.940	3.60	2.57-5.17
	6g	y=0.796x-0.935	0.980	14.9	10.1-27.1
	6h	y=1.471x-1.539	0.978	11.1	9.05-14.3
	7e	y=1.254x-2.093	0.965	46.6	34.2-71.5
	Azoxystrobin	y=0.467x-0.632	0.946	22.4	9.05-30.7
	Fluopyram	y=0.780x+0.287	0.925	0.428	0.093-1.11
	Carbendazim	y=1.703x+0.641	0.947	0.420	0.166-0.995
F. oxysporum f.	6a	y=1.394x-1.227	0.950	7.60	5.32-12.2

sp. <i>lycopersici</i>	6b	y=1.468x-1.274	0.981	7.40	6.13-9.11
	6c	y=1.782x-1.780	0.971	10.0	8.42-12.9
	6d	y=1.233x-1.486	0.989	16.0	12.1-23.3
	6e	y=1.643x-1.467	0.971	7.80	6.59-9.47
	6f	y=1.549x-0.943	0.994	4.10	3.44-4.82
	6g	y=1.363x-1.359	0.949	9.90	6.82-17.2
	6h	y=1.630x-1.759	0.981	12.0	9.88-15.2
	7e	y=1.865x-1.799	0.960	9.20	6.57-14.6
	Azoxystrobin	y=1.086x-0.693	0.975	4.30	4.35-4.39
	Fluopyram			> 50.0	
	Carbendazim	y=1.885x+6.723	0.907	0.123	0.096-0.358

^a Average of three replicates; ^b confidence intervals at 95% probability.

591 **Figure 1**

594 Figure 4

595 Figure 5

596 **ToC Graphic**

