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Abstract  

Herein we report the synthesis and biological activity of new sigma receptor (σR) ligands obtained by 

combining different substituted five-membered heterocyclic rings with appropriate σR pharmacophoric 

amines. Radioligand binding assay, performed on guinea pig brain membranes, identified 25b (1-(1,4-

dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine) as the most interesting compound of the series, 

displaying high affinity and selectivity for σ1R (pKiσ1 = 9.13; σ1/σ2 = 47). The ability of 25b to 

modulate the analgesic effect of the κ agonist (−)-U-50,488H and µ agonist morphine was evaluated in 

vivo by radiant heat tail-flick test. It exhibited anti-opioid effects on both κ and µ receptor-mediated 

analgesia, suggesting an agonistic behavior at σ1R. Docking studies were performed on the theoretical 

σ1R homology model. The present work represents a new starting point for the design of more potent 

and selective σ1R ligands. 

 

 

Keywords: Sigma receptors ligands; sigma-1; sigma-2; piperidine; piperazine; 1,3-dioxolane; receptor-

mediated analgesia. 
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1. Introduction 

Sigma receptors (σRs) were discovered in 1976 and initially classified as an additional class of opioid 

receptorse [1]. Subsequently, σRs were mischaracterized as PCP/NMDA glutamate receptor complexes, 

due to the poor selectivity of the ligands employed [2,3]. However, these hypotheses were disproved 

[4,5]. Today, the σR is recognized as a unique entity with no homology to opioid receptors or other 

mammalian proteins[6]. Further radioligand binding studies and biochemical analysis suggested that 

sigma receptors exist as two different and distinct subtypes, named sigma-1 receptor (σ1R) and sigma-2 

receptor (σ2R) [7,8]. The σ1R has been recently characterized and cloned from guinea pig [9], human 

[10], mouse [11,12], and rat tissues [13]. It is present mainly in the endoplasmic reticulum membrane 

(ER), the mitochondria associated ER membrane (MAM) and the plasma membrane [14]. σ1R consists 

of two transmembrane domains with both the amino and carboxy termini on the cytoplasmic side, 

whereas the loop between the transmembrane domains is located within the endoplasmic reticulum [15]. 

σ1R has been shown to act as a unique ligand-regulated molecular chaperone that modulates the activity 

of several proteins, such as the N-methyl-D-aspartate (NMDA) receptor[16] and several ion channels 

[17]. Neurosteroids such as progesterone and dehydroepiandrosterone have been postulated to be the 

endogenous σ1R ligands[18-20]. Moreover, it has been shown that several exogenous compounds can 

interact with the σ1R. Among them, the dextrorotatory benzomorphans SKF10047 and pentazocine [21-

25], haloperidol and NE-100 represent relevant σ1R ligands [22, 25-27]. 

 

High affinity σ1R ligands have been considered to play an important role in the treatment of various 

neurological disorders, including depression, schizophrenia, neuropathic pain, and Alzheimer's disease 

[28-34]. Unlike σ1Rs, σ2Rs have not yet been cloned. This subtype is mainly located in lipid rafts where 

it modulates calcium signalling through sphingolipid products. Very recently it has been proposed that 

the progesterone receptor membrane component 1, which binds directly to the heme group and regulates 

lipid and drug metabolism and hormone signalling, represents the σ2R binding site [35]. Activation of 

σ2R appears to be involved in the regulation of cellular proliferation and cell death [36]. For these 

reasons, the antagonism or inhibition of σ2R function could mitigate cell death [37]. Furthermore, it has 

been reported that σ2R ligands can be used as biomarkers for tumour cell proliferation and thus they 

could be exploited for tumor imaging [37,38]. Therefore, due to the broad diagnostic and therapeutic 

potential, the development of potent and selective σ1R or σ2R ligands is a primary challenge in 

medicinal chemistry. 
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In a previously published paper we reported a series of 1,4-benzodioxane-based piperazines and 

piperidines as novel σR ligands with a good affinity for both receptor subtypes but lacking in adequate 

selectivity among sigma subtypes and sigma /5-HT1A receptors (Chart 1, 1a,b) [39]. Parallel SAR 

studies conducted by our research group on α1-adrenoreceptor demonstrated the bioequivalence of the 

1,3-dioxolane moiety with the 1,4-benzodioxane nucleus [40]. This approach has successfully led to the 

discovery of a novel class of α1-adrenoreceptors antagonists and, more recently, the identification of 

potent and selective 5-HT1A receptor agonists and NOP receptor ligands [41, 42].  

Thus, in this work we have applied the same strategy to explore a series of 1,3-dioxolane-based 

compounds, obtained by replacing the 1,4-benzodioxane moiety, in order to verify whether the above 

mentioned approach could be advantageous also for the class of σR ligands (Chart 1, 8a,b). In addition, 

focusing our attention on the 1,3-dioxolane scaffold, we applied the classical medicinal chemistry 

approach described in Chart 2, such as annular oxygen bio-isosteric substitutions (Group II and III) and 

externalization of the annular oxygen (Group IV) to investigate the effect on activity of a series of five-

membered heterocyclic rings or opened analogues (Group V). Moreover, on the basis of previously 

obtained results showing that the phenyl groups at position 2 on the 1,3-dioxolane scaffold are not 

essential for the binding to 5-HT1AR and NOP receptors, we planned the synthesis of the 

conformationally restricted spiro-dioxolanes (Group VI) [41, 43]. All the compounds were tested for 

affinity and selectivity at σ1 and σ2R subtypes and detailed SAR studies were drawn up. In addition 

nociceptive effect was evaluated in vivo. In order to rationalize the pharmacological results and support 

and guide the chemical exploration, in-silico docking studies were performed on the theoretical σ1 three-

dimensional model. 

 

2. Results and discussion 

 

2.1. Chemistry 

All the compounds (8-25a,b) were prepared by alkylation of the commercially available 4-

benzylpiperidine or 1-benzylpiperidine with the suitable intermediate. 

For Group I and II compounds acetalization of the selected ketone with the proper glycerol derivative 

provided the corresponding 1,3-dioxolane, oxathiolane and dithiolane-intermediates from which either 

the chloro or the tosyl derivatives 3-7 were obtained (Scheme 1). In case of 4, the diastereomeric 

mixture was separated by silica gel flash chromatography yielding cis-4 and trans-4. The separated 

isomers were characterized by means of NOESY experiments and 1H-NMR studies (Figure 1S, panel a, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

Supporting Informations). The furane derivatives 14a,b (Group III) (Scheme 2) were prepared starting 

from the key intermediate 13, obtained in three steps, as recently described (see experimental section). 

The cyclopentanone derivatives 16a,b were obtained in good yields by Mannich reaction between 

diphenylcyclopentanone (15) in the presence of aqueous paraformaldehyde and 4-benzylpiperidine or 1-

benzylpiperazine as hydrochloride salt to ensure the acidic reaction conditions [44]. Reduction of 16a,b 

by NaBH4 provided the corresponding cyclopentanol derivatives 17a,b (Group IV) (Scheme 2). The 

cis/trans diastereomeric pairs were separated by using flash column chromatography and their relative 

stereochemistry was elucidated by NOESY experiments and H1-NMR studies (Figure 1S, panel b, 

Supporting Informations).  

For the 1,3-dioxolane opened analogues 22a,b and 23a,b (Group V), the 3-chloropropane-1,2-diol, 

previously protected as tert-butyldiphenylsilyl ether 18, or the 2-chloroethanol was reacted with the 

bromodiphenylmethane to yield the alkyl halides 19 and 20 (Scheme 3). 

The spiro-dioxolane derivatives 25a,b (Group VI) were readily prepared starting from the key 

intermediate 24 (Scheme 2). 

 

2.2. Biological activity 

 

2.2.1. Binding affinity  

The compounds in Groups I-VI were evaluated for their affinity at both σ1R and σ2R (Table 1-3). Since 

most of the molecules share the same chemical features with previously published 5-HT1AR ligands [41, 

43, 44] we also evaluated the binding affinities at 5-HT1AR. Furthermore, the affinity at α1 

adrenoceptors was determined (values not shown) and the compounds showed practically no activity at 

these receptors. 

Compounds 1a and 1b were our starting points. In a previously published paper we reported that they 

display good affinity for both receptor subtypes but lacking in adequate selectivity [39]. Replacing the 

1,4-benzodioxane group with the 2,2-diphenyl-dioxolane moiety (8a and 8b) the affinity of both 

derivatives was increased by about 5/10-fold while the selectivity remained absent, as in the case of the 

parent compounds. However, 8a and 8b show lower affinities for 5-HT1AR with respect to 1a and 1b 

with good selectivity ratios (σ/5HT1A) of 251 and >589, respectively. Replacement of one of the two 

phenyl rings with a cyclohexyl group at position 2 of the 1,3-dioxolane ring led to a different effect for 

the two series (piperidine and piperazine), both in terms of affinity and stereoselectivity. Compounds 

cis-9a and trans-9a showed a marked decrease in affinity at both receptor subtypes. A decrease in 

σ/5HT1A selectivity was also observed. In this case the stereochemistry seems not to play a significant 
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role. On the contrary, for the piperazine derivatives a certain degree of stereoselectivity at σ1R site was 

observed. Compound trans-9b maintained the affinity at σ1 subtype while, at σ2 receptor subtype, the 

value is slightly decreased (7.79 vs 8.38). On the other hand, the cis isomer 9b is more than 10-fold less 

active at σ1R while having the same affinity at σ2 subtype with respect to the trans isomer 9b. Moreover, 

for both isomers cis-9b and trans-9b the σ/5HT1A selectivity is conserved (>56 and >933 respectively). 

With the substitution of the second phenyl ring, to give the 2,2-dicyclohexyl derivatives (10a and 10b), 

the affinities of the piperidine series are further decreased, while, in the case of the piperazine series, 

they are maintained. However, the very small decrease in affinity at σ1R together with the small increase 

at σ2R drastically reduced the selectivity observed with trans-9b. The Piperazine series is confirmed to 

be more selective towards σ receptors with respect to the 5-HT1AR. 

Isosteric substitutions oxygen/sulphur/methylene of compound 8a and 8b were also evaluated. 

Replacement of oxygen with sulphur, to give the 1,3-oxathiolane 11a and 11b, reduced the affinity at 

both σR subtypes of different extent: 4- 5-fold in the case of piperidine 11a and a large reduction of 40- 

50-fold in the case of piperazine 11b. The same trend, although to a lesser extent, is also observed with 

the introduction of a second sulphur atom to give the 1,3-dithiolane derivatives 12a and 12b. As a result, 

the piperidine couple (11a and 12a) is more potent than the piperazine one, at both σR subtypes. 

Isosteric substitution of one annular oxygen atom of the 1,3-dioxolane with a methylene unit gave the 

tetrahydrofurane derivatives 14a and 14b endowed with lower affinity values. It is a quite large decrease 

of about 40 to 70-fold either for piperazine and piperidine, at both σR subtypes. 

All isosters of 8a and 8b retain good σ/5HT1A selectivity displaying low affinity values for 5HT1AR.  

Replacing the oxygen atom in the tetrahydrofuran ring with a carbonyl group, to give the 

cyclopentanones derivative 16a and 16b, a further reduction of affinity is observed, although an increase 

of selectivity (20-fold) for the piperazine derivative 16b is observed. 

The reduction of the carbonyl group gives two couples of diastereoisomeric cyclopentanols cis-17a, 

trans-17a, and cis-17b and trans-17b. For both piparazine and piperidine couples, a recovery of affinity 

is observed with respect to the parent cyclopentanones, with a clear lack of diastereoselectivity since 

each diasteromeric couple shows similar affinity values at both receptor subtypes. It is worth noting that 

the least active of the four cyclopentanols, trans-17a, is the only one to show a certain degree of 

selectivity (39-fold). Interestingly, all the pentanol derivatives, except trans-17a, show a marked 

increase in affinity towards 5HT1AR, with reversed σ/5HT1A selectivity. 

Compounds 22a and 22b are open analogues of 8a and 8b while 23a and 23b, obtained by removal of 

the hydroxymethylene group, could be considered their molecular simplification. Opening of the 1,3-

dioxolane ring causes a drop in affinity at both σR subtypes: of about 4- 7-fold in the case of piperazine 
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derivatives and, a more pronounced decrease, about 44- 90-fold, in the case of piperidine derivatives. 

The removal of the hydroxymethylene group does not cause a significant variation in affinites. Once 

more, piperazines 22b and 23b highlight good σ/5HT1A selectivity values while the corresponding 

piperidines displayed poor or no selectivity. 

Considering that the best results, in terms of affinity, were obtained with the 1,3-dioxolane scaffold and 

that the phenyl rings in position 2 do not seem to be essential for affinity (see compounds trans-9b and 

10b) we planned the synthesis of the conformationally restricted spiro-dioxolanes 25a and 25b. 

The piperazine derivative 25b showed the highest affinity at σ1R with a pKi value of 9.13 and a 

selectivity ratio (σ1/σ2) of 47 fold. The same profile was observed for the piperidine derivative 25a, 

although the affinity for σ1 subtype and the selectivity ratio was of a lesser extent. Compound 25b also 

displays the highest σ/5HT1A selectivity value (1349) in the whole series. 

As far as the differences in affinity between σ1R and σ2R subtypes are concerned, in most cases higher 

values are obtained for the former, although the selectivity is quite low. Only compound 25b is 

outstanding in this respect (pKi σ1 = 9.13, σ1/σ2 = 47). Furthermore, it is worth noting that, excluding the 

1,3-oxathiolane and the 1,3-dithiolane derivatives 11 and 12, it clearly appears that at the σ2 binding site 

the piperazine derivatives are more active than the corresponding piperidines, with the exception of 

cyclopentanones (16) and spiro derivatives (25). In the case of the sulphur-containing derivatives (1,3-

oxathiolanes and 1,3-dithiolanes), the piperidines show affinity values higher than those seen with the 

piperazines, with a reversed trend of activity. Therefore, it seems that the introduction of one or two 

sulphur atoms is responsible for this effect. However, as the number of compounds is too limited, more 

compounds are needed in order to generalize this observation. 

 

2.2.2. In vivo analgesic activity 

Given the implication of σ1Rs in opioid-mediated analgesia [45] we analysed the ability of compound 

25b, on the bases of its affinity (pKi = 9.13) and selectivity (47-fold), to modulate the analgesic effect of 

the systemically injected KOP agonist, trans-(1S,2S)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-

cyclohexyl]benzeneacetamide [(−)-U50,488H] [46]. Our results demonstrate that the systemic 

administration of 25b (1 mg/kg sc) did not affect tail withdrawal latencies during the entire observation 

time (data not shown). Injection of the KOP agonist (−)-U-50,488H, at a dose of 5 mg/kg s.c., 

significantly increased the nociceptive latency by following thermal stimulation, which demonstrated a 

clear analgesic effect (* P< 0.05 vs saline treated rats). Pre-treatment with 25b at 1 mg/kg s.c., followed 

by (−)-U-50,488H (5 mg/kg s.c.) caused a reduction in the opioid analgesic effect which was significant 

only at 30 minutes after the last administration (*P<0.05 vs (−)-U-50,488H treated rats) (Figure 1). In 
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the next experimental protocol, the injection of morphine at the dose of 2 mg/kg s.c. (chosen in a dose 

range of 1 to 10 mg/kg) determined a significant analgesic effect (*P<0.05 vs saline treated rats). The 

double treatment with 25b 1 mg/kg s.c. plus morphine 2 mg/kg s.c., diminished MOP-induced analgesia 

(Figure 2); values were significant only at 30 minutes of observation (** P<0.05 vs morphine treated 

rats). These results are consistent with an agonistic behavior at σ1R of compound 25b. 

 

2.3. Molecular Modeling 

In order to better understand the affinities of the compounds disclosed here, docking studies on the σ1R 

homology model, previously built by us and presented here (see experimental section), were performed.  

According to our results, the putative σ1 binding site was delimited by: (i) one hydrophobic region 

located inside the protein including F58, A86, V104, L105, L106, L124, Y147, (ii) one hydrophilic core 

placed around the polar residues D126, E150, T151, (iii ) a region much more exposed outside the 

protein showing the F83, V84, F107, I128, S130, T132, F133, H134 residues. The model refinement 

was performed exploring the docking mode of known σ1 ligands and then comparing the results with the 

literature data. In particular, compound I (1-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,4-

c]pyran], Figure 3) [47] was chosen for its high binding affinity at σ1R and for a considerable structural 

similarity with leading members of our series. The docking results highlight the importance of a salt-

bridge with the D126 side-chain and of one H-bond between the spirocyclic oxygen atom and T151 

(Figure 4); the data, being in agreement with the literature, supported the reliability of the obtained σ1R 

homology model [47]. The relevance of the interactions with D126 and T151 was also confirmed by 

mutagenesis studies [48], validating, once again, the computational protocol. In addition, the MOE dock 

scoring funtions revealed the docking protocol ability to efficiently rank any selected conformer in 

accordance with the affinity trend (Table S1, Supporting Information). Among the compounds 

investigated here, a number of them displayed a salt-bridge interaction with D126 and some 

hydrophobic contacts with V84, A86, V104, L105, L106, L124, I128, while the compounds with the 

highest affinity also showed additional H-bonds with T151 and/or S130. In more detail, the dioxolane 

derivatives 8a and 8b shared the same docking mode, displaying the key salt-bridge interaction between 

the piperidine or piperazine protonated nitrogen atom and D126 and the H-bond interaction between the 

dioxolane core and T151, while the diphenyl portion and the benzylic ring were properly engaged in 

π−π stacking with F83, F107, F133, and Y147, respectively (Figure 5, the S enantiomers were revealed 

by calculations to be the most stable). These results are in agreement with the affinity data showing that 

piperidine 8a and piperazine 8b bind equally both σR subtypes. Conversely, the replacement of one or 
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two phenyl rings with the cyclohexyl group led to a different effect, the piperazines cis/trans-9b and 10b 

showing higher pKi values than the corresponding piperidines cis/trans-9a and 10a at both σR subtypes. 

In particular, it was observed that the most active piperazines trans-9b and 10b displayed a docking 

mode comparable with that described for 8a and 8b, maintaining the two driving interactions with the 

key residues D126 and T151, although, in this case, both of them are exerted by the two piperazine 

nitrogen atoms, while the oxygen ring is not engaged in any H-bond. On the contrary, the piperidine 

derivatives 9a and 10a, were characterized by a switched binding mode, orienting the cyclohexyl or 

dicyclohexyl portion towards Y147 and therefore lacking the key salt-bridge interaction with D126 

(Figure 6, the 10a and 10b S and R enantiomers were revealed by calculations to be the most stable). In 

this case, only the H-bond with T151 was maintained. These results could be an indication of the 

different affinities observed in the binding experiments for these two series. All the structural 

modifications applied to the dioxolane scaffold, leading to the ring-opened derivatives (22a,b; 23a,b: 

pKi= 6.7-7.9) oxathiolane- (11a,b: pKi= 7.9, 7.2), dithiolane- (12a,b: pKi= 7.8, 6.5), tetrahydrofuran- 

(14a,b: pKi= 6.7, 7.0), cyclopentanone- (16a,b: pKi= 5.9, 6.2) or cyclopentanol- (cis/trans-17a, b: pKi = 

6.5-7.4) analogues, proved to be detrimental for binding to σR . With the exception of oxathiolanes or 

dithiolanes, the above-mentioned compounds properly located the diphenyl and the benzyl substituents 

towards F83, F107, F133, and Y147, respectively, thus resulting in only the salt-bridge interaction with 

D126 or in the H-bond with T151. Conversely, both interactions were maintained in compound 22b 

through the piperazine nitrogen atom and the hydroxyl group, respectively. 

Interestingly, when the 1,3-dioxolane portion was replaced with a 1,3-oxathiolane or 1,3-dithiolane, 

compounds in the piperidine series (11a, 12a) performed better (pKiσ1 = 7.82, 7.92) than the 

corresponding piperazine derivatives (11b, 12b; pKiσ1 = 6.52, 7.20), at both σR subtypes. According to 

our calculation, 11a and 12a oriented the diphenyl and the benzyl substituent inside and quite outside 

the protein, respectively, displaying a salt-bridge between the protonated nitrogen atom and D126. On 

the contrary, the corresponding piperazine 11b and 12b showed an inversed docking mode which 

prevented any contact with D126, exhibiting only a weak H-bond with T151 (data not shown). 

Lastly, 25a and 25b, the most interesting members of this series, outstanding for their affinity (pKi = 

8.70, 9.13) and selectivity (σ1 / σ2 = 10, 47) at σ1R, shared the by following interactions: (i) a salt-bridge 

between the piperidine or piperazine nitrogen atom and D126; (ii ) an H-bond between the dioxolane 

oxygen atom and S130: (iii ) π−π stacking and hydrophobic contacts with Y147 and with V84, I128, 

F133. Moreover, compound 25b displayed one additional H-bond between the piperazine nitrogen atom 

and T151 (Figure 7; the 25a and 25b S enantiomers were revealed by calculations to be the most stable). 

Significantly, the docking pose of 25b was comparable with that of the previously described agonist I 
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(pKi=9.36), displaying the same hydrophilic contacts with D126 and T151. Notably, the bond distances 

measured for the two protein-ligand complexes were slightly lower for I, giving an indication for the 

slightly greater affinity of I with respect to 25b. On the basis of these results, it could be hypothesized 

that the replacement of the piperazine ring with a shorter basic linker between the benzyl group and the 

dioxaspiro-core on 25b could efficiently guarantee the proper pattern of an H-bond acceptor and basic 

features to interact with D126, T151 and also with S130. Moreover, additional aromatic moieties linked 

to the spiro-decane scaffold could be introduced, in order to further stabilize the protein-ligand complex 

by means of π−π stacking interactions with both the two aforementioned hydrophobic pockets, 

including F58, Y147 and F83, F107, F133. These results could represent a new starting point for the 

design of structural analogues of 25b. 

 

3. Conclusions 

Starting from 1a and 1b and replacing the 1,4-benzodioxane moiety with a variety of five-membered 

heterocyclic rings, a new class of σR ligands was obtained. Structure-affinity studies were performed 

leading to these conclusions: 

a) all the compounds exhibited a preference for σ1R subtype respect to σ2R, although the 

selectivity, in most of the cases, is quite low; 

b) the best results in terms of affinity and selectivity were obtained with the 1,3-dioxolane scaffold; 

c) isosteric substitutions of the dioxolane atoms or molecular simplification led to a general 

decrease in affinity;  

d) aromatic substituents at position 2 on the 1,3-dioxolane ring do not seem to be essential for σR 

affinity;  

e) with few exceptions, piperazine-based compounds were more potent than the corresponding 

piperidines; 

f) the computational results, in agreement with the biological data, proved the reliability of the σ1R 

model. 

In particular, compound 25b was outstanding for its high affinity (pKi=9.13) and selectivity (σ1/σ2 = 47) 

at σ1R subtypes. In-vivo studies suggested that 25b acts as a σ1R agonist since it is able to reduce both 

(−)-U50,488H- and morphine-mediated analgesia. Therefore, 25b could represent a new starting point 

for the development of more active and selective ligands. Further research along this line is in progress 

and will be disclosed in due course. 
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4. Experimental Part 

4.1. Chemistry 

All the reagents, solvents and other chemicals were used as purchased from Sigma-Aldrich without 

further purification unless otherwise specified. Air- or moisture-sensitive reactants and solvents were 

employed in reactions carried out under nitrogen atmosphere unless otherwise noted. Flash column 

chromatography purifications (medium pressure liquid chromatography) were carried out using Merck 

silica gel 60 (230-400 mesh, ASTM). The structures of all isolated compounds were ensured by Nuclear 

magnetic resonance (NMR) and Mass spectrometry. 1H and 13C-NMR (1D and 2D experiments) spectra 

were recorded on a DPX-200 Avance (Bruker) spectrometer operating at 200.13 MHz and on a DPX-

400 Avance (Bruker) spectrometer operating at 400.13 MHz. Chemical shifts are expressed in δ (ppm). 
1H NMR chemical shifts are relative to tetramethylsilane (TMS) as internal standard. 13C-NMR 

chemical shifts are relative to TMS at δ 0.0 or to the 13C signal of the solvent: CDCl3 δ 77.04, CD3OD δ 

49.8, DMSO-d6 δ 39.5. NMR data are reported as follows: chemical shift, number of protons/carbons, 

multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broadened), coupling constants 

(Hz) and assignment (Diox = 1,3-Dioxolane; Ar = Phenyl; Cyc = Cyclohexyl; Ts = Tosyl; Piper = 

Piperidine or Piperazine; Ph = Phenyl ; Bz = Benzyl, Oxath = 1,3-Oxathiolane; Dithio = 1,3-Dithiolane; 

Fur = Tetrahydrofurane; Cyclopent = Cyclopentanone or Cyclopentanol; Dosd = 1,4-

Dioxaspiro[4.5]decane). 1H-1H Correlation spectroscopy (COSY), 1H-13C heteronuclear multiple 

quantum coherence (HMQC) and heteronuclear multiple bond connectivity (HMBC) experiments were 

recorded for determination of 1H-1H and 1H-13C correlations respectively. NOESY experiments have 

been performed to assign the correct stereochemistry. HR-MS experiments were carried out using a LC-

MS mass spectrometer (6520 Accurate-Mass Q-TOF LC/MS - Agilent Technologies) equipped with an 

ion spray ionization source (ESI). MS (+) spectra were acquired by direct infusion (5 ml/min) of a 

solution containing the appropriate sample as oxalate salt (10 nmol/ml), dissolved in a 0.1% acetic acid 

solution, with mobile phase methanol/water 50:50, at the optimum ion voltage of 4800 V. The yields 

reported are based on a single experiment and are not optimized. The final compounds were converted 

into hydrogen oxalate. Melting points were determined with a Stuart SMP3 and they are uncorrected. 

The purity of the salts was confirmed by elemental analysis on a Carlo Erba 1106 Analyzer and the 

values obtained are within ±0.4% of the calculated ones. The purity was higher than 97%. The oxalate 

salts were tested for the biological activity. 

 

The compounds 3 [40], 6 [43], 7 [43], 13[44], 15 [44], 24 [43] were obtained as previously reported.  
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4.1.1. (2-Cyclohexyl-2-phenyl-[1,3]-dioxolan-4-yl)methanol (2) 

An excess of glycerol (26.56 mmol) and a catalytic amount of p-toluenesulfonic acid (0.53 mmol) were 

added to a solution of cylohexylphenyl ketones (13.28 mmol) in toluene (250 mL). The mixture was 

refluxed and water was removed in a Dean-Stark trap until the formation of water stopped. After 

completion of the reaction a mixture of CH2Cl2/H2O was added. The organic layer was separated and the 

aqueous layer was extracted with CH2Cl2. The organic layers were combined, washed with a saturated 

solution of NaHCO3 and brine, dried over anhydrous Na2SO4, filtered and concentrated under vacuum. 

The unassigned diastereoisomeric mixture of the title compound was obtained as a yellow oil (3.31 g, 

12.61 mmol, 95% yield) and used without further purification. 
1H NMR (DMSO, 200 MHz): δ = 0.91-1.22 (5H, m, Cyc), 1.49-1.72 (7H, m, Cyc, OH), 3.58 (1H, dd, J 

= 7.2, 8.9 Hz, CHa-5 Diox), 3.76 (1H, dd, J = 7.2, 8.2 Hz, CHb-5 Diox), 4.00 (2H, m, CH2OH), 4.21-

4.35 (1H, m, CH-4 Diox), 7.21-7.40 (5H, m, Ar). ESI-HRMS calcd for C16H23O3 [M+H]+ 263.1642, 

found 263.1645. 

 

4.1.2. (2-Cyclohexyl-2-phenyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate (4) 

p-Toluenesulfonyl chloride (8.40 mmol) was added at 0°C to a solution of 2 (7.63 mmol) and 

triethylamine (1.0 mmol) in dry CH2Cl2 (10 mL). The mixture was stirred at room temperature for 12 h. 

Ice water was added and the mixture was extracted with CH2Cl2. The organic extracts were collected, 

washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to yield the title 

compound. Single pure cis/trans diastereomer was obtained by using flash column chromatography 

(cyclohexane/ethyl acetate 97.5/2.5) as an oil. 

Cis-4 (1.81 g, 4.35 mmol, 57% yield) 

1H NMR (CDCl3, 200 MHz): δ = 0.91-1.12 (5H, m, Cyc), 1.49-1.78 (6H, m, Cyc), 2.48 (3H, s, CH3), 

3.38 (1H, dd, J = 7.4, 8.1 Hz, CHa-5 Diox), 3.71 (1H, dd, J = 2.4, 4.9 Hz, CHaTs), 3.90 (1H, dd, J= 4.7, 

4.9 Hz CHbTs), 4.01 (1H, dd, J = 6.3, 7.4 Hz, CHb-5 Diox), 4.11 (1H, m, CH-4 Diox), 7.18-7.41 (7H, 

m, Ar, CH-3, CH-5 Ts), 7.71 (2H, d, J= 8.2 Hz, CH-2, CH-6 Ts). ESI-HRMS calcd for C23H29O5S 

[M+H] + 417.1730, found 417.1729. 

 

Trans-4 (0.48 g, 1.14 mmol, 15% yield) 

1H NMR (CDCl3, 200 MHz): δ = 0.98-1.15 (5H, m, Cyc), 1.43-1.77 (6H, m, Cyc), 2.47 (3H, s, CH3), 

3.61-3.78 (2H, m, CH2-5 Diox), 3.84-4.07 (3H, m, CH2Ts, CH-4 Diox), 7.19-7.36 (5H, m, Ar), 7.37 

(2H, d, J= 8.3 Hz, CH-3, CH-5 Ts), 7.82 (2H, d, J= 8.3 Hz, CH-2, CH-6 Ts). ESI-HRMS calcd for 

C23H29O5S [M+H]+ 417.1730, found 417.1729. 
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4.1.3. 4-(Chloromethyl)-2,2-dicyclohexyl-1,3-dioxolane (5) 

The title compound was obtained as an oil (1.09 g, 3.80 mmol, 74%) starting from dicyclohexyl ketone 

(5.14 mmol) and 3-chloro-1,2-propanediol (7.71 mmol), by following the same procedure described for 

2. 
1H NMR (CDCl3, 200 MHz): δ = 1.04–1.41 (10H, m, Cyc), 1.54–1.87 (12H, m, 2x Cyc.), 3.44 (1H, dd, 

J = 7.9, 10.6 Hz, CHa-5 Diox), 3.57–3.71 (2H, m, CH2Cl), 4.08 (1H, dd, J = 5.3, 10.6 Hz, CHb-5 Diox), 

4.30–4.43 (1H, m, CH-4 Diox). ESI-HRMS calcd for C16H28O2
35Cl [M+H] + 287.1772, found 287.1773. 

Calcd for C16H28O2
37Cl [M+H] + 289.1743, found 289.1744. 

 

4.1.4. General procedure for the synthesis of the amines 8-12a,b; 14a,b; 21a,b; 23a,b 

A large excess of 4-benzylpiperidine or 1-benzylpiperazine (5-10 equiv.) and a catalytic amount of KI 

were added to a solution of chloromethyl (3, 5-7) or tosyl derivative (4, 13, 24) (0.34-2.25 mmol) in 2-

methoxyethanol. The resulting mixture was stirred and was refluxed for 20 h. The solvent was 

evaporated under vacuum, CHCl3 was added, and the residue was washed with a solution of 5% NaOH 

(2x) and with brine. The organic layer was dried over Na2SO4 and the solvent was evaporated under 

vacuum to give the desired amine as an oil. The residue was purified by using flash column 

chromatography. 

 

4.1.5. 4-Benzyl-1-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]piperidine (8a) 

The title compound was obtained from 3 [40] and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 70/30) to give 8a (0.44 g, 1.06 mmol, 78% yield) as 

an oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.41-1.63 (5H, m, CH2-3, CH-4, CH2-5), 1.89-2.16 (2H, m, CHa-2, 

CHa-6 Piper), 2.43-2.59 (3H, m, CHaN, CH2Ph), 2.61 (1H, dd, J = 6.2, 12.1, CHbN), 2.77-2.94 (1H, m, 

CHb-2/CHb-6 Piper), 2.99-3.19 (1H, m, CHb-2/CHb-6 Piper), 3.77 (1H, dd, J = 7.2, 7.6 Hz, CHa-5 

Diox), 4.15 (1H, dd, J = 7.6, 7.8 Hz, CHb-5 Diox), 4.27-4.50 (1H, m, CH-4 Diox), 7.01-7.37 (11H, m, 

Ar2, Ph), 7.42-7.69 (4H, m, Ar2); 
13C NMR (CDCl3, 100 MHz): δ = 31.8 (CH2, C-3/C-5 Piper), 32.2 

(CH2, C-3/C-5 Piper), 37.0 (CH, C-4 Piper), 42.8 (CH2, CH2Ph), 53.9 (CH2, C-2/C-4 Piper), 54.4 (CH2, 

C-2/C-4 Piper), 60.7 (CH2, CH2N), 68.6 (CH2, C-5 Diox), 75.4 (CH, C-4 Diox), 110.1 (C, C-2 Diox),  

125.7 (CH, C-4 Ph), 126.3 (4CH, C-2, C-6 Ar2), 128.0 (2CH, C-3, C-5 Ph), 128.2 (4CH, C-3, C-5 Ar2), 

128.3 (2CH, C-4 Ar2), 128.9 (2CH, C-2, C-6 Ph), 138.3 (C, C-1 Ph), 142.7 (2C, C-1 Ar2). ESI-HRMS 

calcd for C28H32NO2 [M+H] + 414.2428, found 414.2430. 
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The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.03 g, 0.07 

mmol, yield 44%). 

mp: 200-202 °C; 1H NMR (DMSO, 200 MHz): δ = 1.32-1.53 (5H, m, CH2-3, CH-4, CH2-5), 2.41-2.52 

(2H, m, CH2Ph), 2.71-2.91 (2H, m, CH2N), 3.01-3.27 (2H, m, CHa-2,CHa-6 Piper), 3.29-3.39 (1H, m, 

CHb-2/CHb-6 Piper), 3.42-3.53 (1H, m, CHb-2/CHb-6 Piper), 3.74 (1H, dd, J = 7.2, 7.9 Hz, CHa-5 

Diox), 4.12 (1H, dd, J = 7.2, 7.5 Hz, CHb-5 Diox), 4.40-4.64 (1H, m, CH-4 Diox), 7.11-7.51 (15H, m, 

Ar2, Ph). 

ESI-HRMS calcd for C28H32NO2 [M+H]+ 414.2428, found 414.2430. Anal. Calcd. for C30H33NO6: C, 

71.55; H, 6.61; N, 2.78; Found C, 71.51; H, 6.42; N, 2.63. 

 

4.1.6. 1-Benzyl-4-[(2,2-diphenyl-1,3-dioxolan-4-yl)methyl]piperazine (8b) 

The title compound was obtained from 3 [40] and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 95/5) to give 8b (0.75 g, 1.8 mmol, 80% yield) as 

an oil. 
1H NMR (CDCl3, 400 MHz): δ = 2.52-2.83 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.52 

(2H, s, CH2Ph), 3.79 (1H, dd, J = 7.1, 7.6 Hz, CHa-5 Diox), 4.16 (1H, dd, J = 7.1, 7.9 Hz, CHb-5 Diox), 

4.35-4.48 (1H, m, CH-4 Diox), 7.20-7.41 (11H, m, Ph, Ar2), 7.48-7.69 (4H, m, Ar2); 
13C NMR (CDCl3, 

100 MHz): δ = 52.7 (2CH2, C-2, C-6 Piper) 53.4 (2CH2, C-3, C-5 Piper), 61.0 (CH2N), 62.8 (CH2, 

CH2Ph) 69.0 (CH2, C-5 Diox), 74.9 (CH, C-4 Diox), 60.7 (CH2, CH2N), 110.1 (C, C-2 Diox), 126.2 

(4CH, C-3, C-5 Ar2), 127.5 (CH, C-4 Ph), 120.1 (2CH, C-2, C6 Ar), 128.2 (2CH, C-2, C-6 Ar’), 128.3 

(2CH, C-3, C-5 Ph), 129.5 (2CH, C-2, C-6 Ph), 137.2 (C, C-1 Ph). 142.4 (C, C-4 Ar), 142.5 (C, C-4 

Ar’). 142.7, (2C, C-1 Ar, Ar’). ESI-HRMS calcd for C27H31N2O2 [M+H]+ 415.2380, found 415.2382. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.24 g, 0.47 

mmol, yield 51%). 

mp: 228-229 °C; 1H NMR (DMSO, 200 MHz): δ = 2.61-3.12 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper, CH2N), 3.71 (1H, dd, J = 7.1, 8.0 Hz, CHa-5 Diox), 3.91-4.21 (3H, m, CHb-5 Diox, CH2Ph), 

4.25-4.46 (1H, m, CH-4 Diox), 7.19-7.36 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C27H31N2O2 [M+H] + 415.2380, found 415.2382. Anal. Calcd. for C31H34N2O10: C, 

62.62; H, 5.76; N, 4.71; Found C, 62.65; H, 5.82; N, 4.82. 

 

4.1.7. Cis-4-benzyl-1-[(2-cyclohexyl-2-phenyl-1,3-dioxolan-4-yl)methyl]piperidine (cis-9a) 
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The title compound was obtained from cis-4 and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 95/5) to give cis-9a (0.27 g, 0.65 mmol, 94% yield) 

as a yellow oil. 
1H NMR (CDCl3, 400 MHz): δ = 0.81-1.26 (5H, m, Cyc), 1.31-1.86 (11H, m, Cyc, CH2-3, CH-4, CH2-5 

Piper), 1.87-2.13 (2H, m, CHa-2, CHa-6 Piper), 2.22-2.39 (1H, m, CHb-2/CHb-6 Piper), 2.41-2.52 (2H, 

m, CH2N), 2.55 (2H, d, J = 5.6 Hz, CH2Ph), 3.01-3.13 (1H, m, CHb-2/CHb-6 Piper), 3.61-3.78 (2H, m, 

CH2-5 Diox), 4.23-4.38 (1H, m, CH-4 Diox), 7.11 (2H, d, J = 7.4 Hz, CH-2, CH-6 Ph), 7.23 (1H, t, J = 

7.2 Hz, CH-4 Ph), 7.32-7.49 (7H, m, CH-3, CH-4 Ph, CH-2, XH-3, CH-4, CH-5, CH-6 Ar); 13C NMR 

(CDCl3, 100 MHz): δ = 26.1 (2CH2, Cyc) 26.2 (CH2, Cyc), 26.3 (CH2, Cyc), 26.8 (CH2, Cyc), 31.3 

(CH2, C-3/C-5 Piper), 31.9 (CH2, C-3/C-5 Piper), 37.1 (CH, C-4 Piper), 42.7 (CH2, CH2Ph), 47.1 (CH, 

C-1 Cyc), 52.9 (CH2, C-2/C-4 Piper), 54.2 (CH2, C-2/C-4 Piper), 60.2 (CH2, CH2N), 68.6 (CH2, C-5 

Diox), 74.6 (CH, C-4 Diox), 112.5 (C, C-2 Diox), 125.8 (CH, C-4 Ph), 126.4 (2CH, C-3, C-5 Ar), 127.7 

(2CH, C-2, C-5 Ar), 128.3 (2CH, C-3, C-5 Ph), 128.9 (CH, C-4 Ar), 129.0 (2CH, C-2, C-6 Ph), 139.3 

(C, C-1 Ar), 140.6 (C, C-1 Ph). ESI-HRMS calcd for C28H38NO2 [M+H]+ 420.2897, found 420.2895. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.18 g, 0.36 

mmol, yield 55%). 

mp: 205-207 °C; 1H NMR (DMSO, 200 MHz): δ = 0.71-1.31 (5H, m, Cyc), 1.41-1.81 (11H, m, Cyc, 

CH2-3, CH-4, CH2-5 Piper), 2.44-2.51 (2H, m, CH2Ph), 2.52-2.73 (2H, m, CH2N), 2.71-3.32 (4H, m, 

CH2- 2/CH2-6 Piper), 3.38-3.43 (1H, m, CHa-5 Diox), 4.05-4.13 (1H, m, CHb-5 Diox), 4.23-4.49 (1H, 

m, CH-4 Diox), 7.11-7.42 (10H, m, Ar, Ph). 

ESI-HRMS calcd for C28H38NO2 [M+H]+ 420.2897, found 420.2895. Anal. Calcd. for C30H39NO6: C, 

70.70; H, 7.71; N, 2.75; Found C, 70.83; H, 7.77; N, 2.96. 

 

4.1.8. Cis-1-benzyl-4-[(2-cyclohexyl-2-phenyl-1,3-dioxolan-4-yl)methyl]piperazine (cis-9b) 

The title compound was obtained from cis-4 and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 85/15) to give cis-9b (0.37 g, 0.88 mmol, 99% 

yield) as an oil. 1H NMR (CDCl3, 400 MHz): δ = 0.91-1.24 (5H, m, Cyc), 1.32-1.62 (6H, m, Cyc), 2.47 

(2H, d, J = 4.8 Hz, CH2N), 2.52-2.98 (8H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper), 3.31 (1H, dd, J = 8.3, 

8.6 Hz, CHa-5 Diox), 3.61 (2H, s, CH2Ph), 4.19 (1H, dd, J = 6.1, 8.23 Hz, CHb-5 Diox), 4.27-4.41 (1H, 

m, CH-4 Diox), 7.21-7.45 (10H, m, Ar, Ph). 

13C NMR (CDCl3, 100 MHz): δ = 25.8 (2CH2, Cyc), 25.9 (CH2, Cyc), 26.5 (CH2, Cyc), 26.7 (CH2, 

Cyc), 47.1 (CH, C-1 Cyc), 51.7 (2CH2, C-3,C-5 Piper), 52.5 (2CH2, C-2,C-6 Piper), 60.5 (CH2, CH2N), 
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62.1 (CH2, CH2Ph), 68.2 (CH2, C-5 Diox), 75.1 (CH, C-4 Diox), 112.7 (C, C-2 Diox), 125.9 (CH, C-4 

Ph), 126.6 (2CH, C-3, C-5 Ar), 127.2 (CH, C-4 Ar), 127.3 (2CH, C-2, C-5 Ar), 127.4 (C, C-1 Ar), 128.2 

(2CH, C-3, C-5 Ph), 129.4 (2CH, C-2, C-6 Ph), 142.3 (C, C-1 Ph). ESI-HRMS calcd for C27H37N2O2 

[M+H] + 421.2850, found 421.2853. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.19 g, 0.32 

mmol, yield 40%). 

mp: 225-226 °C; 1H NMR (DMSO, 200 MHz): δ = 0.79-1.32 (5H, m, Cyc), 1.45-1.77 (6H, m, Cyc), 

2.47-2.71 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.21(1H, dd, J= 7.3, 8.2 Hz, CHa-5 

diox), 3.95 (2H, s, CH2Ph), 4.20-4.41 (2H, m, CHb-5, CH-4 Diox), 7.20-7.48 (10H, m, Ar, Ph). 

ESI-HRMS calcd for C27H37N2O2 [M+H] + 421.2850, found 421.2853. Anal. Calcd. for C31H40N2O10: C, 

61.99; H, 6.71; N, 4.66; Found C, 61.86; H, 6.56; N, 4.47. 

 

4.1.9. Trans-4-benzyl-1-[(2-cyclohexyl-2-phenyl-1,3-dioxolan-4-yl)methyl]piperidine (trans-9a) 

The title compound was obtained from trans-4 and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 90/10) to give trans-9a (0.31 g, 0.74 mmol, 82% 

yield) as a yellow oil. 
1H NMR (CDCl3, 400 MHz): δ = 0.93-1.23 (5H, m, Cyc), 1.35-1.84 (11H, m, Cyc, CH2-3, CH-4, CH2-5 

Piper), 1.91-2.17 (2H, m, CHa-2, CHa-6 Piper), 2.43-2.72 (4H, m, CH2N, CH2Ph), 2.72-2.90 (1H, m, 

CHb-2/CHb-6 Piper), 2.97-3.15 (1H, m, CHb-2/CHb-6 Piper), 3.58 (1H, dd, J = 6.5, 7.3 Hz, CHa-5 

Diox), 3.83 (1H, dd, J = 7.0, 7.3 Hz, CHb-5 Diox), 4.02-4.21 (1H, m, CH-4 Diox), 7.12-7.46 (10H, m, 

Ar, Ph); 13C NMR (CDCl3, 100 MHz): δ = 25.8 (2CH2, Cyc) 25.9 (CH2, Cyc), 26.5 (CH2, Cyc), 26.7 

(CH2, Cyc), 31.4 (CH2, C-3/C-5 Piper), 32.0 (CH2, C-3/C-5 Piper), 37.3 (CH, C-4 Piper), 42.9 (CH2, 

CH2Ph), 46.5 (CH, C-1 Cyc), 53.4 (CH2, C-2/C-4 Piper), 54.0 (CH2, C-2/C-4 Piper), 60.3 (CH2, CH2N), 

68.1 (CH2, C-5 Diox), 73.9 (CH, C-4 Diox), 112.1 (C, C-2 Diox), 125.8 (CH, C-4 Ph), 126.2 (2CH, C-3, 

C-5 Ar), 127.5 (CH, C-4 Ar), 127.7 (2CH, C-2, C-5 Ar), 127.8 (C, C-1 Ar), 128.5 (2CH, C-3, C-5 Ph), 

129.6 (2CH, C-2, C-6 Ph), 141.4 (C, C-1 Ph). ESI-HRMS calcd for C28H38NO2 [M+H] + 420.2897, 

found 420.2895. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.10 g, 0.20 

mmol, yield 45%). 

mp: 198-200 °C; 1H NMR (DMSO, 200 MHz): δ = 0.73-1.26 (5H, m, Cyc), 1.35-1.82 (11H, m, Cyc, 

CH2-3, CH-4, CH2-5 Piper), 2.45-2.59 (2H, m, CH2Ph), 2.61-2.92 (2H, m, CH2N), 2.71-3.32 (4H, m, 
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CH2- 2/CH2-6 Piper), 3.62 (1H, dd, J = 6.1, 7.8 Hz, CHa-5 Diox), 3.76 (1H, dd, J = 7.3, 7.8 Hz, CHb-5 

Diox), 4.11-4.26 (1H, m, CH-4 Diox), 7.10-7.48 (10H, m, Ar, Ph). 

ESI-HRMS calcd for C28H38NO2 [M+H]+ 420.2897, found 420.2895. Anal. Calcd. for C30H39NO6: C, 

70.70; H, 7.71; N, 2.75; Found C, 70.65; H, 7.58; N, 2.59. 

 

4.1.10. Trans-1-benzyl-4-[(2-cyclohexyl-2-phenyl-1,3-dioxolan-4-yl)methyl]piperazine (trans-9b) 

The title compound was obtained from trans-4 and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 90/10) to give trans-9b (0.37 g, 0.88 mmol, 99% 

yield) as an oil. 
1H NMR (CDCl3, 400 MHz): δ = 0.91-1.27 (5H, m, Cyc), 1.49-1.79 (6H, m, Cyc), 2.62 (2H, br s, 

CH2N), 2.41-2.70 (8H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper), 3.59 (1H, dd, J = 6.4, 7.1 Hz, CHa-5 

Diox), 3.72-3.91 (3H, m, CHb-5 Diox, CH2Ph), 4.12-4.32 (1H, m, CH-4 Diox), 7.21-7.48 (10H, m, Ar, 

Ph); 13C NMR (CDCl3, 100 MHz): δ = 25.8 (2CH2, Cyc), 25.9 (CH2, Cyc), 26.5 (CH2, Cyc), 26.7 (CH2, 

Cyc), 46.2 (CH, C-1 Cyc), 51.1 (2CH2, C-3,C-5 Piper), 51.9 (2CH2, C-2,C-6 Piper), 60.2 (CH2, CH2N), 

61.6 (CH2, CH2Ph), 67.8 (CH2, C-5 Diox), 73.5 (CH, C-4 Diox), 113.2 (C, C-2 Diox), 125.9 (CH, C-4 

Ph), 126.1 (2CH, C-3, C-5 Ar), 127.4 (CH, C-4 Ar), 127.5 (2CH, C-2, C-5 Ar), 127.7 (C, C-1 Ar), 128.6 

(2CH, C-3, C-5 Ph), 129.4 (2CH, C-2, C-6 Ph), 142.4 (C, C-1 Ph). ESI-HRMS calcd for C27H37N2O2 

[M+H] + 421.2850, found 421.2851. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.16 g, 0.26 

mmol, yield 35%). 

mp: 230-232 °C; 1H NMR (DMSO, 200 MHz): δ = 0.83-1.22 (5H, m, Cyc), 1.49-1.76 (6H, m, Cyc), 

2.69-3.05 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.56 (1H, dd, J= 6.6, 8.1 Hz, CHa-5 

Diox), 3.73 (2H, dd, J = 6.6, 7.7 Hz, CHb-5 Diox), 3.91-4.22 (3H, m, CH2Ph, CH-4 Diox), 7.22-7.48 

(10H, m, Ar, Ph). 

ESI-HRMS calcd for C27H37N2O2 [M+H] + 421.2850, found 421.2851. Anal. Calcd. for C31H40N2O10: C, 

61.99; H, 6.71; N, 4.66; Found C, 61.92; H, 6.72; N, 4.73. 

 

4.1.11. 4-Benzyl-1-[(2,2-dicyclohexyl-1,3-dioxolan-4-yl)methyl]piperidine (10a) 

The title compound was obtained from 5 and 4-benzylpiperidine and was purified by using flash column 

chromatography (cyclohexane/ethyl acetate 90/10) to give 10a (0.37 g, 0.87 mmol, 71% yield) as a 

yellow oil. 
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1H NMR (CDCl3, 200 MHz): δ = 0.92-1.39 (10H, m, Cyc2), 1.51-1.86 (17H, m, Cyc2, CH2-3, CH-4, 

CH2-5 Piper), 2.31-2.49 (2H, m, CHa-2, CHa-6 Piper), 2.59 (2H, J= 6.1 Hz, CH2Ph), 2.63-2.83 (2H, m, 

CH2N), 2.99-3.12 (1H, m, CHb-2/CHb-6 Piper), 3.13-3.39 (1H, m, CHb-2/CHb-6 Piper), 3.43 (1H, dd, J 

= 7.6, 9.0 Hz, CHa-5 Diox), 4.17 (1H, dd, J = 6.3, 7.4 Hz, CHb-5 Diox), 4.38-4.56 (1H, m, CH-4 Diox), 

7.17 (2H, dd, J = 1.5, 7.4 Hz, CH-2, CH-6 Ph), 7.23 (1H, t, J = 7.1 Hz, CH-4 Ph), 7.32 (2H, dd, J = 7.1, 

7.4 Hz, CH-3, CH-5 Ph); 13C NMR (CDCl3, 100 MHz): δ = 26.0 (4CH2, Cyc2) 26.1 (2CH2, Cyc2) 26.8 

(2CH2, Cyc2), 26.9 (2CH2, Cyc2), 31.6 (CH2, C-3/C-5 Piper), 32.0 (CH2, C-3/C-5 Piper), 36.9 (CH, C-4 

Piper), 42.9 (CH2, CH2Ph), 44.2 (2CH, C-1 Cyc), 53.8 (CH2, C-2/C-4 Piper), 54.6 (CH2, C-2/C-4 Piper), 

60.7 (CH2, CH2N), 70.6 (CH2, C-5 Diox), 75.9 (CH, C-4 Diox), 116.9 (C, C-2 Diox), 125.8 (CH, C-4 

Ph), 128.2 (2CH, C-3, C-5 Ph), 128.9 (2CH, C-2, C-6 Ph), 140.6 (C, C-1 Ph). ESI-HRMS calcd for 

C28H44NO2 [M+H] + 426.3367, found 426.3368. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.06 g, 0.12 

mmol, yield 40%). 

mp: 210-212 °C; 1H NMR (DMSO, 200 MHz): δ = 0.88-1.23 (10H, m, Cyc2), 1.43-1.81 (17H, m, Cyc2, 

CH2-3, CH-4, CH2-5 Piper), 2.41-2.52 (2H, m, CH2Ar), 2.52-2.73 (2H, m, CH2N), 2.71-3.32 (4H, m, 

CH2- 2/CH2-6 Piper), 3.40 (1H, dd, J = 7.4, 8.1 Hz, CHa-5 Diox), 4.11 (1H, dd, J = 7.1, 7.4 Hz, CHb-5 

Diox), 4.20-4.49 (1H, m, CH-4 Diox), 7.11-7.39 (5H, m, Ar). 

ESI-HRMS calcd for C28H44NO2 [M+H]+ 426.3367, found 426.3368. Anal. Calcd. for C30H45NO6: C, 

69.87; H, 8.80; N, 2.72; Found C, 69.91; H, 8.93; N, 2.82. 

 

4.1.12. 1-Benzyl-4-[(2,2-dicyclohexyl-1,3-dioxolan-4-yl)methyl]piperazine (10b) 

The title compound was obtained from 5 and 1-benzylpiperazine and was purified by using flash column 

chromatography (cyclohexane/ethyl acetate 90/10) to give 10b (0.47 g, 1,10 mmol, 90% yield) as a 

yellow oil. 
1H NMR (CDCl3, 200 MHz): δ = 0.91-1.44 (10H, m, Cyc2), 1.50-1.81 (12H, m, Cyc2), 2.49-2.72 (10H, 

m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.43 (1H, dd, J = 7.5, 9.0 Hz, CHa-5 Diox), 3.60 (2H, s, 

CH2Ar), 4.12 (1H, dd, J = 6.0, 7.5 Hz, CHb-5 Diox), 4.22-4.41 (1H, m, CH-4 Diox), 7.17-7.41 (5H, m, 

CH-2, CH-3, CH-4, CH-5, CH-6 Ph); 13C NMR (CDCl3, 100 MHz): δ = 26.1 (4CH2, Cyc2), 26.3 (2CH2, 

Cyc2), 26.8 (2CH2, Cyc2), 26.9 (2CH2, Cyc2), 43.0 (CH, C-1 Cyc), 44.0 (CH, C-1 Cyc’), 52.2 (2CH2, C-

3,C-5 Piper), 53.1 (2CH2, C-2,C-6 Piper), 60.5 (CH2, CH2N), 62.5 (CH2, CH2Ph), 70.7 (CH2, C-5 Diox), 

75.6 (CH, C-4 Diox), 116.1 (C, C-2 Diox), 127.1(CH, C-4 Ph), 128.0 (2CH, C-3, C-5 Ph), 129.1 (2CH, 

C-2, C-6 Ph), 136.4 (C, C-1 Ph). ESI-HRMS calcd for C27H43N2O2 [M+H]+ 427.3319, found 427.3322. 
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The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.28 g, 0.47 

mmol, yield 50%). 

mp: 226-228 °C; 1H NMR (DMSO, 200 MHz): δ = 0.89-1.27 (10H, m, Cyc2), 1.45-1.78 (12H, m, Cyc2), 

2.67-3.04 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.33-3.40 (1H, m, CHa-5 Diox), 3.80-

3.93 (2H, m, CH2Ar), 4.01-4.12 (1H, m, CHb-5 Diox), 4.18-4.37 (1H, m, CH-4 Diox), 7.26-7.44 (5H, 

m, Ar). 

ESI-HRMS calcd for C27H43N2O2 [M+H] + 427.3319, found 427.3322. Anal. Calcd. for C31H46N2O10: C, 

61.37; H, 7.64; N, 4.62; Found C, 61.45; H, 7.71; N, 4.44. 

 

4.1.13. 4-Benzyl-1-[(2,2-diphenyl-1,3-oxathiolan-5-yl)methyl]piperidine (11a) 

The title compound was obtained from 6 [43] and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 90/10) to give 11a (0.12 g, 0.28 mmol, 82% yield) 

as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.31-1.53 (5H, m, CH2-3, CH-4, CH2-5 Piper), 1.91-2.27 (2H, m, 

CHa-2, CHa-6 Piper), 2.54 (2H, d, J = 6.5 Hz, CH2Ph), 2.62-3.22 (6H, m, CH2N, CHb-2, CHb-6 Piper, 

CH2-4 Oxath), 4.22-4.44 (1H, m, CH-5 Oxath), 7.04-7.42 (13H, m, Ar2, Ph), 7.62 (2H, d, J = 7.1 Hz, 

Ar2); 
13C NMR (CDCl3, 100 MHz): δ = 32.1 (CH2, C-3/C-5 Piper), 32.2 (CH2, C-3/C-5 Piper), 34.7 

(CH2, C-4 Oxath), 37.5 (CH, C-4 Piper), 43.1 (CH2, CH2Ph), 54.1 (CH2, C-2/C-4 Piper), 55.0 (CH2, C-

2/C-4 Piper), 62.4 (CH2, CH2N), 70.3 (CH, C-5 Oxath), 89.3 (C, C-2 Oxath), 125.7 (CH, C-4 Ph), 127.0 

(4CH, C-2, C-6 Ar2), 127.6 (2CH, C-4 Ar2), 128.1 (2CH, C-3, C-5 Ph), 128.3 (4CH, C-3, C-5 Ar2), 

129.1 (2CH, C-2, C-6 Ph), 140.5 (C, C-1 Ph), 143.4 (2C, C-1 Ar2). ESI-HRMS calcd for C28H32NOS 

[M+H] + 430.2199, found 430.2201. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.04 g, 0.08 

mmol, yield 48%). 

mp: 182-184 °C; 1H NMR (DMSO, 200 MHz): δ = 1.31-1.97 (5H, m, CH2-3, CH-4, CH2-5 Piper), 2.39-

2.64 (2H, m, CH2Ph), 2.67-2.99 (2H, m, CHa-2, CHa-6 Piper), 3.02-3.19 (2H, m, CH2-4 Oxath), 3.32-

3.64 (4H, m, CHb-2, CHb-6 Piper, CH2N),4.31-4.50 (1H, m, CH-5 Oxath), 7.10-7.43 (13H, m, Ar2, Ph), 

7.60 (2H, d, J = 7.0 Hz , Ar2). 

ESI-HRMS calcd for C28H32NOS [M+H]+ 430.2199, found 430.2201. Anal. Calcd. for C30H33NO5S: C, 

69.34; H, 6.40; N, 2.70; Found C, 69.51; H, 6.61; N, 2.83. 
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4.1.14. 1-Benzyl-4-[(2,2-diphenyl-1,3-oxathiolan-5-yl)methyl]piperazine (11b) 

The title compound was obtained from 6 [43] and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 65/35) to give 11b (0.22 g, 0.51 mmol, 88% yield) 

as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 2.48-2.89 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2-4 Oxath), 

3.12-3.28 (2H, m, CH2N), 3.54 (2H, s, CH2Ph), 4.20-4.45 (1H, m, CH-5 Oxath), 7.16-7.44 (13H, m, Ar2, 

Ph), 7.63 (2H, d, J = 7.1 Hz, Ar2); 
13C NMR (CDCl3, 100 MHz): δ = 34.8 (CH2, C-4 Oxath), 52.1 

(2CH2, C-3,C-5 Piper), 52.9 (2CH2, C-2,C-6 Piper), 60.6 (CH2, CH2N), 62.6 (CH2, CH2Ph), 70.5 (CH, 

C-5 Oxath), 89.8 (C, C-2 Oxath), 126.2 (CH, C-4 Ph), 127.1 (4CH, C-2, C-6 Ar2), 127.5 (2CH, C-4 

Ar2), 128.0 (2CH, C-3, C-5 Ph), 128.3 (4CH, C-3, C-5 Ar2), 129.0 (2CH, C-2, C-6 Ph), 139.8 (C, C-1 

Ph), 143.2 (2C, C-1 Ar2). ESI-HRMS calcd for C27H31N2OS [M+H]+ 431.2152, found 431.2154. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.10 g, 0.16 

mmol, yield 50%). 

mp: 210-212 °C; 1H NMR (DMSO, 200 MHz): δ = 2.71-3.12 (11H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper, CH2-4 Oxath, CHaN), 3.28 (1H, dd, J = 2.2, 4.5 Hz, CHbN), 4.03 (2H, s, CH2Ph), 4.17-4.34 (1H, 

m, CH-5 Oxath), 7.16-7.44 (13H, m, Ar2, Ph), 7.59 (2H, d, J = 7.0 Hz, Ar2).  

ESI-HRMS calcd for C27H31N2OS [M+H]+ 431.2152, found 431.2154. Anal. Calcd. for C31H34N2O9S: 

C, 60.97; H, 5.61; N, 4.59; Found C, 61.12; H, 5.76; N, 4.31. 

 

4.1.15. 4-Benzyl-1-[(2,2-diphenyl-1,3-dithiolan-4-yl)methyl]piperidine (12a) 

The title compound was obtained from 7 [43] and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 98/2) to give 12a (0.24 g, 0.55 mmol, 68% yield) as 

a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.30-1.54 (5H, m, CH2-3, CH-4, CH2-5 Piper), 1.91-2.21 (2H, m, 

CHa-2, CHa-6 Piper), 2.53 (2H, d, J = 6.1 Hz, CH2Ph), 2.70-3.12 (4H, m, CH2-5 Dithio, CHb-2, CHb-6 

Piper), 3.16-3.40 (2H, m, CH2N), 3.99-4.17 (1H, m, CH-4 Dithio), 7.04-7.42 (11H, m, Ar2, Ph), 7.58 

(2H, d, J = 7.1 Hz, Ar2), 7.62 (2H, d, J = 7.1 Hz, Ar2); 
13C NMR (CDCl3, 100 MHz): δ = 31.9 (CH2, C-

3/C-5 Piper), 32.0 (CH2, C-3/C-5 Piper), 37.7 (CH, C-4 Piper), 44.6 (CH2, C-5 Dithio), 43.0 (CH2, 

CH2Ph), 54.0 (CH2, C-2/C-4 Piper), 54.8 (CH2, C-2/C-4 Piper), 56.5 (CH, C-4 Dithio), 62.6 (CH2, 

CH2N), 68.5 (C, C-2 Dithio), 125.7 (CH, C-4 Ph), 127.2 (4CH, C-2, C-6 Ar2), 127.9 (2CH, C-4 Ar2), 

128.2 (2CH, C-3, C-5 Ph), 128.4 (4CH, C-3, C-5 Ar2), 129.2 (2CH, C-2, C-6 Ph), 140.6 (C, C-1 Ph), 

143.8 (2C, C-1 Ar2). ESI-HRMS calcd for C28H32NS2 [M+H] + 446.1971, found 446.1972. 
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The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.12 g, 0.22 

mmol, yield 40%). 

mp: 164-166 °C; 1H NMR (DMSO, 200 MHz): δ = 1.26-1.41 (2H, m, CHa-3, CHa-5 Piper), 1.52-1.76 

(3H, m, CHb-3, CH-4, CHb-5 Piper), 2.39-2.64 (2H, m, CH2Ph), 2.81-4.04 (1H, m, CHa-2/CHa-6 

Piper), 3.32-3.64 (7H, m, CHa-2/CHa-6 Piper, CHb-2, CHb-6 Piper, CH2N, CH-5 Dithio), 4.27-4.50 

(1H, m, CH-3 Oxath), .704-7.38 (11H, m, Ar2, Ph), 7.52 (2H, d, J = 7.0 Hz, Ar2), 7.63 (2H, d, J = 7.0 

Hz, Ar2).  

ESI-HRMS calcd for C28H32NS2 [M+H]+ 446.1971, found 446.1972. Anal. Calcd. for C30H33NO4S2: C, 

67.26; H, 6.21; N, 2.61; Found C, 67.33; H, 6.28; N, 2.52. 

 

4.1.16. 1-Benzyl-4-[(2,2-diphenyl-1,3-dithiolan-4-yl)methyl]piperazine (12b) 

The title compound was obtained from 7 [43] and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 98/2) to give 12b (0.16 g, 0.36 mmol, 42% yield) as 

a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 2.34-2.84 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2-5 

Dithio), 3.12-3.34 (2H, m, CH2N), 3.55 (2H, s, CH2Ph), 3.91-4.17 (1H, m, CH-4 Dithio), 7.13-7.41 

(11H, m, Ar2, Ph), 7.56 (2H, d, J = 7.2 Hz, Ar2) 7.66 (2H, d, J = 7.2 Hz, Ar2); 
13C NMR (CDCl3, 100 

MHz): δ = 44.5 (CH2, C-5 Dithio), 52.1 (2CH2, C-3, C-5 Piper), 53.0 (2CH2, C-2,C-6 Piper), 56.7 (CH, 

C-4 Dithio), 61.3 (CH2, CH2N), 62.7 (CH2, CH2Ph), 68.6 (C, C-2 Dithio), 125.5 (CH, C-4 Ph), 127.3 

(4CH, C-2, C-6 Ar2), 127.8 (2CH, C-4 Ar2), 128.1 (2CH, C-3, C-5 Ph), 128.5 (4CH, C-3, C-5 Ar2), 

129.3 (2CH, C-2, C-6 Ph), 140.7 (C, C-1 Ph), 143.6 (2C, C-1 Ar2). ESI-HRMS calcd for C27H31N2S2 

[M+H] + 447.1923, found 447.1925. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.1 g, 0.16 

mmol, yield 50%). 

mp: 211-213 °C; 1H NMR (DMSO, 200 MHz): δ = 2.59-3.12 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper, CH2-5 Dithio), 3.11-3.35 (2H, m, CH2N), 3.96-4.27 (3H, m, CH2Ph, CH-4 Dithio), 7.16-7.52 

(13H, m, Ar2, Ph), 7.63 (2H, d, J = 7.1 Hz, Ar2).  

ESI-HRMS calcd for C27H31N2S2 [M+H] + 447.1923, found 447.1925. Anal. Calcd. for C31H34N2O8S2: 

C, 59.41; H, 5.47; N, 4.47; Found C, 59.77; H, 5.69; N, 4.45. 

 

4.1.17. 4-Benzyl-1-[(5,5-diphenyltetrahydrofuran-2-yl)methyl]piperidine (14a) 
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The title compound was obtained from 13 [44] and 4-benzylpiperidine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 70/30) to give 14a (0.21 g, 0.52 mmol, 90% yield) 

as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.30-1.54 (5H, m, CH2-3, CH-4, CH2-5 Piper), 1.73-1.89 (1H, m, 

CHa-3 Fur), 1.99-2.24 (3H, m, CHb-3 Fur, CHa-2, CHa-6 Piper), 2.53 (2H, d, J = 6.1 Hz, CH2Ph), 2.61-

3.19 (3H, m, CHa-4 Fur, CHb-2, CHb-6 Piper), 3.21-3.42 (3H, m, CHa-4 Fur, CH2N), 4.31-4.49 (1H, m, 

CH-2 Fur), 7.09-7.49 (15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 25.6 (CH2, C-3 Fur), 31.3 

(CH2, C-3/C-5 Piper), 32.1 (CH2, C-3/C-5 Piper), 36.8 (CH, C-4 Piper), 38.8 (CH2, C-4 Fur), 42.8 (CH2, 

CH2Ph), 53.7 (CH2, C-2/C-4 Piper), 54.8 (CH2, C-2/C-4 Piper), 60.6 (CH2, CH2N), 67.6 (CH, C-2 Fur), 

88.2 (C, C-5 Fur), 125.7 (CH, C-4 Ph), 125.9 (4CH, C-2, C-6 Ar2), 126.85(2CH, C-4 Ar2), 128.2 (2CH, 

C-3, C-5 Ph), 128.4 (4CH, C-3, C-5 Ar2), 128.8 (2CH, C-2, C-6 Ph), 140.7 (C, C-1 Ph), 146.6 (2C, C-1 

Ar2). ESI-HRMS calcd for C29H34NO [M+H]+ 412.2635, found 412.2636. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.04 g, 0.08 

mmol, yield 42%). 

mp: 206-208 °C; 1H NMR (DMSO, 200 MHz): δ = 1H NMR (DMSO, 200 MHz): δ = 1.28-1.81 (5H, m, 

CH2-3, CH-4, CH2-5 Piper), 1.92-2.05 (1H, m, CHa-3 Fur), 2.62 (2H, d, J = 6.2 Hz, CH2Ph), 2.63-2.75 

(1H, m, CHb-3 Fur), 2.78-3.21 (4H, m, CH2-2, CH2-6 Piper), 3.38-4.02 (4H, m, CH2N, CH2-4 Fur), 

4.32-4.47 (1H, m, CH-2 Fur), 7.09-7.49 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C29H34NO [M+H]+ 412.2635, found 412.2636. Anal. Calcd. for C31H35NO5: C, 

74.23; H, 7.03; N, 2.79; Found C, 74.41; H, 7.33, N, 2.89. 

 

4.1.18. 1-Benzyl-4-[(5,5-diphenyltetrahydrofuran-2-yl)methyl]piperazine (14b) 

The title compound was obtained from 13 [44] and 1-benzylpiperazine and was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 70/30) to give 14b (0.03 g, 0. 07 mmol, 20% yield) 

as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.01-1.22 (1H, m, CHa-3 Fur), 1.28-1.41 (1H, m, CHb-3 Fur), 1.61-

1.83 (1H, m, CHa-4 Fur), 1.96-2.13 (1H, m, CHb-4 Fur), 2.41-2.87 (10H, m, CH2N, CH2-2, CH2-3, 

CH2-5, CH2-6 Piper), 3.51 (2H, s, CH2Ph), 4.33-4.49 (1H, m, CH-2 Fur), 7.09-7.49 (15H, m, Ar2, Ph); 
13C NMR (CDCl3, 100 MHz): δ = 25.6 (CH2, C-3 Fur), 38.8 (CH2, C-4 Fur), 52.1 (2CH2, C-3,C-5 

Piper), 53.0 (2CH2, C-2,C-6 Piper), 60.5 (CH2, CH2N), 62.1 (CH2, CH2Ph), 65.2 (CH, C-2 Fur), 88.5 (C, 

C-5 Fur), 125.8 (CH, C-4 Ph), 125.8 (4CH, C-2, C-6 Ar2), 127.0 (2CH, C-4 Ar2), 128.1 (2CH, C-3, C-5 
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Ph), 128.5 (4CH, C-3, C-5 Ar2), 128.9 (2CH, C-2, C-6 Ph), 140.6 (C, C-1 Ph), 145.1 (2C, C-1 Ar2). ESI-

HRMS calcd for C28H33N2O [M+H]+ 413.2587, found 413.2586. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.03 g, 0.05 

mmol, yield 51%). 

mp: 222-224 °C; 1H NMR (DMSO, 200 MHz): δ = 1.49-1.71 (1H, m, CHa-3 Fur), 1.83-2.01 (1H, m, 

CHb-3 Fur), 2.32-2.51 (1H, m, CHa-4 Fur), 2.55-2.71 (1H, m, CHb-4 Fur), 2.74-3.31 (10H, m, CH2-2, 

CH2-3, CH2-5, CH2-6 Piper, CH2N), 3.82 (2H, s, CH2Ph), 4.38-4.45 (1H, m, CH-2 Fur), 7.03-7.58 (15H, 

m, Ar2, Ph). 

ESI-HRMS calcd for C28H33N2O [M+H]+ 413.2587, found 413.2586. Anal. Calcd. for C32H36N2O9: C, 

64.85; H, 6.12; N, 4.73; Found C, 64.98; H, 6.35; N, 4.64. 

 

4.1.19. 5-[(4-benzylpiperidin-1-yl)methyl]-2,2-diphenylcyclopenta-1-one (16a) 

4-Benzylpiperidin-1-ium chloride (1.85 g, 8.75 mmol) and aqueous paraformaldehyde (0.08 g, 2.7 mol) 

were added to a solution of 15 [44] (0.51 g, 2.16 mmol) in 5 mL of anhydrous ethanol. The reaction 

mixture was refluxed for 1 h and then an additional amount of paraformaldehyde (0.06g, 2.0 mol) was 

added. The mixture was refluxed for further 12 h. After cooling to room temperature, the solvent was 

removed under reduced pressure. The crude, dissolved in CH2Cl2, was washed with a solution of 5% 

NaOH and brine and dried over anhydrous Na2SO4. The crude extract was purified by using flash 

column chromatography on silica gel (cyclohexane/ethyl acetate 70/30) to give the title compound (0.64 

g, 1.51 mmol, 70% yield) as an oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.21-1.49 (2H, m, CHa-3, CHa-5 Piper), 1.52-2.05 (5H, m, CH-4, 

CHb-3, CHb-5 Piper, CH2-4 Cyclopent), 2.15-2.41 (4H, m, CHa-2, CHa-6 Piper, CH2-3 Cyclopent), 

2.51-2.99 (7H, m, CHb-2, CHb-6 Piper, CH2N, CH2Ph, CH-5 Cyclopent), 7.04-7.44 (15H, m, Ar2, 

Ph);13C NMR (CDCl3, 100 MHz): δ = 19.2 (CH2, C-4 Cyclopent), 31.9 (CH2, C-3/C-5 Piper), 32.2 

(CH2, C-3/C-5 Piper), 37.7 (CH, C-4 Piper), 39.5 (CH, C-5 Cyclopent), 40.1 (CH2, C-3 Cyclopent.) 42.6 

(CH2, CH2Ph), 53.7 (CH2, C-2/C-4 Piper), 55.1 (CH2, C-2/C-4 Piper), 61.3 (CH2, CH2N), 62.9 (C, C-2 

Cyclopent), 125.5 (CH, C-4 Ph), 126.8 (2CH, C-4 Ar2), 128.0 (4CH, C-3, C-5 Ar2), 128.2 (2CH, C-3, C-

5 Ph), 128.5 (4CH, C-2, C-6 Ar2), 129.1 (2CH, C-2, C-6 Ph), 140.6 (C, C-1 Ph) 142.3 (2C, C-1 Ar2), 

214.2 (C, C-1 Cyclopent). ESI-HRMS calcd for C30H34NO [M+H]+ 424.2635, found 424.2637. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.08 g, 0.15 

mmol, yield 85%). 
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mp: 163-165 °C; 1H NMR (DMSO, 200 MHz): δ = 1.28-1.81 (6H, m, CH2-3, CH-4, CH2-5 Piper, CHa-

4 Cyclopent), 2.12-2.37 (1H, m, CHb-4 Cyclopent), 2.61 (2H, d, J = 6.1 Hz, CH2Ph), 2.65-3.39 (9H, m, 

CH2-2, CH2-6 Piper, CH2N, CH2-3, CH-5 Cyclopent), 7.08-7.41 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C30H34NO [M+H]+ 424.2635, found 424.2637. Anal. Calcd. for C32H35NO5: C, 

74.83; H, 6.87; N, 2.73; Found C, 74.94; H, 7.03; N, 2.72. 

 

4.1.20. 5-[(4-benzylpiperazin-1-yl)methyl]-2,2-diphenylcyclopenta-1-one (16b) 

The title compound was obtained from 15 [44] and 4-benzylpiperazinium chloride (1.85 g, 8.75 mmol) 

by following the same procedure described for 16a. The crude extract was purified by using flash 

column chromatography on silica gel (cyclohexane/ethyl acetate 70/30) to give 16b (0.59 g, 1.39 mmol, 

66% yield) as a yellow oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.75-1.91 (1H, m, CHa-4 Cyclopent), 2.21-2.35 (1H, m, CHb-4 

Cyclopent), 2.42-2.91 (13H, m, CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2-3, CH-5 Cyclopent), 

3.53 (2H, s, CH2Ph), 7.05-7.40 (15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 19.9 (CH2, C-4 

Cyclopent), 39.7 (CH, C-5 Cyclopent), 40.3 (CH2, C-3 Cyclopent), 52.2 (2CH2, C-3,C-5 Piper), 53.2 

(2CH2, C-2,C-6 Piper), 60.5 (CH2, CH2N), 61.9 (CH2, CH2N), 62.9 (C, C-2 Cyclopent), 125.8 (CH, C-4 

Ph), 126.8 (2CH, C-4 Ar2), 128.1 (4CH, C-3, C-5 Ar2), 128.2 (2CH, C-3, C-5 Ph), 128.6 (4CH, C-2, C-6 

Ar2), 129.1 (2CH, C-2, C-6 Ph), 140.7 (C, C-1 Ph), 142.4 (2C, C-1 Ar2), 216.1 (C, C-1 Cyclopent). ESI-

HRMS calcd for C29H33N2O [M+H]+ 425.2587, found 425.2589. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.13 g, 0.22 

mmol, yield 74%). 

mp: 220-222 °C; 1H NMR (DMSO, 200 MHz): δ = 1.53-1.72 (1H, m, CHa-4 Cyclopent), 2.12-2.39 (1H, 

m, CHb-4 Cyclopent), 2.54-3.11 (13H, m, CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2-3, CH-5 

Cyclopent), 3.52 (2H, s, CH2Ph), 7.05-7.40 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C29H33N2O [M+H]+ 425.2587, found 425.2589. Anal. Calcd. for C33H36N2O9: C, 

65.55; H, 6.00; N, 4.63; Found C, 65.87; H, 6.31; N, 4.71. 

 

4.1.21. 5-[(4-Benzylpiperidin-1-yl)methyl]-2,2-diphenylcyclopenta-1-ol (17a) 

The title compound was obtained as diastereomeric mixture from 16a (1.18 mmol) using an excess of 

NaBH4 (1.8 mmol) at 0 °C in ethanol. The resulting mixture was stirred for 30 minutes at room 

temperature, then concentrated under reduced pressure. The residue was partitioned between CH2Cl2 

and water. The organic layer was separated and the aqueous one was extracted with CH2Cl2. The organic 
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layers were combined, washed with water, dried over anhydrous Na2SO4, filtered, and concentrated 

under vacuum. The cis/trans diastereomeric mixture was separated by using flash column 

chromatography (cyclohexane/ethyl acetate 90/10). 

Cis-17a (0.04 g, 0.10 mmol, 9 % yield) as a colorless oil. 

1H NMR (CDCl3, 400 MHz): δ = 1.20-1.97 (11H, m, CH2-3 Cyclopent, CHa-2, CHa-6 Piper, CH2-3, 

CH-4, CH2-5 Piper, CH2-4 Cyclopent), 2.15-2.31 (3H, m, OH, CHb-2, CHb-6 Piper), 2.37-2.72 (2H, m, 

CH2Ph), 2.74-2.89 (2H, m, CH2N), 3.12-3.24 (1H, m, CH-5 Cyclopent), 4.99 (1H, d, J = 5.9 Hz, CH-1 

Cyclopent), 7.01-7.46 (15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 20.0 (CH2, C-4 Cyclopent), 

31.8 (CH2, C-3/C-5 Piper), 32.4 (CH2, C-3/C-5 Piper), 37.6 (CH, C-4 Piper), 29.8 (CH2, C-2 

Cyclopent), 35.1 (CH, C-3 Cyclopent), 42.6 (CH2, CH2Ph), 53.7 (CH2, C-2/C-4 Piper), 55.1 (CH2, C-

2/C-4 Piper), 59.0 (C, C-1 Cyclopent), 61.6 (CH2, CH2N), 63.5 (C, C-2 Cyclopent), 125.5 (CH, C-4 Ph), 

126.9 (2CH, C-4 Ar2), 128.2 (4CH, C-3, C-5 Ar2), 128.4 (2CH, C-3, C-5 Ph), 128.6 (4CH, C-2, C-6 

Ar2), 129.2 (2CH, C-2, C-6 Ph), 140.4 (C, C-1 Ph) 142.6 (2C, C-1 Ar2). ESI-HRMS calcd for C30H36NO 

[M+H] + 426.2791, found 426.2793. 

 

The free amine was then converted into the corresponding hydrogen oxalate  from diethyl ether (0.02 g, 

0.04 mmol, yield 65%). 

mp: 187-189 °C; 1H NMR (DMSO, 200 MHz): δ = 1.31-2.01 (7H, m, CH2-3 Cyclopent, CH2-3, CH-4, 

CH2-5 Piper), 2.11-2.44 (2H, m, CH2-4 Cyclopent, CHa-2/CHa-6 Piper), 2.41-2.58 (3H, m, CHa-2/CHa-

6 Piper CH2Ph), 2.63-2.92 (3H, m, CHa-2/CHa-6, CHb-2, CHb-6 Piper), 3.10-3.45 (3H, m, CH2N, CH-

5 Cyclopent), 4.31 (1H, m, OH), 4.90 (1H, d, J = 3.3 Hz, CH-1 Cyclopent), 7.03-7.48 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C30H36NO [M+H]+ 426.2791, found 426.2793. Anal. Calcd. for C32H37NO5: C, 

74.54; H, 7.23; N, 2.72; Found C, 74.60; H, 7.31; N, 2.88. 

 

Trans-17a (0.22 g, 0.53 mmol, 45 % yield) as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.14-1.71 (7H, m, CH2-3 Cyclopent, CH2-3, CH-4, CH2-5 Piper), 

1.83-2.18 (5H, m, OH, CHa-2, CHa-6 Piper, CH2-4 Cyclopent), 2.40-2.88 (7H, m, CHb-2, CHb-6 Piper, 

CH2Ph, CH2N, CH-5 Cyclopent), 4.36 (1H, d, J = 9.3 Hz, CH-1 Cyclopent), 7.01-7.49 (15H, m, Ar2, 

Ph). 13C NMR (CDCl3, 100 MHz): δ = 20.1 (CH2, C-4 Cyclopent), 31.7 (CH2, C-3/C-5 Piper), 32.4 

(CH2, C-3/C-5 Piper), 37.7 (CH, C-4 Piper), 29.9 (CH2, C-2 Cyclopent), 35.2 (CH, C-3 Cyclopent), 42.6 

(CH2, CH2Ph), 53.8 (CH2, C-2/C-4 Piper), 55.2 (CH2, C-2/C-4 Piper), 59.1 (C, C-1 Cyclopent), 61.4 

(CH2, CH2N), 63.3 (C, C-2 Cyclopent), 125.4 (CH, C-4 Ph), 126.8 (2CH, C-4 Ar2), 128.1 (4CH, C-3, C-
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5 Ar2), 128.4 (2CH, C-3, C-5 Ph), 128.5 (4CH, C-2, C-6 Ar2), 129.1 (2CH, C-2, C-6 Ph), 140.3 (C, C-1 

Ph) 142.5 (2C, C-1 Ar2). ESI-HRMS calcd for C30H36NO [M+H]+ 426.2791, found 426.2792. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.13 g, 0.20 

mmol, yield 49%). 

mp: 219-221 °C; 1H NMR (DMSO, 200 MHz): δ = 1.24-2.01 (7H, m, CH2-3 Cyclopent, CH2-3, CH-4, 

CH2-5 Piper), 2.53-3.38 (11H, m, CH2-2, CH2-6 Piper, CH2Ph, CH2N, CH2-4, CH-5 Cyclopent), 4.23 

(1H, d, J = 9.3 Hz, CH-1 Cyclopent), 4.33 (1H, m, OH), 7.10-7.44 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C30H36NO [M+H]+ 426.2791, found 426.2792. Anal. Calcd. for C32H37NO5: C, 

74.54; H, 7.23; N, 2.72; Found C, 74.67; H, 7.44; N, 2.93. 

 

4.1.22. 5-[(4-Benzylpiperazin-1-yl)methyl]-2,2-diphenylcyclopenta-1-ol (17b) 

The title compound was obtained as diastereomeric mixture from 16b (12.3 mmol) by following the 

same procedure described for 17a.  

Cis-17b (0.16 g, 0.37 mmol, 3 % yield) as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.41-1.53 (1H, m, CHa-4 Cyclopent), 1.68-1.89 (1H, m, CHb-4 

Cyclopent), 2.23-2.88 (14H, m, OH,CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH2-3, CH-5 

Cyclopent), 3.51 (2H, s, CH2Ph), 4.99 (1H, d, J = 4.8 Hz, CH-1 Cyclopent), 7.01-7.47 (15H, m, Ar2, 

Ph); 13C NMR (CDCl3, 100 MHz): δ = 20.0 (CH2, C-4 Cyclopent), 29.7 (CH2, C-2 Cyclopent), 35.1 

(CH, C-3 Cyclopent), 52.2 (2CH2, C-3,C-5 Piper), 53.4 (2CH2, C-2,C-6 Piper), 59.1 (C, C-1 Cyclopent), 

60.3 (CH2, CH2N), 61.6 (CH2, CH2N), 63.5 (C, C-2 Cyclopent), 125.5 (CH, C-4 Ph), 126.9 (2CH, C-4 

Ar2), 128.2 (4CH, C-3, C-5 Ar2), 128.4 (2CH, C-3, C-5 Ph), 128.6 (4CH, C-2, C-6 Ar2), 129.2 (2CH, C-

2, C-6 Ph), 140.4 (C, C-1 Ph) 142.6 (2C, C-1 Ar2). ESI-HRMS calcd for C29H35N2O [M+H]+ 427.2744, 

found 427.2743. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.04 g, 0.06 

mmol, yield 62%). 

mp: 210-212 °C; 1H NMR (DMSO, 200 MHz): δ = 1.35-1.61 (1H, m, CHa-4 Cyclopent), 1.69-1.87 (1H, 

m, CHb-4 Cyclopent), 2.08-2.20 (1H, m, CHa-3, Cyclopent), 2.17-3.02 (12H, m, CH2N, CH2-2, CH2-3, 

CH2-5, CH2-6 Piper, CHb-3, CH-5 Cyclopent), 3.62 (2H, s, CH2Ph), 4.28 (1H, m, OH), 4.99 (1H, d, J = 

3.3 Hz, CH-1 Cyclopent), 7.01-7.47 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C29H35N2O [M+H]+ 427.2744, found 427.2743. Anal. Calcd. for C33H38N2O9: C, 

65.33; H, 6.31; N, 4.62; Found C, 65.56; H, 6.59; N, 4.65. 
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Trans-17b (0.31 g, 0.74 mmol, 6 % yield) as a colorless oil. 
1H NMR (CDCl3, 400 MHz): δ = 1.23-1.42 (2H, m, CH2-4 Cyclopent), 1.83-2.16 (3H, m, OH, CH2-3 

Cyclopent), 2.25-2.90 (11H, m, CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper, CH-5 Cyclopent), 3.54 (2H, 

s, CH2Ph), 4.38 (1H, d, J = 6.7 Hz, CH-1 Cyclopent), 7.05-7.51 (15H, m, Ar2, Ph). ). 13C NMR (CDCl3, 

100 MHz): δ = 20.2 (CH2, C-4 Cyclopent), 29.8 (CH2, C-2 Cyclopent), 35.1 (CH, C-3 Cyclopent), 42.6 

(CH2, CH2Ph), 52.1 (2CH2, C-3, C-5 Piper), 53.3 (2CH2, C-2, C-6 Piper), 59.1 (C, C-1 Cyclopent), 61.3 

(CH2, CH2N), 63.3 (C, C-2 Cyclopent), 125.4 (CH, C-4 Ph), 126.8 (2CH, C-4 Ar2), 128.1 (4CH, C-3, C-

5 Ar2), 128.4 (2CH, C-3, C-5 Ph), 128.5 (4CH, C-2, C-6 Ar2), 129.1 (2CH, C-2, C-6 Ph), 140.2 (C, C-1 

Ph) 142.6 (2C, C-1 Ar2). ESI-HRMS calcd for C29H35N2O [M+H]+ 427.2744, found 427.2745. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.07 g, 0.12 

mmol, yield 56%). 

mp: 224-226 °C; 1H NMR (DMSO, 200 MHz): δ = 1.37-1.54 (1H, m, CHa-4 Cyclopent), 1.78-2.05 (1H, 

m, CHb-4 Cyclopent), 2.05-2.22 (1H, m, CHa-3, Cyclopent), 2.41-3.12 (12H, m, CH2N, CH2-2, CH2-3, 

CH2-5, CH2-6 Piper, CHb-3, CH-5 Cyclopent), 3.66 (2H, s, CH2Ph), 4.11 (1H, m, OH), 4.22 (1H, d, J = 

9.2 Hz, CH-1 Cyclopent), 7.01-7.47 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C29H35N2O [M+H]+ 427.2744, found 427.2745. Anal. Calcd. for C33H38N2O9: C, 

65.33; H, 6.31; N, 4.62; Found C, 65.41; H, 6.42; N, 4.70. 

 

4.1.23. 1-[(Tert-butyldiphenylsilyl)oxy]-3-chloropropan-2-ol (18) 

Tert-butyldiphenylsilyl chloride (3.50 ml, 13.56 mmol) and imidazole (1.20 g, 17.18 mmol) were added 

to a solution of 3-chloropropane-1,2-diol (1.00 g, 9.04 mmol) in dry DMF (15 mL). The mixture was 

stirred at room temperature for 5 h. The reaction was quenched with saturated aqueous NH4Cl and 

extracted with EtOAc (3 ×30 mL). The combined organic layer was washed with 1.0 M aqueous HCl for 

three times and brine. The organic layer was dried over anhydrous MgSO4 and concentrated under 

reduced pressure. The residue was purified by flash column chromatography to give the corresponding 

silyl ether as a colorless oil (2.21 g, 6.33 mmol, 70% yield). 

1H-NMR (200MHz, CDCl3): δ 1.09 (9H, s, t-Bu), 2.54 (1H, d, J = 6.2; OH), 3.64 (1H, dd, J = 5.7, 11.0 

Hz, CHa-Cl), 3.71 (1H, dd, J = 5.3, 11.0 Hz, CHb-Cl), 3.74 (1H, dd, J= 5.4, 10.2 Hz, CHa-O), 3.81 (1H, 

dd, J = 4.6, 10.2 Hz, CHb-O), 3.92 (1H, m, CHOH), 7.32-7.51 (6H, m, CH-3, CH-4, CH-5 Si-Ar2), 

7.56-7.76 (4H, m, CH-2, CH-6 Si-Ar2). ESI-HRMS calcd for C19H26
35ClO2Si [M+H]+ 349.1386, found 

349.1388. Calcd for C19H26
37ClO2Si [M+H]+ 351.1356, found 351.1358. 
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4.1.24. (2-(Benzhydryloxy)-3-chloropropoxy)(tert-butyl)diphenylsilane (19) 

Bromodiphenylmethane (0.51 g, 2.05 mmol) was added to a solution of 18 (2.1 g, 6.2 mmol ) in toluene 

(10 mL). The mixture was stirred under reflux for 24 h. The solvent was evaporated under reduced 

pressure and the solid residue obtained was taken up with EtOAc (30 mL). The organic layer was 

washed with brine, dried over anhydrous MgSO4 and concentrated under reduced pressure. The residue 

was purified by flash column chromatography to give the title compound as a dark oil (0.65 g, 1.27 

mmol, 62% yield). 
1H-NMR (200MHz, CDCl3): δ 1.05 (9H, s, t-Bu), 3.69-3.85 (5H, m, Cl-CH2, CH2-O, CHOH), 5.58 (1H, 

s, CHAr2), 7.25-7.48 (16H, m, Ar2, CH-3, CH-4, CH-5 Si-Ar2), 7.61-7.69 (4H, m, CH-2, CH-6 Si-Ar2). 

ESI-HRMS calcd for C32H36ClO2Si [M+H]+ 515.2168, found 515.2169. 

 

4.1.25. [(2-Chloroethoxy)methylene]dibenzene (20) 

The title compound was obtained from bromodiphenylmethane (0.47 g, 1.92 mmol) and 2-chloroethanol 

(0.4 g, 5.0 mmol) as an oil (0.1 g, 0.5 mmol, 26% yield) by following the same procedure described for 

19. 
1H NMR (CDCl3, 200 MHz): δ = 3.74 (2H, t, J = 6.2 Hz, OCH2), 3.80 (2H, t, J=6.2 Hz, CH2Cl), 5.5 

(1H, s, CHAr2), 7.21-7.49 (10H, m, Ar2). ESI-HRMS calcd for C15H16
35ClO [M+H]+ 247.0885, found 

247.0883. ESI-HRMS calcd for C15H16
37ClO [M+H]+ 249.0855, found 249.0853. 

 

4.1.26. 1-{2-(Benzhydryloxy)-3-[(tert-butyldiphenylsilyl)oxy]propyl}-4-benzylpiperidine (21a) 

The title compound was obtained from 19 and 4-benzylpiperidine as a yellow oil (0.28 g, 0.43 mmol, 

74% yield) by following the general procedure described in the 4.1.4. section. 
1H NMR (CDCl3, 400 MHz): δ = 1.02-1.38 (14H, m, t-Bu, CH2-3, CH-4, CH2-5 Piper), 1.81-2.11 (2H, 

m, CHa-2, CHa-6 Piper), 2.56-2.94 (6H, m, CH2N, CH2Ph, CHa-2, CHb-6 Piper), 3.61-3.83 (3H, m, 

CH2-O, CHOH), 5.58 (1H, s, CHAr2), 7.23-7.72 (25H, m, Si-Ar2, Ar2, Ph). ESI-HRMS calcd for 

C44H52NO2Si [M+H]+ 654.3762, found 654.3764. 

 

4.1.27. 1-{2-(Benzhydryloxy)-3-[(tert-butyldiphenylsilyl)oxy]propyl}-4-benzylpiperazine (21b) 

The title compound was obtained from 19 and 1-benzylpiperazine as a colorless oil (0.32 g, 0.49 mmol, 

90% yield) by following the general procedure described in the 4.1.4. section. 
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1H NMR (CDCl3, 400 MHz): δ = 1.03 (9H, s, t-Bu), 2.39-2.79 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper, CH2N), 3.51 (2H, s, CH2Ph), 3.60-3.84 (3H, m, CH2-O, CHOH), 5.81 (1H, s, CHAr2), 7.21-7.74 

(25H, m, Si-Ar2, Ar2, Ph). ESI-HRMS calcd for C43H51N2O2Si [M+H]+ 655.3714, found 655.3716. 

 

4.1.28. 2-(Benzhydryloxy)-3-(4-benzylpiperidin-1-yl)propan-1-ol (22a) 

TBAF (0.46 ml, 0.49 mmol) was added to a solution of 21a (0.28 g, 0.43 mmol) in THF (10 mL). The 

mixture was stirred at room temperature for 24 h, diluted with water, and extracted with EtOAc. The 

combined organic layers were washed with brine and dried over MgSO4. Solvent was removed under 

vacuum. The residue was purified by flash column chromatography to give the title compound as a 

colorless oil (0.12 g, 0.29 mmol, 68% yield). 

1H NMR (CDCl3, 400 MHz): δ = 1.21-1.43 (5H, m, CH2-3, CH-4, CH2-5 Piper), 1.82-2.12 (2H, m, 

CHa-2, CHa-6 Piper), 2.19 (1H, br s, OH), 2.31-2.54 (2H, m, CH2Ph), 2.59-2.71 (2H, m, CH2N), 2.79-

2.91 (1H, m, CHa-2/CHa-6 Piper), 2.93-3.03 (1H, m, CHa-2/CHa-6 Piper), 3.58-3.86 (3H, m, CH2-OH, 

CHO), 5.52 (1H, s, CHAr2), 7.12-7.41 (15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 31.6 (CH2, 

C-3/C-5 Piper), 32.0 (CH2, C-3/C-5 Piper), 36.9 (CH, C-4 Piper), 42.9 (CH2, CH2Ph), 53.8 (CH2, C-2/C-

4 Piper), 54.6 (CH2, C-2/C-4 Piper), 62.0 (CH2, CH2N), 66.0 (CH2, CH2OH), 72.2 (CH, CHO), 82.0 

(CH, CHAr2), 125.8 (CH, C-4 Ph), 127.1 (4CH, C-2, C-6 Ar2), 127.6 (CH, C-4 Ar), 127.7 (CH, C-4 

Ar’), 128.2 (2CH, C-3, C-5 Ph), 128.4 (2CH, C-3, C-5 Ar), 128.5 (2CH, C-3, C-5 Ar’), 128.9 (2CH, C-

2, C-6 Ph), 140.6 (C, C-1 Ph), 142.1 (C, C-1 Ar), 142.2 (C, C-1 Ar’). ESI-HRMS calcd for C28H34NO2 

[M+H] + 416.2584, found 416.2586. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.08 g, 0.16 

mmol, yield 61%). 

mp: 174-176 °C; 1H NMR (DMSO, 200 MHz): δ = 1.07-1.71 (5H, m, CH2-3, CH-4, CH2-5 Piper), 2.41-

2.71 (4H, m, CH2Ph, CHa-2, CHa-6 Piper), 2.85-3.27 (4H, m, CH2N, CHa-2, CHa-6 Piper), 3.42-3.61 

(2H, m, CH2-O), 3.67-3.81 (1H, m, CHOH), 3.91 (1H, m, OH) 5.77 (1H, s, CHAr2), 7.11-7.78 (15H, m, 

Ar2, Ph). 

ESI-HRMS calcd for C28H34NO2 [M+H] + 416.2584, found 416.2586. Anal. Calcd. for C30H35NO6: C, 

71.27; H, 6.98; N, 2.77; Found C, 71.55; H, 7.13; N, 2.94. 

 

4.1.29. 2-(Benzhydryloxy)-3-(4-benzylpiperazin-1-yl)propan-1-ol (22b) 

The title compound was obtained from 21b (0.30 g, 0.46 mmol) as a colorless oil (0.12 g, 0.29 mmol, 

63% yield) by following the procedure described for 22a. 
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1H NMR (CDCl3, 400 MHz): δ = 2.21 (1H, br s, OH), 2.31-2.61 (8H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper), 2.63-2.71 (2H, m, CH2N), 3.49 (2H, s, CH2Ph), 3.53-3.61 (1H, m, CHO), 3.74-3.88 (2H, m, 

CH2OH), 5.57 (1H, s, CHAr2), 7.19-7.44 (15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 52.0 

(2CH2, C-3,C-5 Piper), 53.2 (2CH2, C-2,C-6 Piper), 61.5 (CH2, CH2N), 62.5 (CH2, CH2Ph), 66.0 (CH2, 

CH2OH), 72.2 (CH, CHO), 82.0 (CH, CHAr2), 125.6 (CH, C-4 Ph), 127.0 (4CH, C-2, C-6 Ar2), 127.5 

(CH, C-4 Ar), 127.8 (CH, C-4 Ar’), 128.3 (2CH, C-3, C-5 Ph), 128.5 (2CH, C-3, C-5 Ar), 128.6 (2CH, 

C-3, C-5 Ar’), 128.9 (2CH, C-2, C-6 Ph), 141.0 (C, C-1 Ph), 142.2 (C, C-1 Ar), 142.3 (C, C-1 Ar’). ESI-

HRMS calcd for C27H33N2O2 [M+H] + 417.2537, found 417.2536. 

 

The free amine was converted into the corresponding hydrogen oxalate  from diethyl ether (0.08 g, 0.14 

mmol, yield 54%). 

mp: 201-203 °C; 1H NMR (DMSO, 400 MHz): δ = 2.58-2.96 (10H, m, CH2-2, CH2-3, CH2-5, CH2-6 

Piper, CH2N), 3.44-3.73 (3H, m, CHOH, CH2O CH2Ar), 3.76 (2H, s, CH2Ph), 3.89 (1H, m, OH) 5.76 

(1H, s, CHAr2), 7.11-7.49 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C27H33N2O2 [M+H] + 417.2537, found 417.2536. Anal. Calcd. for C31H36N2O10: C, 

62.41; H, 6.08; N, 4.70; Found C, 62.52; H, 6.11; N, 4.68. 

 

4.1.30. 1-[2-(Benzhydryloxy)ethyl]-4-benzylpiperidine (23a) 

The title compound was obtained from 20 (0.64 g, 1.66 mmol) and 4-benzylpiperidine as a yellow oil 

(0.27 g, 0.70 mmol, 42% yield) by following the general procedure described in the 4.1.4. section. 
1H NMR (CDCl3, 400 MHz): δ = 1.32-1.51 (5H, m, CH2-3, CH-4, CH2-5 Piper), 1.87-2.09 (2H, m, 

CHa-2, CHa-6 Piper), 2.52 (2H, d, J = 6.5 Hz, CH2Ph), 2.72 (2H, t, J = 6.0 Hz, CH2N), 2.90-3.10 (2H, 

m, CHb-2, CHb-6 Piper), 3.62 (2H, t, J = 6.0 Hz, CH2O), 5.34 (1H, s, CHAr2), 7.04-7.42 (15H, m, Ar2, 

Ph); 13C NMR (CDCl3, 100 MHz): δ = 31.7 (CH2, C-3/C-5 Piper), 32.1 (CH2, C-3/C-5 Piper), 37.0 (CH, 

C-4 Piper), 42.8 (CH2, CH2Ph), 53.9 (CH2, C-2/C-4 Piper), 54.5 (CH2, C-2/C-4 Piper), 56.8 (CH2, 

CH2O), 62.0 (CH2, CH2N), 85.5 (CH, CHAr2), 125.7 (CH, C-4 Ph), 126.8 (4CH, C-2, C-6 Ar2), 127.5 

(2CH, C-4 Ar2), 128.2 (2CH, C-3, C-5 Ph), 128.4 (4CH, C-3, C-5 Ar2), 128.9 (2CH, C-2, C-6 Ph), 140.6 

(C, C-1 Ph), 142.0 (2C, C-1 Ar2). ESI-HRMS calcd for C27H32NO [M+H]+ 386.2478, found 386.2476. 

 

The free amine was converted into the corresponding hydrogen oxalate from diethyl ether (0.07 g, 0.15 

mmol, yield 33%). 

mp: 165-167 °C; 1H NMR (DMSO, 200 MHz): δ = 1.27-1.58 (2H, m, CHa-3, CHa-5 Piper), 1.59-1.87 

(3H, m, CHb-3, CH-4, CHb-5 Piper), 2.39-2.64 (2H, m, CH2Ph), 2.67-2.99 (2H, m, CHa-2, CHa-6 
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Piper), 3.20 (2H, t, J= 5.2 Hz, CH2N), 3.31-3.43 (2H, m, CHb-2, CHb-6 Piper), 3.66 (2H, t, J= 5.2 Hz, 

CH2O), 5.52 (1H, s, CHAr2), 7.12-7.50 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C27H32NO [M+H]+ 386.2478, found 386.2476. Anal. Calcd. for C29H33NO5: C, 

73.24; H, 6.99; N, 2.95; Found C, 73.56; H, 7.10; N, 3.12. 

 

4.1.31. 1-[2-(Benzhydryloxy)ethyl]-4-benzylpiperazine (23b) 

The title compound was obtained from 20 (0.38 g, 1.54 mmol) and 1-benzylpiperazine as a colorless oil 

(0.15 g, 0.40 mmol, 26% yield) by following the general procedure described in the 4.1.4. section. 
1H NMR (CDCl3, 400 MHz): δ = 2.40-2.64 (8H, m, CH2-2, CH2-3, CH2-5, CH2-6 Piper), 2.69 (2H, t, J = 

6.6 Hz, CH2N), 3.49 (2H, s, CH2Ph), 3.60 (2H, t, J = 6.6 Hz, CH2-O), 5.38 (1H, s, CHAr2), 7.12-7.44 

(15H, m, Ar2, Ph); 13C NMR (CDCl3, 100 MHz): δ = 51.7 (2CH2, C-3,C-5 Piper), 52.8 (2CH2, C-2,C-6 

Piper), 55.8 (CH2, CH2O), 61.9 (CH2, CH2N), 62.8 (CH2, CH2Ph), 82.4 (CH, CHAr2), 125.6 (CH, C-4 

Ph), 126.6 (4CH, C-2, C-6 Ar2), 127.3 (2CH, C-4 Ar2), 128.1 (2CH, C-3, C-5 Ph), 128.3 (4CH, C-3, C-5 

Ar2), 128.8 (2CH, C-2, C-6 Ph), 140.5 (C, C-1 Ph), 142.3 (2C, C-1 Ar2). ESI-HRMS calcd for 

C26H31N2O [M+H]+ 387.2431, found 387.2434. 

 

The free amine was converted into the corresponding hydrogen oxalate from diethyl ether (0.10 g, 0.18 

mmol, yield 49%). 

mp: 218-220 °C; 1H NMR (DMSO, 200 MHz): δ = 2.62-2.89 (4H, m, CH2-3, CH2-5 Piper), 2.91-3.18 

(6H, m, CH2-2, CH2-6 Piper, CH2N), 3.62 (2H, t, J = 6.3 Hz, CH2-O), 3.76 (2H, s, CH2Ph), 5.50 (1H, s, 

CHAr2), 7.14-7.52 (15H, m, Ar2, Ph). 

ESI-HRMS calcd for C26H31N2O [M+H]+ 387.2431, found 387.2434. Anal. Calcd. for C30H34N2O9: C, 

63.59; H, 6.05; N, 4.94; Found C, 63.31; H, 6.11; N, 4.76. 

 

4.1.32. 1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperidine (25a) 

The title compound was obtained from 24 [43] and 4-benzylpiperidine by following the general 

procedure described in the 4.1.4. section. The crude extract was purified by using flash column 

chromatography (cyclohexane/ethyl acetate 60/40) to give 25a as a colorless oil (0.42 g, 1.28 mmol, 

96% yield). 
1H NMR (CDCl3, 400 MHz): δ = 1.13-178 (15H, m, CH2-6, CH2-7, CH2-8, CH2-9, CH2-10 Dosd, CH2-

3, CH-4, CH2-5 Piper), 1.88-2.21 (2H, m, CHa-2, CHa-6 Piper), 2.61 (2H, d, J = 6.5 Hz, CH2Ph), 2.66-

2.78 (1H, m, CHaN), 2.80-2.92 (1H, m, CHb-N), 3.05-3.28 (1H, m, CHb-2/CHb-6 Piper), 3.31-3.54 

(1H, m, CHb-2/CHb-6 Piper), 3.61 (1H, dd, J = 7.1, 8.0 Hz, CHa-3 Dosd), 4.16 (1H, dd, J = 7.1, 7.7 Hz, 
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CHb-3 Dosd), 4.40-4.71 (1H, m, CH-2 Dosd), 7.17 (2H, d, J = 7.1 Hz, CH-2, CH-6 Ph), 7.23 (1H, t, J = 

7.3 Hz, CH-4 Ph), 7.32 (2H, dd, J = 7.1 7.3 Hz , CH-3, CH-5 Ph); 13C NMR (CDCl3, 100 MHz): δ = 

23.8 (CH2, C-8 Dosd), 24.0 (CH2, C-7/C-9 Dosd), 25.0 (CH2, C-7/C-9 Dosd), 31.8 (CH2, C-3/C-5 

Piper), 32.1 (CH2, C-3/C-5 Piper), 34.9 (CH2, C-6/C-10 Dosd), 36.5 (CH2, C-6/C-10 Dosd), 37.7 (CH, 

C-4 Piper), 42.4 (CH2, CH2Ph), 53.5 (CH2, C-2/C-4 Piper), 55.1 (CH2, C-2/C-4 Piper), 61.2 (CH2, 

CH2N), 67.9 (CH2, C-3 Dosd), 72.3 (CH, C-2 Dosd), 110.5 (C, C-5 Dosd), 125.8 (CH, C-4 Ph), 128.2 

(2CH, C-3, C-5 Ph), 129.1 (2CH, C-2, C-6 Ph), 140.6 (C, C-1 Ph). ESI-HRMS calcd for C21H32NO2 

[M+H] + 330.2428, found 330.2429. 

 

The free amine was converted into the corresponding hydrogen oxalate from diethyl ether (0.18 g, 0.43 

mmol, yield 38%). 

mp: 155-157 °C; 1H NMR (DMSO, 200 MHz): δ = 1.16-1.89 (15H, m, CH2-6, CH2-7, CH2-8, CH2-9, 

CH2-10 Dosd, CH2-3, CH-4, CH2-5 Piper), 2.40-2.61 (2H, m, CH2Ph), 2.69-3.24 (4H, m, CH2-2, CH2-6 

Piper), 3.26-3.49 (2H, m, CH2N), 3.61 (1H, dd, J = 7.1, 7.8 Hz, CHa-3 Dosd), 4.05 (1H, dd, J = 7.1, 8.0 

Hz, CHb-3 Dosd), 4.28-4.51 (1H, m, CH-2 Dosd), 7.04-7.42 (5H, m, Ph). 

ESI-HRMS calcd for C21H32NO2 [M+H]+ 330.2428, found 330.2429. Anal. Calcd. for C23H33NO6: C, 

65.85; H, 7.93; N, 3.34; Found C, 65.97; H, 8.06, N, 3.57. 

 

4.1.33. 1-(1,4-dioxaspiro[4.5]decan-2-ylmethyl)-4-benzylpiperazine (25b) 

The title compound was obtained from 24 [43] and 1-benzylpiperazine by following the general 

procedure described for the synthesis of the amines. The crude extract was purified by using flash 

column chromatography (cyclohexane/ethyl acetate 30/70) to give 25b as colorless oil (0.15 g, 0.47 

mmol, 45% yield). 
1H NMR (CDCl3, 400 MHz): δ = 1.11-1.80 (10H, m, CH2-6, CH2-7, CH2-8, CH2-9, CH2-10 Dosd), 

2.29-2.76 (10H, m, CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper), 3.53 (2H, s, CH2Ph), 3.58 (1H, dd, J = 

5.1, 7.3 Hz, CHa-3 Dosd), 4.07 (1H, dd, J = 6.2, 7.3 Hz, CHb-3 Dosd), 4.17-4.36 (1H, m, CH-2 Dosd), 

7.05-7.40 (5H, m, Ph); 13C NMR (CDCl3, 100 MHz): δ = 23.8 (CH2, C-8 Dosd), 24.0 (CH2, C-7/C-9 

Dosd), 25.0 (CH2, C-7/C-9 Dosd), 34.9 (CH2, C-6/C-10 Dosd), 36.5 (CH2, C-6/C-10 Dosd), 53.0 (2CH2, 

C-3, C-5 Piper), 53.9 (2CH2, C-2, C-6 Piper), 61.4 (CH2, CH2N), 63.2 (CH2Ph), 68.0 (CH2, C-3 Dosd), 

72.2 (CH, C-2 Dosd), 110.7 (C, C-5 Dosd), 125.9 (CH, C-4 Ph), 128.4 (2CH, C-3, C-5 Ph), 129.3 (2CH, 

C-2, C-6 Ph), 140.8 (C, C-1 Ph). ESI-HRMS calcd for C20H31N2O2 [M+H]+ 331.2380, found 331.2382. 
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The free amine was converted into the corresponding hydrogen oxalate from diethyl ether (0.10 g, 0.19 

mmol, yield 40%). 

mp: 215-217 °C; 1H NMR (DMSO, 200 MHz): δ = 1.18-1.71 (10H, m, CH2-6, CH2-7, CH2-8, CH2-9, 

CH2-10 Dosd), 2.61-3.11 (10H, m, CH2N, CH2-2, CH2-3, CH2-5, CH2-6 Piper), 3.55 (1H, dd, J = 6.9, 

7.6 Hz, CHa-3 Dosd), 3.92 (2H, s, CH2Ph), 4.00 (1H, dd, J = 6.3, 7.6 Hz, CHb-3 Dosd), 4.18-4.39 (1H, 

m, CH-2 Dosd), 7.24-7.49 (5H, m, Ph).  

ESI-HRMS calcd for C20H31N2O2 [M+H] + 331.2380, found 331.2382. Anal. Calcd. for C24H34N2O10: C, 

56.46; H, 6.71; N, 5.49; Found C, 56.72; H, 6.97; N, 5.53. 
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4.2. Biological activity 

4.2.1. Radioligand binding assay at σ1 receptors 

In vitro σ-binding experiments were carried out as previously reported [49]. σ1 Binding assays were 

performed on guinea pig brain membranes according to experimental protocol described by DeHaven et 

al [50]. Briefly, 500 µg of membrane protein was incubated with 3 nM [3H]-(+)-pentazocine (29 Ci/mM; 

the value of the apparent dissociation constant (Kd) was 14 ± 0.3 nM, n = 3) in 50 mM Tris-HCl (pH 

7.4). Test compounds were added in concentrations ranging from 10−5 to 10−11 M. Nonspecific binding 

was assessed in the presence of 10 µM of unlabeled haloperidol. The reaction was performed for 150 

min at 37 °C and terminated by filtering the solution through Whatman GF/B glass fiber filters which 

were presoaked for 1 h in a 0.5% poly(ethylenimine) solution. Filters were washed with ice cold buffer 

(2 × 4 mL). Regarding σ2-binding assays [51], the membranes were incubated with 3 nM [3H]DTG 

(53.3 Ci/mM; Kd = 11 ± 0.8 nM; n = 3) in the presence of 400 nM (+)-SKF10,047 in order to mask σ1 

sites. Nonspecific binding was evaluated with DTG (5 µM). Incubation was carried out in 50 mM Tris-

HCl (pH 8.0) for 120 min at room temperature, and assays were terminated by the addition of ice-cold 

10 mM Tris-HCl (pH 8.0). 

Each sample was filtered through Whatman GF/B glass fibers filters, which were presoaked for 1 h in a 

0.5% poly(ethylenimine) solution, using a Millipore filter apparatus. The filters were washed twice with 

4 mL of ice-cold buffer. Radioactivity was counted in 4 mL of “Ultima Gold MV” in a 1414 Winspectral 

PerkinElmer Wallac liquid scintillation counter. Inhibition constants (Ki values) were calculated using 

the EBDA/LIGAND program purchased from Elsevier/Biosoft. Each concentration was tested in 

duplicate and each experiment was repeated three times. The Ki values agreed to ± 20%. 

 

4.2.2. Radioligand Binding Assay at Human Recombinant 5-HT1AR  

A human cell line (HeLa) stably transfected with genomic clone G-21 coding for the human 5-HT1A 

serotoninergic receptor was used. The cells were grown as monolayers in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal calf serum and gentamycin (100 µg/mL) under 5% CO2 at 37 °C. 

The cells were detached from the growth flask at 95% confluence by a cell scraper and were lysed in 

ice-cold Tris (5 mM) and EDTA buffer (5 mM, pH 7.4). The homogenates were centrifuged for 20 min 

at 40000g, and the pellets were re-suspended in a small volume of ice-cold Tris/EDTA buffer (above) 

and immediately frozen and stored at 70 °C until use. On the day of experiment, cell membranes (80-90 

µg of protein) were re-suspended in binding buffer (50 mM Tris, 2.5 mM MgCl2, and 10 mM pargiline, 

pH 7.4). The membranes were incubated in a final volume of 0.32 mL for 30 min at 30 °C with 1 nM 

[3H]8-OH-DPAT, in the absence or presence of various concentrations of the competing drugs (1pM to 1 
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µM); each experimental condition was performed in triplicate. Non specific binding was determined in 

the presence of 10 µM 5-HT [52]. Ki values agreed to ± 10%. 

 

4.2.3. In vivo biological assay 

4.2.3.1. Animals 

Male Sprague-Dawley rats (Harlan, Italy), weighing 180–200 g, were used. 

The animals were kept at a constant room temperature (25 ± 1 °C) under a 12:12 h light and dark cycle 

with free access to food and water. Each rat was used for only one experiment. Experimental procedures 

were approved by the local ethical committee (IACUC) and conducted in accordance with international 

guidelines as well as European Communities Council Directive and National Regulations (CEE Council 

86/609 and DL 116/92). 

 

4.2.3.2. Nociceptive test 

Nociception was evaluated by the radiant heat tail-flick test that consisted of the irradiation of the lower 

third of the tail with an I.R. source [46]. The experiments were performed at room temperature (25 ± 1 

°C). The basal pre-drug latency was established between 3 and 4 s, which was calculated as the average 

of the first three measurements performed at 5 min intervals. A cut-off latency of 10 s was established to 

minimize damage to the tail. Post-treatment tail flick latencies (TFLs) were determined at 30, 45, 60, 90 

and 120 minutes after subcutaneous (s.c.) injection. For the double treatments 25b was administered (1 

mg/kg s.c.) followed after 45 minutes by (–)-U50,488H (5 mg/kg s.c.) or morphine (2 mg/kg s.c.); tail 

flick latencies were measured after 30, 45, 60, 90 and 120 minutes from the opioid administration. The 

behavioral tests were conducted by researchers blinded to the treatment group. 

The rats were divided into the by following 6 groups (each consisting of 8-10 animals): 

Group 1: saline s.c. 

Group 2: 25b 1 mg/kg s.c. 

Group 3: (–)-U50,488H (Tocris, Bristol, UK) 5 mg/kg s.c. 

Group 4: 25b 1 mg/kg s.c. + (after 45 minutes) (–)-U50,488H 5 mg/kg s.c. 

Group 5: morphine 2 mg/kg s.c. 

Group 6: 25b 1 mg/kg s.c. + (after 45 minutes) morphine (S.A.L.A.R.S., Como, Italy) 2 mg/kg s.c. 

 

4.2.3.3. Statistical analysis 
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The data are expressed as mean ± SE. The inter-group comparisons were assessed using an initial two-

way analysis of variance (ANOVA) followed by the Students’ t test. Any differences were considered 

significant at P<0.05. 

 

4.3. Molecular modeling 
 
4.3.1. Ligand preparation 

All the compounds were built, parameterised (Gasteiger-Huckel method) and energy minimised within 

MOE using MMFF94 forcefield [53]. For all the molecules, the (alternately) piperidine and piperazine 

mono-protonated forms wereconsidered for the in silico analyses. 

 

4.3.2. Sigma-1 homology modeling 

A σ1 theoretical model was built using a multi-template homology modeling strategy, which was already 

applied by Pricl [54]. Briefly, the amino acid sequence of sigma 1 receptor (Q99720) was retrieved from 

the SWISSPROT database [55] while the selected templates were obtained from the Protein Data Bank 

[56]. In particular, the three-dimensional structure co-ordinates file of recombinant oxalate oxidase (pdb 

code = 2ETE; R =1.75Å) [57] and of homogentisate 1,2-dioxygenase (pdb code = 3ZDS; R =1.70Å) 

[58] were chosen, gaining a considerable overall similarity (>30%) with respect to the sigma-1 primary 

sequence.  

The final model connecting loops were constructed by the loop search method implemented in MOE. 

The MOE output file included a series of ten models which were independently built on the basis of a 

Boltzmann-weighted randomized procedure [59], combined with specialized logic for the handling of 

sequence insertions and deletions [60]. Among the derived models, there were no significant main chain 

deviations. The model with the best packing quality function was selected for full energy minimization. 

The retained structure was minimized with MOE using the AMBER94 force field [61]. The energy 

minimization was carried out by the 1000 steps of the steepest descent followed by conjugate gradient 

minimization until the rms gradient of the potential energy was less than 0.1 kcal mol-1 Å-1. The 

assessment of the final model was performed using Ramachandran plots, generated within MOE, 

showing the absence of outliers. Successively, the final model reliability was also assessed by docking 

analyses performed on sigma-1 ligands already discussed in the literature, and therefore by comparing 

the obtained results with those previously published. Concerning this issue, a series of spiro-derivatives 

was taken into account, focusing our attention on a careful analysis of the putative binding mode of the 

1-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,4-c]pyran (compound I) derivative [62]. Molecular 
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docking studies performed on unsubstituted and poorly flexible molecules are very useful and highly 

desirable when you want to investigate and optimize the binding site of a protein homology model. 

Therefore, the obtained results were also evaluated bearing in mind the information coming from 

mutagenesis analyses, which underlined the importance of a salt-bridge between a protonated center of 

the ligand and the protein D126 and also of H-bond contacts with T151, and allowed us to validate the 

derived sigma-1 model. Finally, the protein-agonist I complex stability was successfully assessed using 

a short ~1 ps run of molecular dynamics (MD) at constant temperature, followed by an all-atom energy 

minimization (LowModeMD mplemented in MOE software).  

 

4.3.3. Docking studies 

The docking studies were performed according to the by following protocol. The putative sigma-1 

binding site was carefully determined and analysed on the basis of the MOE software Site Finder 

module [54]. Then, the most probable receptor binding site we identified was validated by a comparison 

with the information coming from the mutagenesis data, by following a procedure already fruitfully 

used [63, 64]. For all the compounds, each isomer was docked into the putative ligand binding site by 

means of the Surflex docking module implemented in Sybyl-X1.0 [65]. Then, for all the compounds, the 

best docking geometries (selected on the basis of the SurFlex scoring functions) were refined by 

ligand/protein complex energy minimization (CHARMM27) by means of the MOE software. To verify 

the reliability of the derived docking poses, the obtained ligand/protein complexes were further 

investigated by docking calculations (10 run), using MOE-Dock (Genetic algorithm; applied on the 

poses already located into the putative sigma-1 binding site). The ligand molecules were ranked with the 

London dG scoring function (related to the first conformer refinement process). The 10 best poses 

(default is 30) were retained and further refined by energy minimization in the protein binding site, 

followed by rescoring with the GBVI/WSA dG scoring function (calculated on the latest conformer 

refinement process) as reported in the Supplementary Information. The conformers showing lower 

energy scoring functions and rmsd values (with respect to the starting poses) were selected as the most 

stable and allowed us to identify the most probable conformers interacting with sigma-1. 
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Supplementary data related to this article can be found at http://... 
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Table 1. Binding affinities (pKi) and selectivities of Group I compounds. 

 

 

 

 

a Each concentration was tested in duplicate and each experiment was repeated three times. The Ki values agreed to ± 

20%. b Binding assays were performed using 3.0 nM [3H]pentazocine. c Binding assays were performed using 3.0 nM 

[3H]ditolylguanidine. d Antilog of the difference between the pKi values for σ1 and σ2 receptors. e Ki values were derived 

from the Cheng–Prusoff equation at one or two concentrations. Each experimental condition was performed in triplicate 

and agreed within 10%. f Antilog of the difference between the pKi values for σ receptors (higher value) and the 5-

HT1AR. 

Comp. R X pKi σ1
a,b pKi σ2

a,c 
σ1/σ2

d pKi 5-HT1A
e σ/5-HT1A

f 

1a 

 

CH 7.78 7.60 2 7.75 1 

1b 
N 7.80 7.55 2 7.16 4 

8a 

 

CH 8.66 8.20 3 6.26 251 

8b 
N 8.77 8.38 3 <6 >589 

cis-9a 

 

CH 7.28 6.84 3 <6 >19 

cis-9b 
N 7.51 7.75 1 <6 >56 

trans-9a 
CH 7.25 6.43 7 <6 >18 

trans-9b 
N 8.97 7.79 15 <6 >933 

10a 

 

CH 6.68 <6 >5 <6 >5 

10b 
N 8.47 8.3 2 <6 >29 
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Table 2. Binding affinities (pKi) and selectivities of Group II-V compounds. 

 

 

Comp. R X pKi σ1
a,b pKi σ2

a,c 
σ1/σ2

d pKi5-HT1A
e σ/5-HT1A

f 

8a 

 

CH 8.66 8.20 3 6.26 251 

8b N 8.77 8.38 3 <6 >589 

11a 

 

CH 7.92 7.55 2 <6 >83 

11b N 7.20 6.67 3 <6 >16 

12a 

 

CH 7.82 7.11 5 <6 >66 

12b N 6.52 5.64 8 <6 >3 

14a 

 

CH 6.76 6.69 1 <6 >6 

14b N 7.06 6.65 3 <6 >11 

16a 

 

CH 5.95 5.66 2 <6 1 

16b N 6.19 4.9 20 <6 >1.5 

cis-17a 

 

CH 6.55 5.66 8 8.12 0.02 

cis-17b N 7.45 6.62 6.8 8.14 0.2 

trans-17a CH 6.64 5.05 39 7.30 0.21 

trans-17b N 7.42 7.00 3 6.90 3 
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a Each concentration was tested in duplicate and each experiment was repeated three times. The Ki values agreed to ± 
20%. b Binding assays were performed using 3.0 nM [3H]pentazocine. c Binding assays were performed using 3.0 nM 
[3H]ditolylguanidine. d Antilog of the difference between the pKi values for σ1 and σ2 receptors. e Ki values were derived 
from the Cheng–Prusoff equation at one or two concentrations. Each experimental condition was performed in triplicate 
and agreed within 10%. f Antilog of the difference between the pKi values for σ receptors (higher value) and the 5-
HT1AR. 

22a 

 

CH 6.70 6.56 1 6.38 2.5 

22b N 7.95 7.75 2 <6 >89 

23a 

 

CH 7.25 6.77 3 <6 >18 

23b N 7.69 7.95 1 <6 >89 
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Table 3. Binding affinities (pKi) and selectivities of Group VI compounds. 

 

 

 

 

a Each concentration was tested in duplicate and each experiment was repeated three times. The Ki values agreed to ± 20%. 
b Binding assays were performed using 3.0 nM [3H]pentazocine. c Binding assays were performed using 3.0 nM 
[3H]ditolylguanidine. d Antilog of the difference between the pKi values for σ1 and σ2 receptors. e Ki values were derived 
from the Cheng–Prusoff equation at one or two concentrations Each experimental condition was performed in triplicate and 
agreed within 10%. f Antilog of the difference between the pKi values for σ receptors (higher value) and the 5-HT1AR. 

Comp. R X pKi σ1
a,b pKi σ2

a,c 
σ1/σ2

d pKi 5-HT1A
e σ/5-HT1A

f 

10a 

 

CH 6.68 <6 >5 <6 >5 

10b N 8.47 8.30 2 <6 >29 

25a 

 

CH 8.70 7.72 10 6.79 81 

25b N 9.13 7.46 47 <6 >1349 
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Scheme 1. Synthesis of Group I and Group II compounds. Reagents and conditions: i) p-toluensulfonic acid, toluene, reflux, 24/48 h. ii) TsCl, N(Et)3, CH2Cl2, 0°C 
to 25 °C, 6 h; iii) 4-benzylpiperidine or 1-benzylpiperazine, KI, 2-methoxyethanol, reflux, 20 h. 
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Scheme 2. Synthesis of Group III, IV and VI compounds. Reagents and conditions: (i) 4-benzylpiperidine or 1-benzylpiperazine, 
KI, 2-methoxyethanol, reflux, 20 h.; ii) 4-benzylpiperidine or 1-benzylpiperazine as chloride salts, paraformaldehyde, C2H5OH, 
reflux, 25 h; iii) NaBH4, C2H5OH, 0 °C to 25 °C, 24 h. 
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Scheme 3. Synthesis of Group V compounds. Reagents and conditions: i) t-BuPh2SiCl, 1H-imidazole, DMF, 25 °C, 5 h; 
ii) toluene, reflux, 24 h; iii) 4-benzylpiperidine or 1-benzylpiperazine, KI, 2-methoxyethanol, reflux, 20 h.; iv) TBAF, 
THF, 25 °C, 24 h. 
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Chart 1. Working hypothesis 
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Chart 2. SAR studies 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

Figure 1. Effect of 25b (1 mg/kg s.c.), on (–)-U-50,488H (5 mg/kg s.c.) analgesia. Results are 
expressed in seconds (s). Data are means ± SEM from 8-10 rats. *p < 0.05 vs saline-treated-rats; 
**p < 0.05 vs (–)-U-50,488H-treated-rats. 
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Figure 2. Effect of 25b (1 mg/kg s.c.), on morphine (2 mg/kg s.c.) analgesia. Results are expressed 

in seconds (s). Data are means ± SEM from 8-10 rats. *p < 0.05 vs saline-treated-rats; **p < 0.05 vs 

morphine-treated-rats. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

Figure 3. Structure of the reference compound I (pKiσ1= 9.36) 
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Figure 4. Ligand I docking pose into the putative sigma-1 binding site. Salt-bridge and H-bond contacts are 

displayed by a dashed line in light blue and red, respectively.  
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Figure 5. Compound 8a and 8b docking poses into the putative sigma-1 binding site. The ligands 

are colored by atom-type (8a C atom: cyan; 8b C atom: yellow). Salt-bridge and H-bond contacts 

are displayed by a dashed line in light blue and red, respectively. 
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Figure 6. Compound 10a and 10b docking poses into the putative sigma-1 binding site. The ligands are 

colored by atom-type (10a C atom: light pink; 10b C atom: green). Salt-bridge and H-bond contacts are 

displayed by a dashed line in light blue and red, respectively. 
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Figure 7. Compound 25a and 25b docking poses into the sigma-1 binding site are depicted by sticks. The 

ligands are colored by atom-type (25a C atom: dark khaki; 25b C atom: light green ). Salt-bridge and H-bond 

contacts are displayed by a dashed line in light blue and red, respectively. The docking mode of I is reported 

by wire (C atom: purple). 
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Highlights 

• Twenty-six novel σR ligands bearing a variety of five-membered heterocyclic rings 
were synthesized. 

• Compound 25b exhibited the highest affinity and selectivity (pKi σ1 = 9.13, σ1/σ2 = 
47). 

• In-vivo studies showed that 25b possesses anti-opioid effects on κ (KOP) and µ 
(MOP) receptor-mediated analgesia suggesting an agonistic behavior at σ1R. 

• Docking studies were performed on the theoretical σ1R homology model 

 
 


