

Available online at www.sciencedirect.com

CHINESE Chemical Letters

Chinese Chemical Letters 22 (2011) 310-313

www.elsevier.com/locate/cclet

Iron-catalyzed bromination of aryl azides by *N*-bromosuccinimide: Efficient method for the synthesis of brominated aryl azides

Hui Jin^a, Zhen Dong Huang^b, Chun Xiang Kuang^{a,*}, Xiao Kun Wang^a

^a Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China ^b Zhejiang Citrus Research Institute, Taizhou 318020, China

> Received 29 June 2010 Available online 22 December 2010

Abstract

An efficient and mild protocol for bromination of aryl azides with *N*-bromosuccinimide (NBS) under FeCl₃ catalysis in 1,2dichloroethane was developed. It is proved to be an efficient method for obtaining brominated aryl azides. \bigcirc 2010 Chun Xiang Kuang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Iron-catalyzed; Aryl azides; N-Bromosuccinimide; Bromination

Aryl azides are versatile intermediates with various applications in organic and bioorganic chemistry [1]. They are extensively employed in the synthesis of aryl nitrenes [2], aryl anilines [3], particularly nitrogen-containing fivemembered heterocycles upon 1,3-dipolar cycloaddition [4]. In addition, aryl azides are well known for their use as photoaffinity labeling agents for proteins [5]. However, perhaps because of their partly less attractive properties (explosiveness, toxicity), very few bromination systems in the literature has been published for their bromination. Smith *et al.* [6] reported a method for bromination of phenyl azide with Br₂, the reaction gives the *para*-bromination product in low yield. Latyshev *et al.* [7] reported bromination of 1,3-diazido-2-methylbenzene using 1,4-dioxane dibromide affords the monobromination product in moderate yield, and the reaction requires long reaction time and the substrate scope is limited to electron-rich aryl azides. Thus, we still consider it highly desirable to develop milder and more efficient bromination method of aryl azides.

In recent years, iron as one of the transition metal catalysts was revealed to be of high interest in term of cost and efficiency [8]. To the best of our knowledge, although iron catalyzed the reaction of aromatic ring has been previously reported [9], iron-catalyzed bromination of aryl azides has been never studied.

Herein, we report an iron-catalyzed bromination reaction of aryl azides using NBS, which afford the corresponding brominated aryl azides **2** in moderate to good yield (Scheme 1).

To screen suitable reaction conditions, 1-azido-4-chlorobenzene **1a** has been used as model substrate. Initially, the reaction was carried out in the presence of FeCl₃ (20 mol%) and NBS (1.1 equiv.) in 1,2-dichloroethane (3 mL) at room temperature for 12 h, 49% isolated yield of 1-azido-2-bromo-4-chlorobenzene **2a** was obtained (Table 1, entry 1). Then we examined other catalysts, FeCl₃ proved to be superior to Fe₂(SO₄)₃ and FeCl₂ (Table 1, entries 1–3).

* Corresponding author.

E-mail address: kuangcx@tongji.edu.cn (C.X. Kuang).

^{1001-8417/\$ –} see front matter © 2010 Chun Xiang Kuang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.10.024

Scheme 1. Iron-catalyzed bromination of aryl azides 1 by NBS.

Table 1 Optimization of bromination of 1-azido-4-chlorobenzene **1a** to 1-azido-2-bromo-4-chlorobenzene **2a**.

Entry	Catalyst (0.2 equiv)	Solvent (3 mL)	Temperature (°C)	Time (h)	Yield of 2a (%) ^a 49	
1	FeCl ₃	1,2-Dichloroethane	25	12		
2	$Fe_2(SO_4)_3$	1,2-Dichloroethane	25	12	23	
3	FeCl ₂	1,2-Dichloroethane	25	12	27	
4	Fe ₂ O ₃	1,2-Dichloroethane	25	12	9	
5	$Fe(acac)_3$	1,2-Dichloroethane	25	12	5	
6	none	1,2-Dichloroethane	25	12	Trace	
7	FeCl ₃	MeCN	25	12	43	
8	FeCl ₃	1,4-Dioxane	25	12	0	
9	FeCl ₃	1,2-Dichloroethane	60	12	65	
10	FeCl ₃	1,2-Dichloroethane	80	12	72	
11	FeCl ₃	1,2-Dichloroethane	80	24	85	

^a Isolated yields.

 Fe_2O_3 and $Fe(acac)_3$ proved to be inefficient (Table 1, entries 4, 5), and the absence of iron catalyst gives trace product (Table 1, entry 6). The reaction also showed a strong solvent dependence. Except 1,2-dichloroethane, other solvents such as MeCN, dioxane proved to be inappropriate (Table 1, entries 7, 8). After that we examined temperature and reaction time influence in the reaction. To our delight, the yield of **2a** could be improved when the temperature was increased to 80 °C and the reaction time was extended to 24 h. On the basis of these results, the optimal conditions involved the following parameters: FeCl₃ as catalyst, 1,2-dichloroethane as solvent, with reaction temperature at 80 °C for 24 h.

Under the optimized conditions, the substrate scope of this iron-catalyzed bromination reaction of aryl azides was investigated and these newly developed conditions appeared to be general for a spectrum of aryl azides (Table 2). The aryl azides were obtained from the anilines employing standard diazotization conditions [10]. The reaction conditions are compatible with various functionalities such as chloro (2a), bromo (2b), ethers (2c, 2d), methoxy (2e) and methyl (2f, 2f'). It was observed that azidobenzene could also proceed smoothly with good yield (2g). The substitution on the aromatic ring had almost no influence on the yield of the reaction, as systems substituted with electron-withdrawing (2a–2d), electron-donating groups (2e, 2f, 2f') provided similar results. But the electronic factors had shown some effect on the reaction time. In general, electron-rich aryl azides (2e, 2f, 2f') gave shorter reaction time than electron-deficient counterpart (2a–2d).

The reaction of heterocyclic azide such as thiazole (2h) proceeded with moderate yield 77% and gives good regioselectivity. Bromination of naphthalene (2i) gives disubstituted product, bromine atom was added to both *ortho* and *para* positions of azide group simultaneously in yield 67%.

In summary, we have successfully employed FeCl_3 as catalyst for the direct bromination aryl azides to corresponding brominated derivatives in moderate to good yield. This is a versatile method to accomplish the synthesis of a series of brominated aryl azides from aryl azides in a single-step operation.

1. Experimental

¹H and ¹³C NMR spectra were recorded using a Bruker AM-500 spectrometer. High resolution mass spectra were determined using a Finnigan-NAT GC/MS/DS 8430 spectrometer.

To a sealed tube were added 1,2-dichloroethane 3 mL, aryl azide (0.5 mmol), FeCl₃ (16 mg, 0.1 mmol), NBS (97 mg, 0.55 mmol). The mixture was stirred at 80 °C and the reaction was monitored by TLC. After reaction completed, the system was extracted with Et₂O (3×30 mL). The organic layer was separated, washed with water and

Table 2
FeCl ₃ -catalyzed bromination of aryl azides 1 to brominated aryl azides 2 .

Entry	Azide 1	Product 2		Time (h)	Yield (%) ^a	Ref.
1	Cl-V-N3	Cl-V-N3 Br	2a	24	84	
2	Br-V-N3	Br-N3 Br	2b	24	78	[11]
3	EtO ₂ C-	EtO ₂ C-	2c	24	81	[12]
4	MeO ₂ C-	MeO ₂ C-V-N ₃	2d	24	80	[13]
5	MeO-	Br MeO-N3	2e	4	86	[14]
6	Me-N3	Br' Me	2f	4	43	[11]
		Br Me-N3 Br	2f′		40	[15]
7	N ₃	Br N ₃	2g	4	89	[16]
8			2h	4	77	[17]
9 ^b	N ₃	N ₃ Br	2i	4	67	[18]

^a Isolated yields.

^b 2.2 equiv. NBS was added.

saturated brine, and dried over anhydrous Na_2SO_4 . Evaporation of the solvent gave the crude product, which was subjected to column chromatography (silica gel, EtOAc–petroleum ether) to afford brominated aryl azides **2**. The structure of these compounds has been elucidated by spectral (¹H NMR, ¹³C NMR) data [19].

Acknowledgments

The work was supported by National Natural Science Foundation of China (No. 30873153), the Key Projects of Shanghai in Biomedical (No. 08431902700) and the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars. We would like to thank the Center for Instrumental Analysis, Tongji University, China.

References

- [1] (a) E.F.V. Scriven, K. Turnbull, Chem. Rev. 88 (1988) 297;
- (b) S. Bräse, C. Gil, K. Knepper, et al. Angew. Chem. Int. Ed. 44 (2005) 5188.
- [2] (a) N.P. Mankad, P. Müller, J.C. Peters, et al. J. Am. Chem. Soc. 132 (2010) 4083;
 (b) K.N. Crabtree, K.J. Hostetler, T.E. Munsch, et al. J. Org. Chem. 73 (2008) 3441.
- [3] Z.G. Liu, X.Q. Niu, W. Yu, et al. Chin. Chem. Lett. 19 (2008) 885.
- [4] (a) R. Huisgen, Angew. Chem. Int. Ed. 2 (1963) 565;
 - (b) C.W. Tornoe, C. Christensen, M. Meldal, et al. J. Org. Chem. 67 (2002) 3057.

- [5] (a) A. Fishier, A. Mann, R.L. Johnson, et al. J. Med. Chem. 49 (2006) 307;
- (b) C.A. Gartner, Curr. Med. Chem. 10 (2003) 671.
- [6] P.A.S. Smith, J.H. Hall, R.O. Kan, J. Am. Chem. Soc. 84 (1962) 485.
- [7] G.V. Latyshev, M.S. Baranov, A.V. Kazantsev, et al. Synthesis (2009) 2605.
- [8] (a) B.D. Sherry, A. Fürstner, Acc. Chem. Res. 41 (2008) 1500;
 (b) J. Norinder, A. Matsumoto, N. Yoshikai, et al. J. Am. Chem. Soc. 130 (2008) 5858.
- [9] K. Tanemura, T. Suzuki, Y. Nishida, et al. Chem. Lett. 32 (2003) 932.
- [10] F. Pagliai, T. Pirali, G.C. Tron, et al. J. Med. Chem. 49 (2006) 467.
- [11] K. Knepper, M.E.P. Lormann, S. Bräse, J. Comb. Chem. 6 (2004) 460.
- [12] C.-Y. Liu, P. Knochel, J. Org. Chem. 72 (2007) 7106.
- [13] B.R. de Costa, A. Lewin, K.C. Rice, Heterocycles 32 (1992) 2343.
- [14] K. Odlo, J. Hentzen, T.V. Hansen, et al. Bioorg. Med. Chem. 16 (2008) 4829.
- [15] J.Q. Li, M.Y. Hu, S.Q. Yao, Org. Lett. 11 (2009) 3008.
- [16] Q. Liu, Y. Tor, Org. Lett. 5 (2003) 2571.
- [17] R. Faure, J.P. Galy, J. Elguero, et al. Can. J. Chem. 56 (1978) 46.
- [18] G. Mitchell, C.W. Rees, J. Chem. Soc. (1987) 403.
- [19] Spectroscopic data. 1-Azido-2-bromo-4-chlorobenzene 2a: ¹H NMR (500 MHz, CDCl₃): δ 7.10 (d, 1H, *J* = 8.6 Hz), 7.32 (dd, 1H, *J* = 8.6, 2.3 Hz), 7.56 (d, 1H, *J* = 2.3 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 119.1, 120.1, 128.7, 130.6, 133.5, 137.6. HRMS: *m/z* calcd. for C₆H₃BrClN₃ 230.9199, found 230.9198. 1-Azido-2,4-dibromobenzene 2b: ¹H NMR (500 MHz, CDCl₃): δ 7.04 (d, 1H, *J* = 8.5 Hz), 7.46 (dd, 1H, *J* = 8.5, 2.1 Hz), 7.70 (d, 1H, *J* = 8.5 Hz), 8.02 (dd, 1H, *J* = 8.5, 1.5 Hz), 8.23 (d, 1H, *J* = 1.5 Hz). Methyl 4-azido-3-bromobenzoate 2c: ¹H NMR (500 MHz, CDCl₃) δ 1.40 (t, 3H, *J* = 7 Hz), 4.38 (q, 2H, *J* = 7 Hz), 7.21 (d, 1H, *J* = 8.5 Hz), 8.02 (dd, 1H, *J* = 8.5 Hz), 8.01 (dd, 1H, *J* = 8.5, 1.9 Hz), 8.23 (d, 1H, *J* = 1.9 Hz). 4-Azido-2-bromo-1-methoxybenzene 2e: ¹H NMR (500 MHz, CDCl₃): δ 3.92 (s, 3H), 7.22 (d, 1H, *J* = 8.5 Hz), 8.01 (dd, 1H, *J* = 8.5, 1.9 Hz), 8.23 (d, 1H, *J* = 8.8 Hz), 6.94 (dd, 1H, *J* = 8.8, 2.7 Hz), 7.23 (d, 1H, *J* = 2.7 Hz). 1-Azido-2-bromo-4-methylbenzene 2f: ¹H NMR (500 MHz, CDCl₃): δ 2.31 (s, 3H), 7.06 (d, 1H, *J* = 8.2, 2.3 Hz), 7.19 (d, 1H, *J* = 8.5 Hz), 7.21 (d, 1H, *J* = 2.5 Hz). 1-Azido-4-bromobenzene 2g: ¹H NMR (500 MHz, CDCl₃): δ 2.37 (s, 3H), 6.88 (dd, 1H, *J* = 8.8 Hz), 7.14 (dd, 1H, *J* = 8.8 Hz), 7.47 7.49 (d, 2H, *J* = 8.8 Hz). 2-Azido-5-bromothiazole 2h: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.36 (s, 1H), 1-Azido-2,4-dibromonaphthalene 2i: ¹H NMR (500 MHz, CDCl₃): δ 7.61 7.68 (m, 2H), 7.91 (s, 1H), 8.18 (d, 1H, *J* = 7.8 Hz), 8.26.(d, 1H, *J* = 8.5 Hz).