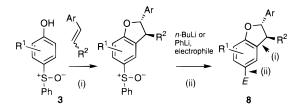
Ambident Effect of a *p*-Sulfinyl Group for the Introduction of Two Carbon Substituents to Phenol Rings: A Convergent Synthesis of Diverse Benzofuran Neolignans

Shuji Akai, Nobuyoshi Morita, Kiyosei lio, Yuka Nakamura, and Yasuyuki Kita*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan


kita@phs.osaka-u.ac.jp

Received May 11, 2000

Vol. 2, No. 15

2279 - 2282

ABSTRACT

A convergent synthesis of diversely substituted benzofuran neolignans (8) is described employing a single *p*-sulfinyl group on the phenols (3) as an ambident functional group for two types of carbon–carbon bond-forming reactions: (i) the direct synthesis of the dihydrobenzofuran skeletons through an aromatic Pummerer-type reaction and (ii) the *ipso*-substitution of the sulfur functional group by carbon substituents through a ligand exchange reaction.

Naturally occurring benzofuran neolignans such as liliflol B (1), obovatinol, and kadsurenone (2) show important biological activities, i.e., cytotoxicity, inhibition of cell proliferation, inhibition of the platelet-activating factor (PAF)-induced effects, etc., and have attracted much attention on their effective syntheses.^{1–5} The characteristic structure of these compounds involves the substituted phenyl group

(4) Wang, S.; Gates, B. D.; Swenton, J. S. *J. Org. Chem.* **1991**, *56*, 1979–1981. Gates, B. D.; Dalidowicz, P.; Tebben, A.; Wang, S.; Swenton, J. S J. Org. Chem. **1992**, *57*, 2135–2143.

(5) Ponpipom, M. M.; Bugianesi, R. L.; Brooker, D. R.; Yue, B. Z.; Hwang, S. B.; Shen T. Y. J. Med. Chem. **1987**, 30, 136-142.

10.1021/ol0001261 CCC: \$19.00 © 2000 American Chemical Society Published on Web 06/23/2000

at the C-2 position, methyl or hydroxymethyl group at the C-3 position, carbon substituents at the C-5 position, and an oxygen functional group at the C-6 or C-7 position of the benzofuran skeleton (Figure 1).

The reported syntheses of these compounds were primarily performed through the [3 + 2] cycloaddition of 1-phenyl-1-propenes to *p*-quinones and their derivatives.²⁻⁴ However, they are not always efficient due to unsatisfactory yields of the cycloadducts and/or the limitation of the substrates. Especially, lack of an effective method for the introduction of a variety of carbon substituents at the C-5 position of the skeleton has been an obstacle for the synthesis of various derivatives. In this Letter, we present a novel and general synthesis of benzofuran neolignans (**8**) containing diverse substituents which provides a solution to the abovementioned problems. Our method utilizes the ambident effect of the sulfinyl group of *p*-sulfinylphenols, viz., (i) the direct synthesis of the dihydrobenzofuran skeleton (**5**) from the

⁽¹⁾ For reviews, see: Ward, R. S. Nat. Prod. Rep. **1993**, 10, 1–28. Ward, R. S. Nat. Prod. Rep. **1995**, 12, 183–205. Ward, R. S. Nat. Prod. Rep. **1997**, 14, 43–74.

⁽²⁾ Büchi, G.; Mak, C.-P. J. Am. Chem. Soc. **1977**, 99, 8073–8075. Büchi, G.; Chu, P.-S. J. Org. Chem. **1978**, 43, 3717–3719. Horne, D. A.; Yakushijin, K.; Büchi, G. Tetrahedron Lett. **1999**, 40, 5443–5447.

^{(3) (}a) Engler, T. A.; Combrink, K. D.; Letavic, M. A.; Lynch, K. O., Jr.; Ray, J. E. J. Org. Chem. **1994**, 59, 6567–6587. (b) Engler, T. A.; Chai, W. Tetrahedron Lett. **1996**, 37, 6969–6970. (c) Engler, T. A.; Chai, W.; LaTessa, K. O. J. Org. Chem. **1996**, 61, 9297–9308.

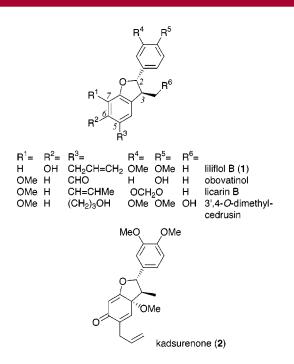
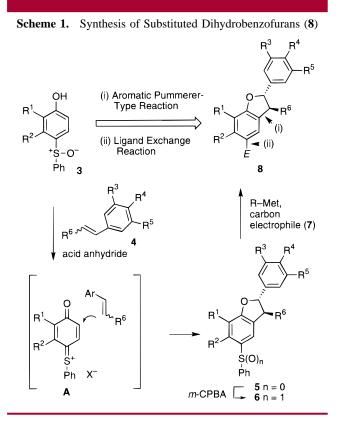



Figure 1. Benzofuran neolignans.

p-sulfinylphenols (3) through an aromatic Pummerer-type reaction and (ii) *ipso*-substitution of the sulfur group by a carbon substituent through a ligand exchange reaction of the sulfoxides ($\mathbf{6}$) (Scheme 1).

Recently we have reported that treatment of p-sulfinylphenols (3) with (CF₃CO)₂O caused the aromatic Pummerer-

At first, we examined the feasibility of this reaction using a simple *p*-sulfinylphenol (**3a**; $R^1 = R^2 = H$) and a nucleophile (**4a**; $R^3 = R^4 = OMe$, $R^5 = H$, $R^6 = Me$). After several trials that involved changing the acid anhydrides, solvents, and the addition order of the chemicals, we found that the addition of **3a** (1.0 equiv) to a solution of (CF₃-CO)₂O (1.4 equiv) and **4a** (1.05 equiv) in CH₃CN at -40 °C caused regiospecific carbon–carbon bond formation followed by spontaneous cyclization of the benzylic cation intermediate to give the product **5a** (81% yield) as a single regio- and stereoisomer (Table 1, run 1).⁹ Formation of the *p*-benzoquinone was not observed in this reaction.

Application of this method to the *p*-sulfinylphenols (3af) with various substituents and styrene derivatives (4a-g)(1.1-1.6 equiv to 3) readily afforded the corresponding products (5a-k) (Table 1). Several aspects are worth mentioning: (1) The reaction was generally completed below 0 °C within 60 min. (2) Products were obtained in good-tohigh yields via the regioselective 1,4-addition of 4 to the less congested, conjugated $C=S^+$ system of A, which was independent of the substituents (R^1 and R^2); however, the methoxymethyl (MOM) ether (5j) was an exception (run 10). (3) The trans-adducts were exclusively obtained even from a mixture of E- and Z-olefins (4a, 4c, and 4g). (4) Introduction of typical substituents of the natural neolignans, i.e., alkoxy- or hydroxyphenyl group to the C-2 position and methyl or oxymethyl group to the C-3 position, was successfully attained using the corresponding olefins (4). (5) The naphthol (3f) was used to prepare the unnatural neolignan skeleton (5k) (run 11).

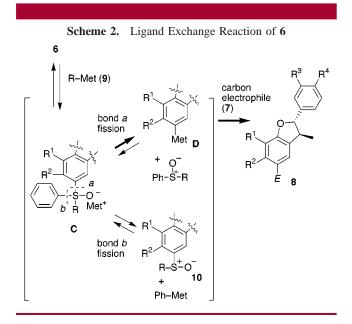
Next, *ipso*-substitution of the sulfur groups of **5** by carbon substituents was investigated by utilizing the ligand exchange reaction of the sulfoxides (**6**), readily prepared from **5** in high yields (Table 1). This reaction generates the arylmetal intermediates (**D**) via the sulfurane intermediates (**C**),¹⁰ which

^{(6) (}a) Akai, S.; Takeda, Y.; Iio, K.; Yoshida, Y.; Kita, Y. J. Chem. Soc., Chem. Commun. **1995**, 1013–1014. (b) Akai, S.; Takeda, Y.; Iio, K.; Takahashi, K.; Fukuda, N.; Kita, Y. J. Org. Chem. **1997**, 62, 5526–5536. (c) Kita, Y.; Takeda, Y.; Matsugi, M.; Iio, K.; Gotanda, K.; Murata, K.; Akai, S. Angew. Chem., Int. Ed. Engl. **1997**, 36, 1529–1531. (d) Kita, Y.; Akai, S.; Fujioka, H. J. Synth. Org. Chem. Jpn. (Special Issue in English) **1998**, 56, 963–974. (e) Akai, S.; Kita, Y. Org. Prep. Proc. Int. **1998**, 30, 603–629.

⁽⁷⁾ For related reactions of the *p*-sulfinylphenol, see: King, R. R. J. Org. Chem. **1978**, 43, 3784–3785.

⁽⁸⁾ For related reactions of the *o*-sulfinylphenols, see: Jung, M. E.; Kim,
C.; von dem Bussche, L. J. Org. Chem. **1994**, 59, 3248–3249. Jung, M.
E.; Jachiet, D.; Khan, S. I.; Kim, C. Tetrahedron Lett. **1995**, 36, 361–364.

⁽⁹⁾ The addition of **4a** or $(CF_3CO)_2O$ as the last component and the use of $(CF_3SO_2)_2O$ and $(CICH_2CO)_2O$ as an acid anhydride gave **5a** in low yields (trace-60%).


Table 1. Pr	reparation of	of 5	from 3	3 and 4	and	Oxidation	of 5	to 5	6 ^{<i>a</i>}
-------------	---------------	------	--------	---------	-----	-----------	------	------	------------------------------

					5								
run	3^{b}	4 ^b	temp, °C		$R^1 =$	$\mathbb{R}^2 =$	$\mathbb{R}^3 =$	$\mathbb{R}^4 =$	$\mathbb{R}^5 =$	$R^6 =$	% yield	6	% yield
1	3a	4a	-40	5a	Н	Н	OMe	OMe	Н	Me	81		
2	3a	4b	-40	5b	Н	Н	Н	OMe	Н	Н	88	6b	94
3	3a	4 c	-40	5c	Н	Н	OMe	OH	Η	Н	55		
4	3a	4d	25	5 d	Н	Н	Н	Н	Η	Н	58		
5	3a	4e	-40	5e	Н	Н	OMe	OMe	Η	CH ₂ OAc	78		
6	3a	4f	-40	5f	Н	Н	OMe	OMe	OMe	Н	85		
7	3b	4g	-40	5g	OMe	Н	OCH ₂ O		Η	Me	83	6g	98
8	3c	4b	0	5h	allyl	Н	Н	OMe	Н	Me	90		
9	3d	4g	0	5i	Н	OMe	OCH ₂ O		Η	Me	67	6i	90
10	3e	4a	0	5j	Н	OMOM	OMe	OMe	Η	Me	46 ^c	6j	99
11	3f	4g	-40	5k	СН=СНСН=СН		OCH ₂ O		Н	Me	76	6k	84

^{*a*} Typical procedure for the preparation of **5**: into a solution of **4a** (0.29 mmol) and (CF₃CO)₂O (0.35 mmol) in anhydrous CH₃CN (5 mL) at -40 °C was added a solution of **3a** (0.23 mmol). The reaction mixture was stirred at the same temperature for 30 min and quenched with saturated NaHCO₃. After the usual workup, the product was isolated by flash column chromatography on SiO₂. ^{*b*} R¹ and R² of **3** and R³–R⁶ of **4** are the same as those of the corresponding product (**5**). ^{*c*} A regioisomer (**5**) was obtained in 28% yield.

in turn react with a carbon electrophile (7) to give 8 (Scheme 2). The key in this transformation was the selective fission

of bond a in **C** bearing two similar phenyl ligands,¹¹ and it was attained by choice of a suitable organometallic reagent

(9), viz., PhLi for sulfoxides (**6i** and **6j**) with oxygen functional groups at their *ortho*-position and naphthylsulfoxide (**6k**) and *n*-BuLi for other types of sulfoxides.¹²

Five types of sulfoxides (**6b**, **g**, **i**, **j**, and **k**) were treated with an appropriate lithium reagent (**9**), and the resulting intermediates (**D**) were reacted with **7** (Table 2). In the cases of **6b** and **6g**, it was critical to add **7** immediately after the addition of *n*-BuLi (runs 1 and 2), because a 10 min delay caused exclusive formation of protonated products (**8**, E =H). Carbonyl compounds such as DMF, ClCO₂Me, EtCHO, and acrylaldehyde were sufficiently employed to introduce C₁- or C₃-groups. On the other hand, the use of allyl iodide or allyl bromide for **6j** did not yield any allylated product (**8je**), and the iodinated product (**8**, E = I) and/or the protonated product were obtained. However, the reaction with

(14) For preparation of **3** by direct introduction of the *p*-sulfinyl groups into the phenols, see: Chasar, D. W.; Pratt, T. M. *Phosphorus Sulfur* **1978**, *5*, 35–40. For the indirect preparation of **3**, see ref 6b.

⁽¹⁰⁾ For reviews, see: Oae, S. Rev. Heteroatom Chem. **1991**, 4, 195–225. Satoh, T. J. Synth. Org. Chem. Jpn. **1996**, 54, 481–489. Satoh, T. Farumashia **1999**, 35, 1225–1229.

⁽¹¹⁾ Little is known about the selectivity of bond fission on unsymmetrical biphenyl sulfoxides, see: Furukawa, N.; Shibutani, T.; Fujihara, H. *Tetrahedron Lett.* **1987**, *28*, 2727–2730. Ogawa, S.; Furukawa, N. J. Org. Chem. **1991**, *56*, 5723–5726. Furukawa, N.; Ogawa, S.; Matsumura, K.; Fujihara, H. J. Org. Chem. **1991**, *56*, 6341–6348.

⁽¹²⁾ The selectivity of the breaking bonds *a* and *b* was estimated by the ratio of the products, **8** (E = H) and **10**, obtained by quenching the reaction mixture of **6** and **9** with MeOH. The use of PhLi (5 equiv) for **6i**, **6j**, and **6k** exclusively provided **8** (E = H) but did not cause any reaction for other sulfoxides. The use of *n*-BuLi (5 equiv) resulted in moderate ratios (2.2–3.4:1) for **6b**, **6g**, and **6k** and a good ratio (>8:1) for **6i**. MeMgBr and PhMgBr brought about no reaction, and *t*-BuLi caused nonselective formation of the products.

⁽¹³⁾ All new compounds (5, 6, and 8) were fully characterized by ${}^{1}H/{}^{13}C$ NMR and IR spectroscopic data as well as elemental analyses or high resolution mass spectroscopies. The product (1) was identical (mp and ${}^{1}H/{}^{13}C$ NMR) with the authentic sample.^{3a}

⁽¹⁵⁾ The sulfinyl group is known as a strong directing group for the *ortho*-lithiation of aromatic rings, see: Quesnelle, C.; Iihama, T.; Aubert, T.; Perrier, H.; Snieckus, V. *Tetrahedron Lett.* **1992**, *33*, 2625–2628 and references therein.

⁽¹⁶⁾ A dual use of a sulfinyl group for stereocontrolled C–C bond formation and subsequent regiocontrolled enol generation was reported, see: Posner, G. H.; Hulce, M.; Mallamo, J. P.; Drexler, S. A.; Clardy, J. J. Org. Chem. **1981**, *46*, 5244–5246.

Table 2. Reaction of **6** with Various Carbon Electrophiles $(7)^a$

					8					
run	6	9 (equiv)	7		$R^1 =$	$R^2 =$	$R^{3} =$	$\mathbb{R}^4 =$	E =	% yield
1	6b	<i>n</i> -BuLi (5)	DMF	8ba	Н	Н	Н	OMe	СНО	61
2	6g	<i>n</i> -BuLi (5)	DMF	8ga	OMe	Н	OCH ₂ O		СНО	56
3	6i	PhLi (5)	DMF	8ia	Н	OMe	OCH ₂ O		СНО	93
4	6j	PhLi (2)	DMF	8ja	Н	OMOM	OMe	OMe	СНО	85
5	6j	PhLi (2)	ClCO ₂ Me	8jb	Н	OMOM	OMe	OMe	CO ₂ Me	72
6	6j	PhLi (2)	EtCHO	8jc	Н	OMOM	OMe	OMe	CH(OAc)Et	52^{b}
7	6j	PhLi (2)	CH ₂ =CHCHO	8jd	Н	OMOM	OMe	OMe	CH(OAc)CH=CH ₂	65^{b}
8	6j	PhLi (5)	CH ₂ =CHCH ₂ Br	8je	Н	OMOM	OMe	OMe	CH ₂ CH=CH ₂	57^{c}
9	6k	PhLi (5)	DMF	8ka	СН=СНСН=СН		OCH ₂ O		СНО	90

^{*a*} General procedure: *n*-BuLi or PhLi was added to a THF solution of **6** at -78 °C, and **7** (5 equiv) was added immediately (for runs 1, 2) or after 15 min (for runs 3–9). The crude reaction mixture was stirred at -78 °C for 30–60 min, quenched with saturated NaHCO₃, and worked up as usual. The product (**8**) was isolated by flash column chromatography on SiO₂. ^{*b*} Isolated after acetylation. ^{*c*} A solution of CuI (5 equiv) and LiCl (5 equiv) in THF was added to a solution of the lithiated substrate in THF at -78 °C, and the mixture was stirred at 0 °C for 15 min. Allyl bromide (5 equiv) was added, and the reaction mixture was stirred at 0 °C for 60 min. The remainder of the procedure was same as the general procedure.

allyl bromide after metal exchange from lithium to copper afforded 8je (run 8).¹³

Deprotection of the MOM group of **8je** using Me₃SiCl– NaI gave (\pm)-liliflol B (1) in 70% yield.¹³ Conversion of 1 to (\pm)-kadsurenone (**2**), the PAF antagonist, has been reported (Scheme 3).^{3a,5}

	Scheme 3	3. Synthesis ((±)-Kadsu	of (\pm) -Lilif arenone (2)	. ,
8je	Me₃SiCl Nal MeCN	(±)-liliflol B (1) (70%)	ref. 3a, 5	(±)-kadsurenone (2)

In conclusion, a new convergent synthesis of diverse benzofuran neolignans (8) from three components, viz., *p*-sulfinylphenols (3),¹⁴ 1-aryl-1-propenes (4), and carbon electrophiles (7), was developed. This protocol features the dual effect of the sulfinyl group for two types of carbon– carbon bond-forming reactions and is unique from the viewpoint that a single functional group can produce the regiocontrolled introduction of multicarbon chains under the selected conditions.^{15,16} The umpolung reactivity of the phenols to the corresponding highly reactive *p*-quinone thionium ions under nonoxidative, mild conditions is also noteworthy. An extensive study of these methodologies is now under investigation in our laboratory.

OL0001261