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Fluorescent molecules based on a fluorinated isoxazole scaffold were synthesized and investigated for their photochemical proper-

ties. The introduction of a fluorine substituent into 3,5-diarylisoxazoles led to an increase of fluorescence intensity and exhibited a

redshift in the emission intensity. a-Fluorinated boron ketoiminates (F-BKIs) were also synthesized via a ring-opening reaction of

4-fluoroisoxazoles and exhibited highly fluorescent luminescence and aggregation-induced emission (AIE), showing promise as a

new fluorophore.

Introduction

Fluorescence bioprobes based on conventional organic dyes are
used for enzyme activity measurements and in bioimaging
systems with promising applications in the field of clinical diag-
nostics [1-7]. Most of the fluorescence bioprobes are mainly
excited with near-ultraviolet or blue light ray and the structures
often include fluorescein, rhodamine, or 7-amino-4-methyl-
coumarin (7-AMC) scaffolds as fluorophores. These fluoro-
phores usually exhibit strong fluorescence in dilute solutions,
but most of their emissions are partially or completely quenched

in the solid state or in highly concentrated solutions by aggrega-

tion-caused quenching (ACQ) [8]. On the other hand, there are
molecules that exhibit strong emission even in poor solvents or
in the solid state. This property is referred to as aggregation-in-
duced emission (AIE) and has attracted much attention in the
field of fluorescence bioprobes [9-14]. For example, it is
presumed that prion disease, which is caused by the accumula-
tion of prion protein aggregates in the brain, plays an important
role in the pathophysiological mechanism of prion protein-poly-
merized oligomers. However, since prion protein oligomers

cannot be visualized using fluorescent probes, the use of AIE
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fluorescent probes is being investigated as a tool for analyzing
the causal relationship between prion diseases and prion pro-

teins.

The importance of fluorinated heterocyclic derivatives in the
pharmaceutical and agrochemical industries continues to grow,
with several fluorinated 6-membered heteroaromatic deriva-
tives finding applications in a wide variety of drugs and plant-
protective agents [15-27]. However, there are only a few reports
on the synthesis and properties of fluorinated 5-membered
heteroaromatic systems, especially those comprising two
heteroatoms such as pyrazoles [28,29], isoxazoles [30], and
thiazoles [31,32]. Recently, we reported the selective fluori-
nation of isoxazoles, to give monofluorinated isoxazoles 3 or
trifluorinated isoxazolines 4 in moderate to good yields
(Scheme 1) [33]. In addition, we reported that the reaction
proceeded smoothly by starting with 1,3-diketones (1) to give 3
in excellent yields in a one-pot reaction.
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Scheme 1: Selective fluorination of isoxazoles and one-pot synthesis
of 4-fluoroisoxazoles.
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As part of a wider research program aimed at the applications of
fluorinated 5-membered heteroaromatic systems, in this paper,
we report the fluorescent luminescence characteristics of 4-fluo-
roisoxazoles, the synthesis of a-fluorinated boron ketoiminates
(F-BKIs), and their photochemical properties.

Results and Discussion
Synthesis and optical properties of

4-fluorinated isoxazoles

Although there is a large number of fluorescent molecules, fluo-
rescent probes having an isoxazole scaffold are rare and the
limited examples that are available also contain other fluoro-
phores such as styryl, anthranyl, or pyrenyl groups in the mole-
cules. We recently reported the synthesis of 3,5-diaryl-4-fluo-
roisoxazoles 3 that were found to have planar structures
suggesting that they might have the potential to act as a fluoro-
phore [33]. During the synthesis of 3,5-diaryl 4-fluoroisoxa-
zoles 3 according to the previous method (Scheme 2), we noted
that 3,5-bis(4-methoxyphenyl)-4-fluoroisoxazole (3b) and 3,5-
bis(4-trifluoromethylphenyl)-4-fluoroisoxazole (3¢) exhibited
fluorescent properties by irradiation with a UV lamp.

Among the non-fluorinated isoxazoles, only 2¢ demonstrated
fluorescent emission, although it was very weak. Thus, we
decided to further investigate the photochemical properties and
the results were summarized in Figure 1 and Table 1. Intro-
ducing a fluorine substituent into the isoxazole scaffold led to
an increasing fluorescent intensity and exhibited a redshift in
the emission intensity. Interestingly, the excitation maximum of
3 showed a redshift of approximately 20 nm with the incorpora-

tion of a single fluorine atom into the isoxazole scaffold in com-

N-O
o O Selectfluor™ (1 equiv /
J I D
R R sulfolane
UW 150 °C, 1 h 3':
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N-O
./W
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Scheme 2: One-pot reaction for the synthesis of 3,5-disubstituted 4-fluoroisoxazoles 3. @lsolated yield. Plsolated yield by using conventional heating

(oil bath) at 150 °C for 1 h.
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Figure 1: UV-vis and fluorescence (FL) spectra of compounds 3b and 3c.
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Table 1: UV-vis absorption and fluorescence data for 4-fluoroisoxazoles 3b and 3c, and non-fluorinated compound 2c¢2.

Aabs €

dye

(nm) (M~1-cm™1)
3b 288 60476
3c 274 40251

270 43015

2c

(cm™).

parison with 2¢. This observation suggested that the strong elec-
tronegativity of fluorine might affect the electron density on the

isoxazole ring.

Synthesis of boron ketoiminates and
a-fluorinated boron ketoiminates

Boron ketoiminates (BKIs, 6) are one of the new types of
boron-chelating dye [34-38], their optical properties feature a
large Stokes shift and high molar absorption coefficients () that
are similar to the corresponding boron diketonates. The synthe-
sis and properties of BKIs have been reported recently and they
are easily accessible either from the corresponding 1,3-di-

HCO,NH,

R1MR2

1

N-O
R1//\)\R2 ring-opening reaction
2

Stokes shift

Aem

(nm) (cm-1)P
400 9722
400 11496
370 10010

aMeasurement conditions: 1.0 x 10~3 M in EtOH, excitation at A = 288 nm for 3b, 274 nm for 3¢, and 270 nm for 2¢. ®Stokes shift = 1/Agy — 1/Aem

ketones 1 or from isoxazoles 2 through a ring-opening reaction

(Scheme 3).

Based on the above observations, we attempted to introduce a
fluorine atom into BKIs to access the corresponding a-fluori-
nated boron ketoiminates (F-BKIs, 9). First, we started from
1,3-diketones 1 and reacted them with ammonium formate to
give the corresponding enaminoketones 5 in high yields (see
entries 1-3 in Scheme 4). Then, compounds 5 were treated with
10 equiv of BF3-Et,0 in anhydrous THF solution in the pres-
ence of an excess of Et3N to give BKIs 6 in moderate yields.
However, when the same conditions were applied to the fluori-

FOF
NH, O BF3-Et,0 B
X 2
R g R R1U\/LR2
BKIs (6)

Scheme 3: Synthesis of BKls 6 either from 1,3-diketones 1 or from isoxazoles 2.
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Scheme 4: Synthesis of enaminoketones 5 and 8 and their conversion to BKIs (yields refer to isolated yields; 2boron complexation of 8a to 9a was

not attempted).

nated diketone, 2-fluoro-1,3-diphenylpropane-1,3-dione (7a),
the corresponding enaminoketone 8a was obtained in only
low yield (Scheme 4, entry 4) and we did not attempt the
conversion of 8a towards the a-fluorinated boron ketoiminate
9a.

Next, we attempted the selective fluorination of 6b to obtain the
desired fluorinated analog 9b. However, in the synthesis of
F-BKIs through the selective fluorination of the corresponding

BKIs, the use of 1 equiv of Selectfluor did not give any product
and performing the reaction with excess amounts of Selectfluor
gave rise to the corresponding a,a-difluorinated diketone
(Scheme 5).

As an alternative method to synthesize F-BKIs 9, we turned our
attention to the ring-opening reaction of isoxazoles. The reduc-
tive cleavage of the N-O bond in isoxazoles can be achieved by
transition metals or their complexes to give the corresponding

F.O,F
® 8" 0o o
HN O Selectfluor™ (2 equiv)
e o (0
o ; MeO OMe
N Nome MW 90°C, 20 min
6b 70% 10b

Scheme 5: Attempted selective fluorination of BKI 6b.
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enaminoketones [35,37]. Consequently, we examined several
conditions for the ring opening of fluorinated isoxazoles 3, and
found that using Mo(CO)¢ gave the corresponding a-fluori-
nated enaminoketones 8 in moderate yields (Scheme 6). With
the enaminoketones 8 at hand, the subsequent boron complex-
ation with BF3-Et,O in the presence of Et3N gave the desired
F-BKIs 9 in moderate to good yields.

Optical properties of boron ketoiminates and

o-fluorinated boron ketoiminates

Chujo and co-workers described that BKIs could be a promis-
ing structural motif for having AIE properties [36]. For the
purpose of comparison with the photochemical properties of
BKIs and F-BKIs, we measured the optical properties of com-
pounds 6 and 9 (Table 2). As shown in Figure 2, the UV-vis
absorptions of 6b and 9b in THF decreased upon the addition of
H,0, and white precipitates formed in samples exceeding 80%
of water content. Concurrently, the fluorescent luminescence
(FL) of the solutions of 6b and 9b exhibited an increase in the
emission intensities with increasing water content. It was inter-
esting to note that the excitation maximum of 9b in the aggre-
gated state showed a red-shift by approximately 20 nm based on
the incorporation of a single fluorine atom into the boron
ketoiminate scaffold in comparison with 6b. On the other hand,

Mo(CO)g (1 equiv)

CH3CN/H,0 9:1

r>l—o
R/K%\R
F

o}
N M
R)\FHJ\R THF, reflux, 24h R ‘\KKR
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unfortunately, no similar behavior could be observed for the
other F-BKIs. This effect of 9b bearing OCHj groups on both
benzene rings might be attributed to the energy gap between
HOMO and LUMO based on the electron-density distribution
of boron ketoiminate scaffold induced by the strong electroneg-
ative fluorine atom [39]. The FL intensities were lower than
that of the corresponding BKIs, a similar tendency to what
was also observed in other F-BKIs 9a and 9c. In summary, we
found that the F-BKIs described in this report exhibited AIE be-

havior.

Conclusion

In conclusion, we demonstrated that 3,5-diaryl-4-fluoroisoxa-
zoles exhibited fluorescent luminescence, although, the emis-
sions were not strong. Interestingly the introduction of a fluo-
rine substituent into the isoxazole scaffold led to an increase in
the fluorescent intensity in the aggregated state and exhibited a
redshift in the emission intensity. We also achieved the first
synthesis of a-fluorinated boron ketoiminates (F-BKIs) by the
reductive cleavage of the N-O bond in 4-fluorinated isoxazoles
and demonstrated that F-BKIs exhibited AIE property similarly
to their parent BKI. Further structural modifications of com-
pounds 3 or 9 and applications to fluorescent bioprobes are cur-
rently under investigation.

BF3-Et,0 (10 equiv)
Et3N (10 equiv)

70°C,3h F
F-BKls (9)
entry a-F enaminoketone (8) F-BKis (9)
FOF
NH, O @ ‘B
1 “ HN /o
JTC
F
8a, 61% 9a, 79%
FOF
NH, O @ BT
“ HN" O
2 =
F
MeO OMe MeO F oM
8b, 41% © 9b, 44% ©
FOF
NH, O @ B
HN" "0
N
3 =
JT O
Fgc CF3 F
FsC CF;
8c, 41% 9¢, 66%

Scheme 6: Ring-opening reaction of 4-fluoroisoxazoles 3 and their conversion into F-BKIs 9 (yields refer to isolated yields).
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Table 2: Optical properties of BKlIs and F-BKls.

dye Aabs )\ex(agg)
(nm)2 (nm)
6a 351 352
6b 365 365
6¢c 353 332
9a 362 365
9b 378 380
9c 361 366

Beilstein J. Org. Chem. 2020, 16, 1411-1417.

)\em(%gg) StOk_?SCShift(agg)
(nm) (em™)

478 4489

452 5274

517 10778

446 4976

472 5129

494 7080

aMeasured in THF solution (1.0 x 105 M). ®Measured in THF/H20 1:99 mixed solvent (1.0 x 10-5 M). °Stokes shift = 1/Aex(agg) = 1/Aem(agg) (€m™Y).
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Figure 2: Photochemical properties comparisons of BKls and F-BKls. (a—c) BKI 6b: photograph (a), UV-vis (b), and FL (c) spectra at different sol-
vent compositions of THF/HoO upon excitation at 365 nm (1.0 x 10-3 M); (d—f) F-BKI 9b: photograph (d), UV-vis (e), and FL (f) spectra at different

solvent compositions of THF/H>0 upon excitation at 380 nm (1.0 x 1075 M).
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