

0031-9422(94)00773-X

THREE ACYCLIC BIS-PHENYLPROPANE LIGNANAMIDES FROM FRUITS OF CANNABIS SATIVA*

IWAO SAKAKIBARA, YUKINOBU IKEYA, KOJI HAYASHI, MINORU OKADA and MASAO MARUNO

Tsumura Central Research Laboratories, 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-11, Japan

(Received 19 July 1994)

Key Word Index—Cannabis sativa; Cannabidaceae; cannabisin E; cannabisin F; cannabisin G.

Abstract—Three new acyclic bis-phenylpropane lignanamides, named cannabisin E, F and G were isolated from the fruits of *Cannabis sativa*. Their structures have been elucidated based on spectral and chemical evidence.

INTRODUCTION

In the course of our investigation, we reported the isolation of cannabisin A-D from the fruits of *C. sativa*. In a continuation of this study, we now report the isolation and identification of three new acyclic *bis*-phenylpropane lignanamides from the same material.

RESULTS AND DISCUSSION

From the *n*-BuOH soluble fraction of the aqueous ethanol extract, cannabisin E (1), cannabisin F (2) and cannabisin G (3) were obtained. Cannabisin E (1) was obtained as an amorphous powder. The IR spectrum showed absorption bands for a hydroxyl group (3356 cm^{-1}) , an amide group (1658 cm^{-1}) and an aro-

matic ring (1614 and 1514 cm⁻¹). The molecular formula of 1 was determined to be $C_{36}H_{38}N_2O_9$ by high-resolution FAB mass spectrometry (m/z: 643.2234, $[M + H]^+$). Acetylation of 1 gave tetraacetate (1a) (δ 2.12, 2.27, 2.29 and 2.30) (see Table 1) and methylation of 1 gave pentamethylether (1b) (1 has originally two methoxyls). Thus 1 has three phenolic hydroxyls and an alcohol in its structure.

The NMR spectrum of 1 exhibited two tyramine moieties and two ABX-type coupled aromatic proton signals, along with -CH(OH) - CH - moiety were observed (see Table 1). In the HMBC spectrum of 1, there were cross peaks between benzylic methine proton signal at H-7 (δ 5.17) and C-2 and C-6 aromatic carbon signals (δ 111.6 and 120.4), respectively. A cross peak between

^{*}Part 3 in the Series [1, 2].

Н	1	2	3	lat	16‡	3a†
2	7.16 (d, 2.0)	7.27 (d, 2.0)	7.28 (d, 2.1)	6.90 (d, 1.9)	7.02 (d, 2.0)	7.14 (d, 2.0)
5	6.78 (d, 8.1)	6.75 (d, 8.4)	6.83 (d, 8.4)	7.01 (d, 8.5)	6.28 (d, 8.4)	(6.99 (d, 8.3))
6	6.94 (dd, 8.1, 2.0)	7.03 (dd, 8.4, 2.0)	7.08 (dd, 8.4, 2.1)	7.06 (dd, 8.5, 1.9)	6.90 (dd, 8.4, 2.0)	7.09 (dd, 8.3, 2.0)
7	5.17 (brdd, 6.7, 3.5)	7.27 (s)	7.89 (s)	6.37 (d, 2.5)	5.18 (d, 3.1)	8.00 (s)
8	4.59 (d, 3.5)			4.61 (d, 2.5)	4.54 (d, 3.1)	
2'	7.14 (d, 2.0)	7.35 (d, 2.0)	7.28 (d, 2.1)	7.09 (d, 1.9)	7.11 (d, 2.0)	7.14 (d, 2.0)
5,	6.53 (d, 8.4)	6.78 (d, 8.4)	6.83 (d, 8.4)	6.02 (d, 8.5)	6.89 (d, 8.4)	6.99 (d. 8.3)
6,	6.96 (dd, 8.4, 2.0)	7.14 (dd, 8.4, 2.0)	7.08 (dd, 8.4, 2.1)	6.87 (dd, 8.5, 1.9)	6.98 (dd, 8.4, 2.0)	7.09 (dd, 8.3, 2.0)
7'	7.42 (d, 15.6)	7.46 (d, 15.7)	7.89 (s)	7.47 (d, 15.5)	7.39 (d, 15.7)	8.00 (s)
8,	6.53 (d, 15.6)	6.57 (d, 15.7)		6.19 (d, 15.5)	6.38 (d, 15.7)	
NHa	7.50 (t, 6.0)	7.22 (t, 6.1)	7.11 (brt, 6.5)	7.62 (t, 6.1)	~	6.10(t, 6.1)
qHN	7.21 (t, 6.0)	7.25 (t, 6.1)	7.11 (brt, 6.5)	5.67 (t, 6.1)		6.10 (t, 6.1)
H- α	3.39 (2H, ddd, 14.3,	3.46 (2H, dd, 13.0, 6.0)	3.26 (2H, dddd, 13.5,	3.47 (dt, 14.0, 6.8)	3.49 (dd, 13.4, 6.7)	3.33 (2H, dt, 13.8, 6.9)
	7.3, 6.0)		8.3, 6.5, 2.0)	3.55 (dt, 14.0, 6.8)	3.36 (dd, 13.4 7.0)	
H- α′	3.49 (2H, ddd, 13.1,	3.49 (2H, dd, 13.0, 6.0)	3.49 (2H, dddd, 13.5,	3.63 (2H, dd, 14.0, 6.8)	3.47 (2H, dd, 7.4, 8.1)	3.57 (2H, dt, 13.8, 6.9)
	7.3, 6.0)		8.3, 6.5, 2.0)			
<i>θ</i> -Η	2.63 (2H, dt, 13.4, 7.3)	2.65 (2H, t, 7.1)	2.42 (2H, ddd, 13.5,	2.71 (dt, 14.0, 6.8)	2.65 (dt, 13.4, 6.7)	2.51 (2H, dt, 13.8, 6.9)
			8.3, 2.0)	2.81 (dt, 14.0, 6.8)	2.67 (dt, 13.4, 6.7)	
H-β'	2.75 (2H, <i>t</i> , 7.3)	2.75 (2H, t, 7.1)	2.53 (2H, ddd, 13.5,	2.87 (2H, t, 6.8)	2.78 (2H, t, 7.4)	2.63 (2H, dt, 13.8, 6.9)
			8.3, 2.0)			
2", 6"	$(6.93 \ (d, 8.6))$	6.90 (d, 8.6)	6.84 (d, 8.6)	7.07 (d, 8.6)	6.95(d, 8.8)	6.95 (d, 8.6)
3‴, 6‴	7.05 (d, 8.6)	7.06 (d, 8.6)	6.84 (d, 8.6)	7.21 (d, 8.6)	7.12 (d, 8.8)	6.95 (d, 8.6)
3", 5"	6.70 (d, 8.6)	6.68 (d, 8.6)	6.68 (d, 8.6)	6.91 (d, 8.6)	$(6.69 \ (d, 8.8))$	6.90 (d, 8.6)
3‴, 6‴	6.75 (d, 8.6)	6.75 (d, 8.6)	6.68 (d, 8.6)	7.03 (d, 8.6)	6.82 (d, 8.8)	6.90 (d, 8.6)
OMe	3.80 (2-OMe)	3.94 (3-OMe)	3.74 (3, 3'-OMe)	3.64 (3-OMe)	3.80 (3-OMe)	3.71 (3,3'-OMe)
	3.82 (3'-OMe)	3.69 (3'-OMe)		3.78 (3'-OMe)	3.82 (3'-OMe)	•
				×	3.74 (4'''-OMe)	
					3.74 (4-OMe)	
OAc				2.12 (7-OAc)	3.70 (4"-OMe)	2.27 (4", 4"'-OAc)
				2.27, 2.29, 2.30		2.28 (4,4'-OAc)
				(4,4″,4″'-OAc)		
*Couplir	ng constants (Hz) were given	i in parentheses. Assignments	s were based on the results of	of COLOC, HMBC, HMQC	C, COSY and NOESY specti	ral data.
†Measur	ed in CDCl ₃ .					
‡Measur	ed in CDCl ₃ -MeOH (1:1).					

Table 1. ¹HNMR spectral data of 1–3, 1a, 1b and 3a (500 MHz, acetone- d_6)*

the H-8 proton signal at $\delta 4.59$ and quaternary aromatic carbon signal was assignable to C-4' ($\delta 149.8$). On the other hand, in the NOESY spectrum of 1, there was a cross peak between H-5' ($\delta 6.53$) and the H-8 proton signal. These data supported the presence of an ether function connecting between the C-4' and C-8. Thus 1 is a surinamensin-type lignan derivative [3], that has a 1phenyl-2-phenoxyethanol moiety in its structure.

Furthermore, tyramine moieties were assigned on the basis of long-range couplings (HMBC experiment) between the NH proton signal at δ 7.21 and carbonylcarbon signals at δ 166.2, δ 7.50 and δ 169.9; those carbonylcarbon signals were assignable to C-9' and the C-9, respectively (see Tables 1 and 2). The small $J_{7, 8}$ values of 1, 1a and 1b [1 (3.5 Hz), 1a (2.5 Hz) and 1b (3.1 Hz)], were indicative of *erythro* derivatives [4-7]. These results led us to conclude the structure of cannabisin E to be 1 (see structure).

Cannabisin F (2) was obtained as an amorphous powder. The ¹H NMR spectrum was similar to that of 1, except for the presence of a conjugated olefinic proton $(\delta 7.27)$ in 2, instead of -CH(OH) - CH - function in 1, and its molecular formula $C_{36}H_{36}N_2O_8$ showed 2 was the dehydrate of 1. Revealing the presence of an olefine moiety in 2, 1 was subjected to a dehydration reaction

С	1	2	3	1 a †	1b‡	3a †
1	133.7	125.5	127.8	135.8	134.4	132.6
2	111.6	112.3	113.3	111.4	111.3	113.4
3	148.1	148.3	149.2	151.3	149.6	151.3
4	146.9	147.1	148.3	139.9	149.5	141.3
5	115.2	115.1	116.0	122.9	111.8	123.4
6	120.4	121.5	125.9	119.5	119.9	123.5
7	74.4	123.7	140.5	74.5	74.3	140.1
8	86.5	142.3	127.9	85.4	86.9	128.4
9	169.9	166.1	166.2	168.0	171.2	164.1
1'	131.3	131.7	127.8	130.7	131.1	132.6
2'	112.0	113.6	113.3	111.1	112.0	113.4
3'	151.2	150.2	149.2	149.9	150.8	151.3
4′	149.8	148.8	148.3	148.6	149.8	141.3
5'	117.7	115.9	116.0	117.6	117.4	123.4
6'	121.8	125.5	125.9	121.5	120.5	123.5
7'	139.7	139.6	140.5	140.2	140.8	140.1
8′	121.8	122.0	127.9	120.0	122.2	128.4
9′	166.2	163.3	166.2	165.8	168.2	164.1
α	41.5	41.8	42.6	40.6	41.6	41.3
α'	41.9	42.0	42.6	40.7	42.1	41.3
β	35.5	35.5	35.5	35.0	35.1	34.8
β'	35.7	35.7	35.5	35.0	35.4	34.8
1″	130.8	130.8	130.9	136.4	131.6	135.9
2″	130.5	130.5	130.4	129.6	130.4	129.5
3″	116.1	116.1	116.0	121.6	114.6	121.7
4"	156.7	156.7	156.6	149.3	159.1	149.3
5″	116.1	116.1	116.0	121.6	114.6	121.7
6″	130.5	130.5	130.4	129.6	130.4	129.5
1‴	131.1	131.1	130.9	136.5	132.0	135.9
2‴	130.5	130.5	130.4	129.8	130.4	129.5
3‴	116.1	116.1	116.0	121.8	114.6	121.7
4‴	156.7	156.7	156.6	149.3	159.2	149.3
5‴	116.1	116.1	116.0	121.8	114.6	121.7
6‴	130.5	130.5	130.4	129.8	130.4	129.5
Methoxyl	56.2 (C-3)	56.0 (C-3')	56.1 (C-3)	55.6 (C-3)	55.6 (C-4)	55.8 (C-3)
	56.3 (C-3')	56.2 (C-3)	56.1 (C-3')	56.0 (C-3')	56.2 (C-3)	55.8 (C-3')
					56.2 (C-4'')	
					56.3 (C-3')	
Acetoxyl				20.6 168.8	56.4 (C-4''')	20.6 168.5
				20.9 169.3		(C-4,4')
				21.1 169.6		21.1 169.4
				21.1 169.7		(C-4", 4"")

Table 2. ¹³C NMR spectral data of 1-3, 1a, 1b and 3a (125 MHz, acetone- d_6)*

*All assignments were based on COLOC, HMBC and HMQC experiments.

†Measured in CDCl₃.

[‡]Measured in CDCl₃-MeOH (1:1).

with *p*-toluenesulphonic acid in THF, giving a dehydrant which was identified with cannabisin F. In the COLOC spectrum of **2**, the conjugated olefinic proton (δ 7.27) has two cross peaks with C-2 (δ 112.3) and C-6 (δ 121.5), respectively. These results showed that the olefine moiety was located at the C-7 and C-8 position. From the above observations, the structure of cannabisin F was concluded as **2** (see structure).

Cannabisin G (3) was obtained as an amorphous powder. The ¹H NMR spectrum of 3 was similar to that of N-trans-feruloyltyramine, except for the presence of a singlet olefinic proton signal (δ 7.89), instead of trans olefine proton signals in N-trans-feruloyltyramine. The molecular formula of $3(C_{36}H_{36}N_2O_8)$ showed that 3 was a dimer of N-trans-feruloyltyramine. Acetylation of 3 gave tetraacetate 3a (FAB-MS m/z: 793 [M + H]⁺), supporting its dimeric structure. In the COLOC spectrum of 3a, there were cross peaks between this singlet olefine proton signal (δ 8.00, 2H) and an aromatic methine carbon signal (δ 113.4, C-2 and C-2'), another aromatic methine carbon signal (δ 123.4, C-6 and C-6') and a carbonylcarbon signal (δ 164.1), respectively. These data suggested that this singlet signal was assignable to the H-7 and the H-7'. Therefore these feruloyl-tyramine units were connected between the C-8 and the C-8' positions. From these findings, cannabisin G has a biphenylbutadiene moiety and its structure was elucidated as 3 (see structure).

All these cannabisins were presumed to be synthesized during the process of oxidative coupling according to the biosynthesis of lignan [8–10] *N-trans*-feruloyltyramine was subjected to a catalytic condensation with aqueous FeCl₃ solution and acetone, affording cannabisin E, F and G as minor products, along with cannabisin D and grossamide as major products. Cannabisin E, F and G are the first naturally occurring acyclic *bis*-phenylpropane lignanamides.

EXPERIMENTAL

Mps: uncorr; ¹H and ¹³C NMR were measured at 500 MHz and 125 MHz, respectively, with TMS as int. standard; 2D NMR: 500 MHz under the same conditions: EI-MS: 70 eV; prep. TLC: prepacked CIG Si-10 column (silica gel, 2.2 cm i.d. \times 30 cm); prep. HPLC: YMC R-354 (ODS, 5 cm i.d. \times 50 cm): CC: Silica gel 60 (70–230 mesh). Acetylation was conducted with Ac₂O and pyridine. Methylation was conducted by methyliodide with K₂CO₃ and Me₂CO. Plant material was purchased from a Japanese market and a voucher specimen stored in the Herbarium stock room of our Laboratory.

Extraction and isolation. Fruits of C. sativa L. (10 kg) were extracted with boiling H_2O -EtOH (1:1) (81×3). The extract was coned to 4 l, which was then extracted with CHCl₃ (20 l), and *n*-BuOH (20 l), successively. The *n*-BuOH extract was coned to dryness to give a brown mass (239 g), which was chromatographed on Diaion HP-20 eluted with H_2O (40 l), followed by MeOH (50 l). The MeOH eluate was coned to give a yellow mass (172 g), which was chromatographed on silica gel, eluted with

CHCl₃-MeOH [4:1 (2 l)], then purified by prep. HPLC $[H_2O-MeCN-MeOH (7:2:2)]$ to give 1 (120 mg), 2 (45 mg) and 3 (20 mg), respectively.

Cannabisin E (1). Amorphous powder. FAB-MS m/z: 643.2631 ($[M + H]^+$, calcd for C₃₆H₃₉N₂O₉; 643.2656). IR v_{max}^{KBr} cm⁻¹: 3356 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV λ_{max}^{MeOH} nm (log ε): 226 (4.16), 283 (4.43), 313 (4.31). ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Cannabisin F (2). Amorphous powder. FAB-MS m/z: 625.2532 ($[M + H]^+$, calcd for $C_{36}H_{37}N_2O_8$; 625.2550). IR v_{max}^{KBr} cm⁻¹: 3408 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV λ_{max}^{MeOH} nm (log ε): 287 (4.55), 320 (4.57). ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Cannabisin G (3). Amorphous powder. FAB-MS m/z: 625.2533 ([M + H]⁺, calcd for $C_{36}H_{37}N_2O_8$; 625.2550). IR v_{max}^{KBr} cm⁻¹: 3356 (OH), 1658 (C=O), 1614, 1514 (benzene ring). UV λ_{max}^{MeOH} nm (log ε): 283 (4.48), 316 (4.28). ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Cannabisin E trimethyl ether (1a). Amorphous powder. FAB-MS m/z: 625.2522 ([M + H]⁺, calcd for $C_{39}H_{45}N_2O_9$; 685.3125). IR ν_{max}^{KBr} cm⁻¹: 1650, 1614, 1594, 1512. UV λ_{max}^{MeOH} nm (log ε): 225 (4.67), 280 (4.43), 284 (4.45), 314 (4.34). ¹H NMR: see Table 1. ¹³CNMR: see Table 2. Cannabisin E tetraacetate (1b). Needles mp 123-125°. FAB-MS m/z: 811 ([M + H]⁺.IR v_{max}^{KBr} cm⁻¹: 1760, 1658, 1606, 1536, 1218. UV λ_{max}^{MeOH} nm (log ε): 282 (4.37), 290 (4.35), 313 (4.29). ¹H NMR: see Table 1. ¹³C NMR: see Table 2. Cannabisin G tetramethyl ether (3a). Amorphous powder. FAB-MS m/z: 793 [M $(+ H]^+$. IR v_{max}^{KBr} cm⁻¹: 1768, 1642, 1600, 1536, 1194. UV λ_{max}^{MeOH} nm (log ε): 283 (4.44), 316 (4.32). ¹H NMR: see Table 1. ¹³C NMR: see Table 2.

Dehydration of 1 with p-toluenesulphonic acid. To a soln of 1 (8.4 mg) with THF (10 ml) was added p-toluenesulphonic acid (2 mg). The reaction mixt. was refluxed overnight. The reaction mixt. was diluted with H_2O and then extracted with EtOAc. The EtOAc layer was evapd and then purified by prep. LC [CHCl₃-MeOH (1:2, 180 ml)] to give an amorphous powder (5.5 mg), which was identified by direct comparison (¹H, ¹³C NMR, IR, UV) with an authentic sample of cannabisin F (2).

Catalytic condensation of N-trans-feruloyltyramine. To a soln of N-trans-feruloyltyramine (isolated from this material, 4.13 g) in Me₂CO (25 ml) was added aq. FeCl₃ soln (10%, 25 ml) kept at room temp. for 2 days. The reaction mixt. was treated with 2M HCl soln (10 ml), then extracted with EtOAc (100 ml, twice). The EtOAc layer was washed with H₂O and then purified by prep. HPLC (H₂O-MeOH-MeCN, 7:2:2, 4 l) to afford cannabisin D (832 mg), grossamide (535 mg), cannabisin E (22 mg) and cannabisin G (14 mg). Cannabisin F could not be isolated, but was identified by co-TLC and co-injection on analytical HPLC.

Acknowledgements—We are grateful to Dr K. Sugama of this laboratory for 500 MHz NMR measurements and to Mr K. Kano for FAB-MS.

REFERENCES

1. Sakakibara, I., Katsuhara, T., Ikeya, Y., Hayashi, K. and Mitsuhashi, H. (1991) *Phytochemistry* **30**, 3013.

- 2. Sakakibara, I., Ikeya, Y., Hayashi, K. and Mitsuhashi, H. (1992) Phytochemistry 31, 3219.
- 3. Agrawal, P. K. and Thakur, R. S. (1985) Magn. Reson. Chem. 23, 389.
- Miyase, T., Ueno, A., Tanizawa, N., Kobayashi, H. and Karasawa, H. (1987) Chem. Pharm. Bull. 35, 1109.
- Hattori, M., Hada, S., Shu., Y., Kakiuchi, N. and Namba, T. (1987) Chem. Pharm. Bull. 35, 668.
- Charles, H. L., Nist, B. J. and McCarthy, J. L. (1964) J. Am. Chem. Soc. 86, 1186.
- Hattori, M., Yang, X., Shu, Y., Kakiuchi, N., Tezuka, Y., Kikuchi, T. and Namba, T. (1988) *Chem. Pharm. Bull.* 36, 648.
- Sarkanen, K. V. and Wallis, A. F. A. (1973) J. Chem. Soc. Perkin I 1878.
- 9. Sarkanen, K. V. and Wallis, A. F. A. (1973) J. Chem. Soc. Perkin I 1869.
- 10. Kuo, Y., Kuo, P. and Lin, S. (1983) Proc. Natl Sci. Counc. B. ROC. 7, 28.