

Available online at www.sciencedirect.com

Carbohydrate Research 339 (2004) 1155-1162

Carbohydrate RESEARCH

Synthesis of a 6^V-sulfated mannopentasaccharide analogue related to PI-88

Guofeng Gu, Guohua Wei and Yuguo Du*

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China

Received 5 December 2003; accepted 31 January 2004

Abstract—An efficient and convergent synthesis of a regioselectively 6^{V} -sulfated mannopentasaccharide derivative 1c, octyl 6-*O*-sulfo- α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranoside, was achieved by a '3 + 2' strategy. The target was designed to mimic the promising anticancer agent PI-88 and was obtained from the building blocks, octyl 3,4,6-tri-*O*-benzoyl- α -D-mannopyranoside (3), allyl 2,4,6-tri-*O*-benzoyl-3-*O*-(4-methoxybenzyl)- α -D-mannopyranoside (6), and 6-*O*-acetyl-2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate (11), under TMSOTf-catalyzed glycosylation conditions. Compound 1c displays a mild anti-angiogenic activity based on a chorio-allantoic membrane (CAM) model study.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Sulfated oligosaccharides; Glycosylation; Mannose; Anti-angiogenic

1. Introduction

The highly branched extracellular phosphomannan (PS), yielded by the yeast pichia (Hansenula) holstii NRRL Y-2448 when grown in a culture medium containing an excess of orthophosphate,¹ is composed of a high-molecular-weight phosphomannan core (PC) and a low-molecular-weight oligosaccharide phosphate fraction.² Both of them have become valuable tools and probes for studying mannose-6-phosphate receptors.³ Recent work has revealed that the low-molecular-weight fraction, which accounts for approximately 90% of the PS, is derived from the phosphorylated side-chain oligosaccharides attached to the PC.⁴ The major oligosaccharide present in this fraction,^{2a,4,5} and the main repeating unit found in the phosphorylated side chains, is the mannose-containing pentasaccharide phosphate 1a (Fig. 1). Its fully sulfated derivative 1b, known as PI-88, has been identified as a potent inhibitor of tumor growth, metastasis, and angiogenesis, and is currently in

Figure 1. Chemical structures of PI-88 and analogues.

Phase II clinical trials.⁶ PI-88 appears to block tumor growth by preventing the interaction of heparan sulfate with fibroblast growth factor and its receptor.⁷ PI-88 is believed to block metastasis by inhibiting heparanase, blocking the breakdown of the extracellular matrix, thus preventing the spread of tumor cells.⁸ To further understand the structure–activity relationships of this mannose-containing pentasaccharide and its derivatives, we launched a project to prepare PI-88 analogues with different sulfation positions and different numbers of sulfate groups, and investigate the bioactive contribution on each of them. We herein report the first synthesis of a mimic, 6^V-O-sulfo pentasaccharide (**1c**), using a '3 + 2' strategy.

^{*} Corresponding author. Tel.: +86-10-62914475; fax: +86-10-629235-63; e-mail: duyuguo@mail.rcees.ac.cn

^{0008-6215/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2004.01.020

2. Results and discussion

To complete the synthesis of target molecule 1c, we designed a convergent strategy using disaccharide 13 as acceptor and trisaccharide trichloroacetimidate 17 as donor, which were assembled by the building blocks 3, 7, 8, and 11, respectively.

We started from the preparation of disaccharide acceptor 13 (Scheme 1). To increase the hydrophobicity of the molecule, an octyl chain was first attached to the mannose residue at the reducing end. To our delight, when coupling of 2-*O*-acetyl-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate (2)⁹ and 1-octanol

Scheme 1. (a) TMSOTf, CH_2Cl_2 , 61% for 3; 37% for 4; 91% for 12; 89% for 14; 85% for 16; 72% for 18. (b) 3% AcCl, 1:1 MeOH– CH_2Cl_2 , 87% for 3; 93% for 19. (c) Bu₂SnO, MeOH; PMBCl, toluene; BzCl, Pyr, 55%. (d) PdCl₂, MeOH; Cl₃CCN, DBU, 72% for 7; 67% for 15; 67% for 17. (e) CAN, MeCN–toluene–H₂O, 88% for 8; 80% for 13. (f) TBSCl, BzCl, Pyr, 93%. (g) concd H₂SO₄, Ac₂O, 63%. (h) NH₃, 3:1 THF–MeOH; Cl₃CCN, DBU, 67% for two steps. (i) SO₃·Py, Pyr, 91%. (j) NaOMe, MeOH, 97%.

in anhydrous dichloromethane in the presence of catalytic amount of TMSOTf at 0 °C, deacetylated octyl glycoside 3 was obtained as a major product (61%), while the originally expected compound 4 was obtained in only 37% yield. The similar result was also observed in the preparation of allyl β -D-glucopyranoside.¹⁰ Further deacetylation of 4 with 3% acetyl chloride in MeOH-CH₂Cl₂ (v/v, 1:1) co-solvent smoothly provided 2-OH acceptor **3** in 87% yields.¹¹ The ¹H NMR spectra of 3 gave H-2 (δ : 4.31 ppm) shifted upfield, indicating the correct structure of compound 3. Treatment of allyl α -D-mannopyranoside (5) with dibutyltin oxide and pmethoxybenzyl chloride, followed by benzoylation with benzoyl chloride in pyridine, regioselectively furnished p-methoxybenzylated derivative 6 in a total yield of 55%. Deallylation of 6 with palladium dichloride (0.5 equiv) in methanol,¹² followed by activation of the anomeric hydroxyl group with trichloroacetonitrile and 1,8-diazabicyclo[4.3.0]non-5-ene (DBU), yielded the mannopyranosyl Schmidt donor 7 (72%, two steps). Treatment of **6** with ceric ammonium nitrate $(CAN)^{13}$ in a 1:1:1 CH₃CN-toluene-H₂O solvent system furnished synthon 8 in good yield. Regioselective silulation of 5 with *tert*-butylchlorodimethylsilane (TBSCl) in pyridine and in situ benzoylation with benzoyl chloride gave a high yield of 9. Building block 11 was prepared in 43%overall yield from 9 via following three steps: acetolysis with 3% concentrated H₂SO₄ in Ac₂O; regioselective deacetylation with NH3 in 3:1 THF-MeOH14, and activation of the anomeric carbon with Cl₃CCN and DBU.

Coupling of 7 and 3 in anhyd CH₂Cl₂ at 0 °C in the presence of TMSOTf (10% equiv) afforded the α -(1 \rightarrow 2)-linked disaccharide 12. The chemical shifts of H-1 (δ : 5.01 ppm, J 1.6 Hz), and H-1' (δ : 5.18 ppm, J 1.7 Hz) on ¹H NMR spectra, together with reasonable ¹J_{C-1,H-1} values (171 and 173 Hz, respectively), confirmed the α bonds in 12.⁹ CAN-promoted cleavage of *p*-methoxybenzyl group from 12 was carried out smoothly to give disaccharide acceptor 13 in 80% yield.

Trisaccharide donor 17 was assembled convergently from building blocks 8 and 11. Condensation of 8 and 11 in anhyd CH_2Cl_2 with TMSOTf as a promoter furnished high yield of disaccharide 14, which was then deallylated with palladium chloride (0.5 equiv) in methanol and activated by trichloroacetimidate formation to give disaccharide donor 15 in 67% yield over three steps. Glycosylation of 8 and 15 under standard conditions afforded trisaccharide 16 in a yield of 85%. Trisaccharide donor 17 was thus obtained in 67% yield through two steps (deallylation: PdCl₂/MeOH; trichloroacetimidate formation: Cl₃CCN–DBU–CH₂Cl₂).

Coupling of trisaccharide donor 17 and disaccharide acceptor 13 proceeded in anhydrous dichloromethane with the promotion of TMSOTf generated fully protected pentasaccharide 18 (72%). Peaks at δ 4.90, 4.99,

 Table 1. Preliminary study on anti-angiogenic activity of compound 1c

Sample	Total number of blood vessel	Large blood vessel ^a	Medium blood vessel ^b	Small blood vessel ^c
Control	43.67 ± 9.35	3.87 ± 1.88	5.56 ± 1.81	32.00 ± 6.00
1c (1 mg/mL)	$29.75 \pm 6.25^{**}$	2.50 ± 1.83	$2.83 \pm 1.64^{**}$	$23.67 \pm 6.71^*$
1c (2 mg/mL)	$27.38 \pm 8.17^{**}$	1.75 ± 1.03	$2.25 \pm 1.39^{**}$	$23.87 \pm 6.33^*$

 $p^* < 0.01, p^* < 0.05.$

^aBlood vessel diameter $\phi \ge 0.1$ mm.

 $^{\rm b}0.1 > \phi \ge 0.05 \,\rm mm.$

 $^{\rm c}\phi < 0.05\,{\rm mm}.$

5.09, 5.25, 5.36 in the ¹H NMR spectrum and δ 98.54, 98.66, 99.17, 99.18, 99.57 in the ¹³C NMR spectrum showed all H-1s and C-1s in this structure. Regioselective removal of acetyl group of 18 with 3% AcCl in MeOH–CH₂Cl₂ (\rightarrow 19), followed by C-6^V sulfation with the SO_3 ·Py complex in pyridine, after passing through a Dowex-50 ion exchange resin column (Na⁺), afforded the sodium salt of mono-sulfated pentasaccharide 20 in 85% yield (over two steps). ¹H NMR spectra of compounds 19 and 20 showed that the chemical shifts of H- $6a^{V}$ and H-6b^V moved apparently from upfield (δ : 3.16, 3.24 ppm, 19) to downfield (δ : ~3.70 ppm, 20). Finally, deacylation of **20** with sodium methoxide in methanol completed the desired pentasaccharide 1c in 97% yield. ¹H NMR, ¹³C NMR, and ESI-mass spectra of **1c** are all fulfilled by the designed structure.

The chorioallantoic membrane (CAM) of the chick embryo has been widely used as a semi-quantitative bioassay of angiogenic activity and a model to screen the angiogenic inhibitor or stimulator. We detected the preliminary anti-angiogenic activity of **1c** with the CAM model following the procedure described in the literature.¹⁵ The result, listed in Table 1, showed that **1c** is a mild angiogenesis inhibitor.

In summary, a practical and convergent synthesis of the 6^{V} -sulfated mannose-pentasaccharide derivative, a structural analogue of PI-88, was achieved via a '3 + 2' strategy. The strategic principal described here is currently employed in the assembly of clustered derivatives. Preparation and testing of more PI-88 analogues containing specific sulfate groups are under way in our lab and will be reported in due course.

3. Experimental

3.1. General methods

Optical rotations were determined at 25 °C with a Perkin–Elmer Model 241-Mc automatic polarimeter. ¹H NMR, ¹³C NMR spectra were recorded with ARX 400 spectrometers for solutions in CDCl₃ and D₂O. Chemical shifts are given in ppm downfield from internal Me₄Si, or DSS in case of D₂O. Mass spectra were measured using the ESI technique to introduce the sample. Thin-layer chromatography (TLC) was performed on silica gel HF₂₅₄ with detection by charring with 30% (v/v) H₂SO₄ in MeOH or in some cases by a UV detector. Column chromatography was conducted by elution of a silica gel column with EtOAc–petroleum ether (bp 60–90 °C) as the eluent. Solutions were concentrated at <60 °C under diminished pressure.

3.2. Octyl 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranoside (4) and octyl 3,4,6-tri-O-benzoyl-α-D-mannopyranoside (3)

To a solution of 2-O-acetyl-3,4,6-tri-O-benzoyl-α-Dmannopyranosyl trichloroacetimidate (1.28 g, 1.88 mmol) and 1-octanol (0.36 mL, 2.26 mmol) in anhyd CH₂Cl₂ (8 mL) at 0 °C was added TMSOTf (25 µL, 0.14 mmol) under an N₂ atmosphere. The reaction mixture was stirred under these conditions for 2h, then neutralized with Et₃N, and concentrated to dryness. Column chromatography (6:1 to 4:1 petroleum ether-EtOAc) of the residue gave syrupy 4 (450 mg, 37%) and 3 (694 mg, 61%), respectively. Acetyl chloride (0.3 mL) was added to a solution of compound 4 (428 mg, 0.66 mmol) in a 1:1 CH₂Cl₂-MeOH (10 mL,) solvent system. The mixture was stirred overnight, and then the resulting mixture was neutralized with pyridine (0.6 mL), concentrated to dryness, and purified on a silica gel column with 4:1 petroleum ether-EtOAc as the eluent to give 3 as an amorphous solid. Physical data for 4: $\left[\alpha\right]_{D}^{25}$ -7 (c 2, CHCl₃); ¹H NMR (CDCl₃): δ 0.89 (t, 3H, –(CH₂)₇CH₃), 1.21-1.39 (m, 10H, -CH₂CH₂(CH₂)₅CH₃), 1.61-1.71 (m, 2H, -CH₂CH₂(CH₂)₅CH₃), 2.14 (s, 3H, CH₃CO), 3.52, 3.78 (2 dt, 2H, J 9.9, 7.0 Hz, OCH₂), 4.37 (ddd, 1H, H-5), 4.48 (dd, 1H, *J*_{6a,6b} 12.0, *J*_{5,6a} 5.6 Hz, H-6a), 4.61 (dd, 1H, J_{5.6b} 2.8 Hz, H-6b), 4.93 (d, 1H, J_{1.2} 1.6 Hz, H-1), 5.47 (dd, 1H, J_{2,3} 3.3 Hz, H-2), 5.80 (dd, 1H, J_{3,4} 10.0 Hz, H-3), 5.89 (t, 1H, J_{4,5} 10.0 Hz, H-4), 7.34–8.07 (m, 15H, Ph). Anal. Calcd for $C_{37}H_{42}O_{10}$: C, 68.71; H, 6.55. Found: C, 69.02; H, 6.47. Physical data for **3**: $[\alpha]_D^{25}$ +11 (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃): δ 0.89 (t, 3H, –(CH₂)₇CH₃), 1.22-1.38 (m, 10H, -CH₂CH₂(CH₂)₅CH₃), 1.60-1.70 (m, 2H, -CH₂CH₂(CH₂)₅CH₃), 3.52, 3.79 (2 dt, 2H, J 9.6, 6.8 Hz, OCH₂), 4.31 (br s, 1H, H-2), 4.36 (ddd, 1H, H-5), 4.48 (dd, 1H, *J*_{6a,6b} 12.0, *J*_{5,6a} 5.6 Hz, H-6a), 4.58 (dd, 1H, J_{5.6b} 2.8 Hz, H-6b), 4.97 (d, 1H, J_{1.2} 1.6 Hz, H-1), 5.68

(dd, 1H, $J_{2,3}$ 3.2, $J_{3,4}$ 10.0 Hz, H-3), 5.91 (t, 1H, $J_{4,5}$ 10.0 Hz, H-4), 7.34–8.05 (m, 15H, *Ph*). Anal. Calcd for $C_{35}H_{40}O_9$: C, 69.52; H, 6.67. Found: C, 69.87; H, 6.80.

3.3. Allyl 2,4,6-tri-*O*-benzoyl-3-*O*-(4-methoxybenzyl)-α-D-mannopyranoside (6)

The mixtures of allyl α -D-mannopyranoside (4.42 g, 20 mmol) and dibutyltin oxide (5.0 g, 20 mmol) were dissolved into anhyd MeOH (150 mL). The reaction mixture was refluxed for 3 h, concentrated to dryness under reduced pressure. To a solution of the product generated above in anhyd toluene (120 mL) was added Bu₄NI (7.4 g, 20 mmol) and 4-methoxybenzyl chloride (4.1 mL, 30 mmol). The mixture was stirred at 80 °C for 16 h, concentrated to dryness, and purified on a silica gel column (1:3 petroleum ether-EtOAc) to give allyl 3-O-(4-methoxybenzyl)-α-D-mannopyranoside. The above product was dissolved in pyridine (20 mL), and benzoyl chloride (7.0 mL) was added dropwise at 0 °C. Then, the reaction mixture was stirred overnight at rt and co-evaporated with toluene under diminished pressure to remove pyridine. Purification of the residue by silicagel column chromatography (5:1 petroleum ether-EtOAc) afforded **6** (7.18 g, 55%) as a syrup: $[\alpha]_D^{25} - 35 (c^2, c^2)$ CHCl₃); ¹H NMR (CDCl₃): δ 3.70 (s, 3H, OCH₃), 4.06– 4.11 (m, 1H, one proton of CH₂=CHCH₂O-), 4.16 (dd, 1H, J_{2,3} 3.2, J_{3,4} 9.8 Hz, H-3), 4.20–4.27 (m, 2H, H-5 and one proton of CH2=CHCH2O-), 4.37-4.42 (m, 2H, one proton of PhCH₂ and H-6a), 4.58–4.67 (m, 2H, H-6b and one proton of PhC H_2), 5.07 (d, 1H, $J_{1,2}$ 1.2 Hz, H-1), 5.21–5.33 (m, 2H, CH₂=CHCH₂O–), 5.68 (dd, 1H, H-2), 5.84 (t, 1H, $J_{3,4} = J_{4,5}$ 9.8 Hz, H-4), 5.89–5.99 (m, 1H, CH₂=CHCH₂O-), 6.60 (d, 2H, CH₃OC₆H₄CH₂), 7.04 (d, 2H, CH₃OC₆H₄CH₂), 7.07–8.11 (m, 15H, Ph). Anal. Calcd for C₃₈H₃₆O₁₀: C, 69.93; H, 5.56. Found: C, 70.34; H, 5.50.

3.4. 2,4,6-Tri-*O*-benzoyl-3-*O*-(4-methoxybenzyl)- α -D-mannopyranosyl trichloroacetimidate (7)

To a solution of compound **6** (2.3 g, 3.53 mmol) in anhyd MeOH (20 mL) was added palladium dichloride (312 mg, 1.68 mmol). The mixture was stirred at rt until TLC indicated the completion of the reaction. The resulting mixture was filtered, and the filtrate was concentrated. The residue was subjected to a silica gel column (3:1 petroleum ether–EtOAc) to give a pure intermediate, which was then dissolved in anhyd CH₂Cl₂ (8 mL). To the solution was added trichloroacetonitrile (1.1 mL, 11 mmol) and DBU (0.1 mL, 1.0 mmol) at rt. The reaction mixture was stirred for 2 h, concentrated, and the residue was purified on column chromatography (5:1 petroleum ether–EtOAc) to give syrupy 7 (1.92 g, 72% for two steps): $[\alpha]_D^{25}$ –10 (*c* 2, CHCl₃); ¹H NMR (CDCl₃): 3.74 (s, 3H, OCH₃), 4.19 (dd, 1H, J_{2.3} 3.3, J_{3.4}

9.9 Hz, H-3), 4.34–4.40 (m, 2H, H-5, H-6a), 4.71 (d, 1H, *J* 12.2 Hz, one proton of $CH_3OC_6H_4CH_2$), 4.59–4.68 (m, 2H, H-6b, one proton of $CH_3OC_6H_4CH_2$), 5.79 (dd, 1H, H-2), 5.94 (t, 1H, $J_{4,5}$ 9.9 Hz, H-4), 6.47 (d, 1H, $J_{1,2}$ 2.0 Hz, H-1), 6.64 (d, 2H, $CH_3OC_6H_4CH_2$), 7.06 (d, 2H, $CH_3OC_6H_4CH_2$), 7.37–8.11 (m, 15H, *Ph*), 8.77 (s, 1H, *NH*). Anal. Calcd for $C_{37}H_{32}Cl_3NO_{10}$: C, 58.70; H, 4.26. Found: C, 59.01; H, 4.22.

3.5. Allyl 2,4,6-tri-O-benzoyl-α-D-mannopyranoside (8)

Ceric ammonium nitrate (CAN; 2.98 g, 5.43 mmol) was added to a solution of 6 (2.36 g, 3.62 mmol) in 3:4:3 toluene-MeCN-H₂O (30 mL), and the mixture was stirred at rt for 2h, at the end of which time TLC (3:1 petroleum ether-EtOAc) indicated the completion of the reaction. The resulting mixture was diluted with EtOAc, washed successively with water, satd aq NaHCO₃, and brine. The organic phase was dried over anhyd Na₂SO₄ and concentrated, then subjected to a silica gel column chromatography (3:1 petroleum ether-EtOAc) to afford syrupy **8** (1.69 g, 88%): $[\alpha]_D^{25}$ –5 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 4.08–4.35 (m, 3H, H-5, CH₂=CHCH₂O), 4.43–4.50 (m, 2H, H-3, H-6a), 4.68 (dd, 1H, J_{6a,6b} 12.1, J_{5,6b} 2.5 Hz, H-6b), 5.11 (d, 1H, J_{1,2} 1.6 Hz, H-1), 5.23-5.37 (m, 2H, CH₂=CHCH₂O), 5.45 (dd, 1H, J_{2,3} 3.4 Hz, H-2), 5.71 (t, 1H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.89–6.01 (m, 1H, CH₂=CHCH₂O), 7.38–8.09 (m, 15H, Ph). Anal. Calcd for C₃₀H₂₈O₉: C, 67.66; H, 5.30. Found: C, 67.87; H, 5.23.

3.6. Allyl 2,3,4-tri-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-mannopyranoside (9)

To a solution of allyl α -mannopyranoside (2.20 g, 10 mmol) in pyridine (10 mL) was slowly added a solution of TBSCl (1.66 g, 11 mmol) in pyridine (6 mL) over a period of 10 min. The mixture was stirred for 4 h, and then a solution of BzCl (4.70 mL, 40 mmol) in pyridine (8 mL) was added dropwise in 30 min. The reaction mixture was stirred for another 10h, at which time the reaction was completed. The resulting mixture was co-evaporated with toluene (30 mL) to dryness. The residue was subjected to a silica gel column using 5:1 petroleum ether-EtOAc as eluent to afford 9 (6.04g, 93%) as a syrup: $[\alpha]_{D}^{25}$ -111 (*c* 4, CHCl₃); ¹H NMR (CDCl₃): δ 0.21, 0.32 (s, 6H, 2 CH₃), 0.90 (s, 9H, (CH₃)₃CSi), 3.82-3.91 (m, 2H, J_{6a,6b} 11.4, J_{6a,5} 2.8, J_{6b,5} 4.7 Hz, H-6a, H-6b), 4.11–4.20 (m, 2H, H-5, CH₂=CHCH₂O), 4.31–4.36 (m, 1H, CH₂=CHCH₂O), 5.13 (d, 1H, J_{1,2} 1.7 Hz, H-1), 5.27-5.43 (m, 2H, CH2=CHCH2O), 5.70 (dd, 1H, J2,3 3.3 Hz, H-2), 5.89 (dd, 1H, J_{3.4} 10.1 Hz, H-3), 5.94–6.06 (m, 2H, H-4, CH₂=CHCH₂O), 7.25-8.13 (m, 15H, Ph). Anal. Calcd for C₃₆H₄₂O₉: C, 66.85; H, 6.55. Found: C, 66.98; H, 6.42.

3.7. 1,6-Di-*O*-acetyl-2,3,4-tri-*O*-benzoyl-α-D-mannopyranose (10)

To a solution of compound of **9** (3.42 g, 5.29 mmol) in Ac₂O (40 mL) was added concentrated H₂SO₄ (2 mL) at rt. The reaction mixture was stirred for 15 h, then poured into water (100 mL), extracted with CH₂Cl₂ (3×100 mL). The organic phase was washed successively with satd aq NaHCO₃, brine, dried over anhyd Na₂SO₄, concentrated, and purified on a silica gel column with 2:1 petroleum–EtOAc as eluent to afford white solid **10** (1.92 g, 63%): $[\alpha]_D^{25}$ –107 (*c* 2, CHCl₃); ¹H NMR (CDCl₃): δ 2.08, 2.28 (s, 6H, 2 CH₃CO), 4.25–4.40 (m, 3H, H-5, H-6a, H-6b), 5.71 (dd, 1H, *J*_{2,3} 3.2 Hz, H-2), 5.89 (dd, 1H, *J*_{3,4} 10.0 Hz, H-3), 6.02 (t, 1H, *J*_{4,5} 10.0 Hz, H-4), 6.37 (d, 1H, *J*_{1,2} 2.0 Hz, H-1), 7.27–8.12 (m, 15H, *Ph*). Anal. Calcd for C₃₁H₂₈O₁₁: C, 64.58; H, 4.90. Found: C, 64.78; H, 4.97.

3.8. 6-*O*-Acetyl-2,3,4-tri-*O*-benzoyl-α-D-mannopyranosyl trichloroacetimidate (11)

Ammonia was bubbled into a solution of compound 10 (1.86 g, 3.23 mmol) in 7:3 THF-MeOH (20 mL) for 15 min. The resulting mixture was stirred for 30 min and evaporated to dryness under reduced pressure. To the solution of the product generated above in CH₂Cl₂ (8 mL) was added trichloroacetonitrile (1.0 mL, 10 mmol) and DBU (0.1 mL, 1.0 mmol) at rt. The mixture was stirred for 2h and then concentrated. The residue was subjected to a silica gel column (4:1 petroleum ether-EtOAc) to afford syrupy 11 (1.47 g, 67%): $[\alpha]_{D}^{25}$ –15 (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 2.08 (s, 3H, CH₃CO), 4.34 (d, 2H, J_{5.6} 3.9 Hz, H-6a, H-6b), 4.50 (dt, 1H, H-5), 5.90–5.96 (m, 2H, J_{2.3} 3.3 Hz, H-2, H-3), 6.07 (t, 1H, $J_{3,4} = J_{4,5} = 10.0$ Hz, H-4), 6.56 (d, 1H, $J_{1,2} = 1.9$ Hz, H-1), 7.27–8.13 (m, 15H, Ph), 8.88 (s, 1H, NH). Anal. Calcd for C₃₁H₂₆Cl₃NO₁₀: C, 54.84; H, 3.86. Found: C, 55.12; H, 3.91.

3.9. Octyl 2,4,6-tri-O-benzoyl-3-O-(4-methoxybenzyl)- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-benzoyl- α -D-mannopyranoside (12)

To a solution of compound **3** (660 mg, 1.09 mmol) and **7** (868 mg, 1.15 mmol) in anhyd CH₂Cl₂ (8 mL) at 0 °C was added Me₃SiOTf (20 μ L, 0.11 mmol) under an N₂ atmosphere. The mixture was stirred under these conditions for 1 h, neutralized with Et₃N and concentrated under reduced pressure. The residue was purified on a silica gel column with 4:1 petroleum ether–EtOAc as the eluent to give **12** (1.19 g, 91%) as syrup: $[\alpha]_D^{25}$ –51 (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.88 (t, 3H, CH₃), 1.22–1.35 (m, 10H, –CH₂CH₂–), 1.55–1.63 (m, 2H,

-CH₂CH₂-), 3.31, 3.67 (2 dt, 2H, J 9.4, 7.0 Hz, OCH₂), 3.70 (s, 3H, OCH₃), 4.24 (dd, 1H, $J_{2',3'}$ 3.1, $J_{3',4'}$ 9.8 Hz, H-3'), 4.30 (br s, 1H, H-2), 4.31–4.41 (m, 3H, H-5, H-5', H-6a'), 4.43–4.54 (m, 2H, H-6a, one proton of PhCH₂), 4.58–4.72 (m, 3H, H-6b, H-6b', one proton of PhCH₂), 5.01 (d, 1H, $J_{1,2}$ 1.6 Hz, H-1), 5.18 (d, 1H, $J_{1',2'}$ 1.7 Hz, H-1'), 5.80–5.86 (m, 4H, H-3, H-4, H-2', H-4'), 6.69, 7.10 (2 d, 4H, J 8.6 Hz, CH₃OC₆H₄CH₂), 7.30–8.05 (m, 30H, *Ph*). Anal. Calcd for C₇₀H₇₀O₁₈: C, 70.10; H, 5.88. Found: C, 70.54; H, 5.67.

3.10. Octyl 2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-benzoyl- α -D-mannopyranoside (13)

Compound **13** (656 mg, 80%), prepared from **12** (1.06 g, 0.88 mmol) as described in the synthesis of **8**, gave the following physical data: $[\alpha]_D^{25}$ +3 (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃): δ 0.89 (t, 3H, –(CH₂)₇CH₃), 1.22–1.33 (m, 10H, –CH₂CH₂(CH₂)₅CH₃), 1.55–1.63 (m, 2H, –CH₂CH₂(CH₂)₅CH₃), 3.32, 3.67 (2 dt, 2H, *J* 9.4, 7.0 Hz, OCH₂), 4.29–4.34 (m, 2H, H-2, H-5), 4.40–4.51 (m, 4H, H-3', H-5', 2H-6'), 4.61–4.67 (dd, 2H, 2H-6), 5.07 (d, 1H, *J*_{1,2} 1.7 Hz, H-1), 5.22 (d, 1H, *J*_{1',2'} 1.6 Hz, H-1'), 5.61–5.68 (m, 2H, H-2', H-4'), 5.86 (dd, 1H, *J*_{2,3} 3.0, *J*_{3,4} 10.0 Hz, H-3), 5.98 (t, 1H, *J*_{4,5} 10.0 Hz, H-4), 7.28–8.09 (m, 30H, *Ph*). Anal. Calcd for C₆₂H₆₂O₁₇: C, 69.00; H, 5.79. Found: C, 69.37; H, 5.88.

3.11. Allyl 6-O-acetyl-2,3,4-tri-O-benzoyl- α -D-manno-pyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-O-benzoyl- α -D-mannopyranoside (14)

Compound **14** (1.46 g, 89%) was prepared from **11** (1.12 g, 1.64 mmol) and **8** (830 mg, 1.56 mmol) in a similar fashion to that of making **12**: $[\alpha]_D^{25}$ -119 (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 2.08 (s, 3H, CH₃CO), 4.08–4.18 (m, 2H, H-6a', CH₂=CHCH₂O–), 4.21–4.43 (m, 4H, H-5, H-5', H-6b', CH₂=CHCH₂O–), 4.47 (dd, 1H, $J_{6a,6b}$ 12.2, $J_{5,6a}$ 4.7 Hz, H-6a), 4.65 (dd, 1H, $J_{2,3}$ 3.3, $J_{3,4}$ 9.8 Hz, H-3), 4.70 (dd, 1H, $J_{5,6b}$ 2.5 Hz, H-6b), 5.16 (d, 1H, $J_{1,2}$ 1.6 Hz, H-1), 5.24–5.36 (m, 4H, H-1', H-2', CH₂=CHCH₂O–), 5.63–5.68 (m, 2H, H-2, H-3'), 5.76 (t, 1H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 5.91–6.05 (m, 2H, H-4', CH₂=CHCH₂O–), 7.19–8.20 (m, 30H, *Ph*). Anal. Calcd for C₅₉H₅₂O₁₈: C, 67.55; H, 5.00. Found: C, 67.31; H, 5.02.

3.12. 6-O-Acetyl-2,3,4-tri-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-O-benzoyl- α -D-mannopyranosyl trichloroacetimidate (15)

Syrupy compound **15** (1.05 g, 67%) was prepared from **14** (1.42 g, 1.35 mmol) as described in the preparation of 7 from **6**: $[\alpha]_{2^{5}}^{2^{5}} -127$ (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃): δ

2.06 (s, 3H, CH₃CO), 4.13 (dd, 1H, $J_{6a,6b}$ 12.4, $J_{5,6a}$ 4.8 Hz, H-6a), 4.20 (dd, 1H, $J_{6a,6b}$ 12.4, $J_{5,6b}$ 4.0 Hz, H-6b'), 4.38 (ddd, 1H, H-5'), 4.45–4.53 (m, 2H, H-5, H-6a), 4.66–4.74 (m, 2H, H-3, H-6b), 5.33 (dd, 1H, $J_{1,2}$ 1.7, $J_{2,3}$ 3.1 Hz, H-2'), 5.36 (d, 1H, H-1'), 5.67 (dd, 1H, $J_{2,3}$ 3.2, $J_{3,4}$ 10.0 Hz, H-3'), 5.81–5.87 (m, 2H, H-2, H-4), 6.14 (t, 1H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4'), 6.60 (d, 1H, $J_{1,2}$ 1.9 Hz, H-1), 7.20–8.13 (m, 30H, *Ph*), 8.86 (s, 1H, N*H*). Anal. Calcd for C₅₈H₄₈Cl₃NO₁₈: C, 60.40; H, 4.19. Found: C, 60.79; H, 4.23.

3.13. Allyl 6-*O*-acetyl-2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2,4,6-tri-*O*-benzoyl- α -D-mannopyranoside (16)

Syrupy compound 16 (1.03 g, 85%) was prepared from 8 (422 mg, 0.79 mmol) and 15 (960 mg, 0.83 mmol) in a similar fashion to that of making 12: $[\alpha]_D^{25}$ -97 (c 2, CHCl₃); ¹H NMR (CDCl₃): δ 1.91 (s, 3H, CH₃CO), 3.66 (dd, 1H, J_{6a,6b} 12.3, J_{5,6a} 2.7 Hz, H-6a^{III}), 3.87 (dd, 1H, J_{5.6b} 4.2 Hz, H-6b^{III}), 4.03 (ddd, 1H, J_{4.5} 9.8 Hz, H-5^{III}), 4.06-4.23 (m, 2H, CH₂=CHCH₂O-), 4.26-4.41 (m, 4H, H-3^I, H-3^{II}, H-5^I, H-5^{II}), 4.46 (dd, 1H, $J_{6a,6b}$ 12.2, $J_{5,6}$ 4.8 Hz, H-6), 4.58–4.69 (m, 3H, 3×H-6), 4.94 (d, 1H, J_{1.2} 1.7 Hz, H-1^{II}), 5.10 (d, 1H, $J_{1,2}$ 1.6 Hz, H-1^I), 5.19 (dd, 1H, $J_{2,3}$ 3.0 Hz, H-2^{II}), 5.21–5.33 (m, 3H, H-2^{III}, CH₂=CHCH₂O–), 5.36 (d, 1H, J_{1,2} 1.7 Hz, H-1^{III}), 5.54 (dd, 1H, J_{2,3} 3.2, J_{3,4} 10.1 Hz, H-3^{III}), 5.65–5.71 (m, 2H, H-2^I, H-4^{III}), 5.85–5.99 (m, 3H, $2 \times$ H-4, CH₂= CHCH₂O₋), 7.21-8.19 (m, 45H, Ph). Anal. Calcd for C₈₆H₇₄O₂₆: C, 67.80; H, 4.90. Found: C, 67.99; H, 4.92.

3.14. 6-*O*-Acetyl-2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl trichloroacetimidate (17)

Compound **16** (980 mg, 0.64 mmol) was treated as described for **6** to afford syrupy **17** (702 mg, 67% for two steps): $[\alpha]_D^{25}$ –99 (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 1.90 (s, 3H, CH₃CO), 3.70 (dd, 1H, J_{6a,6b} 12.2, J_{5,6a} 2.5 Hz, H-6a^{III}), 3.90 (dd, 1H, J_{5,6b} 4.3 Hz, H-6b^{III}), 4.01–4.06 (m, 1H, H-5^{III}), 4.30–4.52 (m, 5H, H-6, 2×H-3, H-5^I, H-5^{II}), 4.57 (dd, 1H, J 12.5, J_{5,6} 2.3 Hz, H-6), 4.67–4.72 (m, 2H, 2×H-6), 4.98 (d, 1H, J_{1,2} 1.7 Hz, H-1^{II}), 5.21 (dd, 1H, J_{2,3} 3.0 Hz, H-2^{II}), 5.28 (dd, 1H, J_{2,3} 2.7 Hz, H-2^{III}), 5.40 (d, 1H, J_{1,2} 1.4 Hz, H-1^{III}), 5.55 (dd, 1H, J_{2,3} 3.1, J_{3,4} 10.0 Hz, H-3^{III}), 5.69 (t, 1H, J_{3,4} = J_{4,5} = 10.0 Hz, H-4^{III}), 5.87 (dd, 1H, J_{1,2} 1.7 Hz, H-1^I), 7.22–8.09 (m, 45H, Ph), 8.84 (s, 1H, NH). Anal. Calcd for C₈₅H₇₀Cl₃NO₂₆: C, 62.72; H, 4.33. Found: C, 62.97; H, 4.25.

3.15. Octyl 6-*O*-acetyl-2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranoside (18)

Compound 17 (682 mg, 0.42 mmol) and 13 (432 g, 0.40 mmol) were pre-dried in one flask under vacuum at 60 °C for 3 h. The mixture was then dissolved in CH₂Cl₂ (5 mL). To the solution at 0 °C was slowly added Me₃SiOTf (8μ L, 0.04 mmol) under an N₂ atmosphere. The reaction mixture was stirred for 2h under these conditions, neutralized with Et₃N and concentrated under reduced pressure, then purified by column chromatography using 2:1 petroleum ether-EtOAc as the eluent gave **18** (732 mg, 72%) as a syrup: $[\alpha]_{D}^{25}$ -104 (*c* 4, CHCl₃); ¹H NMR (CDCl₃): δ 0.87 (t, 3H, CH₂CH₃), 1.22-1.31 (m, 10H, CH₂(CH₂)₅CH₃), 1.52-1.58 (m, 2H, -OCH₂CH₂), 3.31 (dt, 1H, J 9.9, 6.5 Hz, -OCH₂), 3.56-3.67 (m, 2H, H-6a^V, $-OCH_2$), 3.79 (dd, 1H, $J_{6a,6b}$ 12.2, $J_{5.6b}$ 3.9 Hz, H-6b^V), 3.80–4.05 (m, 4H, 3×H-6, H-5), 4.25-4.37 (m, 6H, H-2¹, H-3¹¹, 3×H-5, H-6), 4.39-4.54 (m, 4H, H-3^{III}, H-5, $2 \times$ H-6), 4.57–4.70 (m, 3H, H-3^{IV}, $2 \times$ H-6), 4.90 (d, 1H, $J_{1,2}$ 1.7 Hz, H-1^I), 4.99 (d, 1H, $J_{1,2}$ 1.8 Hz, H-1^{III}), 5.09 (d, 1H, J_{1,2} 1.7 Hz, H-1^{IV}), 5.12 (dd, 1H, *J*_{2,3} 3.2 Hz, H-2^{III}), 5.15 (dd, 1H, *J*_{2,3} 4.6 Hz, H-2^{IV}), 5.25 (d, 1H, *J*_{1,2} 1.5 Hz, H-1^{II}), 5.32 (dd, 1H, *J*_{2,3} 4.9 Hz, H-2^{II}), 5.36 (d, 1H, $J_{1,2}$ 1.6 Hz, H-1^V), 5.51 (dd, 1H, $J_{2,3}$ $3.1, J_{3,4}$ 10.0 Hz, H-3^V), 5.63 (t, 1H, $J_{3,4} = J_{4,5} = 10.0$ Hz, H-4^V), 5.80–5.98 (m, 6H, H-2^V, H-3^I, 4×H-4), 7.23–8.06 (m, 75H, *Ph*); ¹³C NMR: δ 14.05, 22.61, 26.03, 29.19, 29.28, 29.35, 31.75 (7C, -OCH₂ (CH₂)₆CH₃), 20.41 (1C, CH₃CO), 62.03, 62.08, 62.30, 63.05, 63.74, 66.32, 67.01, 67.30, 67.62, 68.11, 68.48, 68.73, 69.02, 69.22, 69.32, 69.72, 69.90, 70.97, 71.18, 71.29, 71.52, 75.91, 76.18, 76.40, 77.20, 77.56 (26 C), 98.54, 98.66, 99.17, 99.18, 99.57 (5C-1), 164.42, 164.53, 164.91, 165.06, 165.14, 165.28, 165.34, 165.62, 165.70, 165.77, 165.83, 166.08, 166.14 (15C, PhCO), 170.27 (1C, CH₃CO). Anal. Calcd for C₁₄₅H₁₃₀O₄₂: C, 68.44; H, 5.15. Found: C, 68.56; H, 5.20.

3.16. Octyl 2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*benzoyl- α -D-mannopyranoside (19)

To a solution of compound **18** (526 mg, 0.21 mmol) in 2:1 CH_2Cl_2 -MeOH (9 mL) was added acetyl chloride (0.4 mL) dropwise in 10 min. The reaction mixture was stirred overnight until the reaction was complete. The mixture was neutralized with pyridine (0.5 mL), co-evaporated with toluene to dryness under diminished pressure, and purified on a silica gel column with 2:1 petroleum ether–EtOAc as the eluent to give syrupy **19**

1161

(480 mg, 93%): $[\alpha]_D^{25}$ -111 (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.87 (t, 3H, -(CH₂)₇CH₃), 1.23-1.31 (m, 10H, -CH₂ (CH₂)₅CH₃), 1.52-1.58 (m, 2H, -OCH₂CH₂), 3.16 (dd, 1H, $J_{6a,6b}$ 12.1, $J_{5,6a}$ 3.0 Hz, H-6a^V), 3.24–3.33 (m, 2H, H-6b^V and -OCH₂), 3.66 (dt, 1H, J 9.4, 7.2 Hz, -OCH₂), 3.72-3.77 (ddd, 1H, J 9.4, 2.2, 3.5 Hz, H-5), $3.85-4.05 \text{ (m, 3H, 2 \times H-6, H-5)}, 4.25-4.30 \text{ (m, 2H, H-3^{II})},$ H-6), 4.33–4.39 (m, 4H, H-2^I, 2×H-5, H-6), 4.41–4.53 (m, 4H, H-3^{III}, H-5, 2H-6), 4.60–4.71 (m, 3H, H-3^{IV}, $2 \times$ H-6), 4.87 (d, 1H, $J_{1,2}$ 1.6 Hz, H-1^I), 4.92 (d, 1H, $J_{1,2}$ 1.8 Hz, H-1^{III}), 5.07–5.12 (m, 2H, H-1^{IV}, H-2^{III}), 5.14 (dd, 1H, $J_{2,3}$ 4.8 Hz, H-2^{IV}), 5.25 (d, 1H, $J_{1,2}$ 1.4 Hz, H-1^{II}), 5.32 (dd, 1H, $J_{2,3}$ 4.9 Hz, H-2^{II}), 5.37 (d, 1H, $J_{1,2}$ 1.5 Hz, H-1^V), 5.55 (dd, 1H, $J_{2,3}$ 3.1, $J_{3,4}$ 9.8 Hz, H-3^V), 5.62 (t, 1H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4^V), 5.80–6.01 (m, 6H, H-2^V, H-3^I, $4 \times$ H-4), 7.23–8.10 (m, 75H, *Ph*). Anal. Calcd for C₁₄₃H₁₂₈O₄₁: C, 68.63; H, 5.16. Found: C, 68.98; H, 5.25.

3.17. Octyl 6-*O*-(sulfo)-2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-benzoyl- α -D-mannopyranoside, sodium salt (20)

To a solution of compound **19** (460 mg, 0.184 mmol) in dry pyridine (5 mL) was added sulfur trioxide-pyridine complex (146 mg, 0.92 mmol). The reaction mixture was heated to 60 °C and stirred for 48 h at this temperature. The reaction was quenched by addition of MeOH (1 mL) and stirred for another 1 h. The solvent was evaporated, and the residue was purified by flash chromatography on a silica gel column (EtOAc), followed by ion exchange on a Dowex-50 (Na⁺) column, giving **20** (436 mg, 91%) as a syrup: $[\alpha]_D^{25}$ –102 (c 0.5, CHCl₃); ¹H NMR (CDCl₃): δ 0.88 (t, 3H, -(CH₂)₇CH₃), 1.22-1.33 $(m, 10H, -CH_2(CH_2)_5CH_3), 1.53-1.58$ (m, 2H, 2H)-OCH₂CH₂), 3.32, 3.66 (2 dt, 2H, J 9.5, 6.9 Hz, OCH₂), 3.70-4.01 (m, 5H, 2×H-5, 3×H-6), 4.21-4.41 (m, 7H, $H-2^{I}$, $H-3^{II}$, $2 \times H-5$, $3 \times H-6$), 4.42-4.70 (m, 7H, $H-3^{III}$, H-3^{IV}, H-5, 4×H-6), 4.75, 4.93, 5.08 (br s, 3H, 3×H-1), 5.13, 5.19 (br d, 2H, 2×H-2), 5.27–5.33 (m, 2H, H-1, H-2), 5.37 (br s, 1H, H-1), 5.45 (dd, 1H, J_{2,3} 2.8, J_{3,4} 9.7 Hz, H-3), 5.71-6.01 (m, 7H, H-2, H-3, 5×H-4), 7.19-8.06 (m, 75H, Ph). Anal. Calcd for C₁₄₃H₁₂₇NaO₄₄S: C, 65.94; H, 4.91. Found: C, 66.27; H, 5.01.

3.18. Octyl 6-*O*-(sulfo)- α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranoside, sodium salt (1c)

To a solution of compound **20** (380 mg, 0.146 mmol) in anhyd MeOH (15 mL) was added 1 N NaOMe–MeOH until pH 9–10 was reached. The mixture was stirred at rt overnight, then neutralized with Amberlite IR-120 (H⁺). The solvents were filtered, and the filtrate was concentrated to dryness under diminished pressure finished 1c (147 mg, 97%) as a white solid; $[\alpha]_D^{25} - 3$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.72 (t, 3H, -CH₂ CH₃), 1.12-1.24 (m, 10H, $CH_2(CH_2)_5CH_3$), 1.44–1.52 (m, 2H, $-OCH_2CH_2$), 3.40, 3.49 (2 dt, 2H, J 9.2, 7.0 Hz, OCH₂), 3.50-4.17 (m, 29H), 4.25 (br d, 1H, H-3), 4.87 (br s, 1H, H-1), 4.95 (br s, 1H, H-1), 4.97–5.01 (br s, 3H, $3 \times$ H-1); ¹³C NMR: 14.12, 22.76, 26.09, 29.12, 29.18, 31.82 (7C, -OCH₂(CH₂)₆CH₃ some overlapped), 61.62, 61.72, 66.74, 66.84, 66.95, 67.25, 67.66, 68.40, 68.76, 70.26, 70.34, 70.47, 70.65, 70.94, 71.07, 72.10, 73.48, 74.11, 74.21, 78.64, 79.09, 79.45, 79.68 (26 C, some overlapped), 98.74, 102.73, 102.98, 103.11, 103.43 (5 C, $5 \times C$ -1). ESIMS (negative ion): Calcd for C₃₈H₆₇NaO₂₉S: 1042.34 [M]; Found: 1019.1 [M–Na]⁻.

Acknowledgements

This work was supported by NNSF of China (Projects 20372081, 30330690) and RCEES of CAS. We would like to thank Professor Zhiqui Wu and Dr. Lei Wang of Guang An Meng Hospital for performing CAM test.

References

- 1. Jeannes, A.; Pittsley, J. E.; Watson, P. R.; Dimler, R. J. *Arch. Biochem. Biophys.* **1961**, *92*, 433–450.
- (a) Parolis, L. A. S.; Parolis, H.; Kenne, L.; Meldal, M.; Bock, K. *Carbohydr. Res.* **1998**, *309*, 77–87; (b) Parolis, L. A. S.; Duus, J. Ø.; Parolis, H.; Meldal, M.; Bock, K. *Carbohydr. Res.* **1996**, *293*, 101–117.
- (a) Youle, R. J.; Murray, G. J.; Neville, D. M. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 5559–5562; (b) Yoshida, T.; Lee, Y. C. Carbohydr. Res. 1994, 251, 175–186; (c) Weston, S. A.; Parish, C. R. J. Immunol. 1991, 146, 4180–4186; (d) Weston, S. A.; Parish, C. R. Eur. J. Immunol. 1992, 22, 1975–1981; (e) Baba, T.; Watanabe, K.; Arai, Y. Carbohydr. Res. 1988, 177, 153–161; (f) Baba, T.; Watanabe, K.; Yonezawa, N.; Hiroto, M.; Arai, Y. Carbohydr. Res. 1988, 177, 163–172; (g) Murray, G. J.; Neville, D. M. J. Biol. Chem. 1980, 255, 11942–11948.
- (a) Ferro, V.; Fewings, K.; Palermo, M.; Li, C. Carbohydr. Res. 2001, 332, 183–189; (b) Bretthauer, R. K.; Kaczorowski, G. J.; Weise, M. J. Biochemistry 1973, 12, 1251– 1256.
- Ferro, V.; Li, C.; Fewings, K.; Palermo, M.; Linhardt, R. J.; Toida, T. *Carbohydr. Res.* 2002, *337*, 139–146.
- Parish, C. R.; Freeman, C.; Brown, K. J.; Francis, D. J.; Cowden, W. B. *Cancer Res.* **1999**, *59*, 3433–3441.
- Schlessinger, J.; Plotnikov, A. N.; Ibrahimi, O. A.; Eliseenkova, A. V.; Yeh, B. K.; Yayon, A.; Linhardt, R. J.; Mohammadi, M. *Molec. Cell.* 2000, *6*, 743–750.
- (a) Hulett, M. D.; Freeman, C.; Hamdorf, B. J.; Baker, R. T.; Harris, M. J.; Parish, C. R. *Nat. Med.* **1999**, *5*, 803– 809; (b) Yu, G.; Gunay, N. S.; Linhardt, R. J.; Toida, T.; Fareed, J.; Hoppensteadt, D. A.; Shadid, H.; Ferro, V.; Li, C.; Fewings, K.; Palermo, M. C.; Podger, D. *Eur. J. Med.*

Chem. **2002**, *37*, 783–791; (c) Cochran, S.; Li, C.; Fairweather, J. K.; Kett, W. C.; Coombe, D. R.; Ferro, V. *J. Med. Chem.* **2003**, *46*, 4601–4608.

- Du, Y.; Zhang, M.; Kong, F. Tetrahedron 2001, 57, 1757– 1763.
- (a) Liu, M.; Fan, H.; Guo, Z.; Hui, Y. Carbohydr. Res. 1996, 290, 233–237; (b) Liu, M.; Fan, H.; Guo, Z.; Hui, Y. J. Carbohydr. Chem. 1996, 15, 1139–1145.
- 11. Lowary, T. L.; Eichler, E.; Bundle, D. R. J. Org. Chem. 1995, 60, 7316–7327.
- 12. Zhang, Z.; Magnusson, G. J. Org. Chem. 1995, 60, 7304-7315.

- 13. Johansson, R.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371–2374.
- Fiandor, J.; Garcia-Lopez, M. T.; de las Heras, F. G.; Mendez-Castrillon, P. P. Synthesis 1985, 1121–1123.
- (a) Fu, S.; Lu, Y.; Zhang, X.; Chen, K. Bull. Acad. Mil. Med. Sci. 1993, 17, 294–297; (b) Nicolaou, K. C.; Trujillo, J. I.; Jandeleit, B.; Chibale, K.; Rosenfeld, M.; Diefenbach, B.; Cheresh, D. A.; Goodman, S. L. Bioorg. Med. Chem. 1998, 6, 1185–1208; (c) Hori, H.; Jin, C.-Z.; Kiyono, M.; Kasai, S.; Shimamura, M.; Inayama, S. Bioorg. Med. Chem. 1997, 5, 591–599.