

Promoting Effect of CeO_2 on the Catalytic Activity of $Ba-Y_2O_3$ for Direct Decomposition of NO

Yasuyuki Doi,¹ Masaaki Haneda,^{*1} and Masakuni Ozawa²

¹Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu 507-0071
²EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603

E-mail: haneda.masaaki@nitech.ac.jp

Received: August 5, 2014; Accepted: September 4, 2014; Web Released: January 15, 2015

The effect of CeO₂ additive on the catalytic performance of Ba–Y₂O₃ prepared by coprecipitaion for the direct decomposition of NO was investigated. Although Ba–Y₂O₃ effectively catalyzed NO decomposition, its activity was clearly increased by addition of CeO₂. The optimum CeO₂ content was 10 mol %. CO₂-TPD measurement revealed that the addition of CeO₂ into Ba–Y₂O₃ caused an increase in the CO₂ desorption peak in the temperature range of 473 and 723 K derived from highly dispersed Ba species. The predominant role of CeO₂ additive was suspected to effectively create the highly dispersed Ba species as catalytically active sites. Kinetic studies of NO decomposition on Ba–CeO₂(10)–Y₂O₃ suggested that coexisting O₂ suppresses the NO decomposition reaction by competitive adsorption. Isotopic transient kinetic analysis suggested a reaction pathway in which the surface NO_x adspecies act as reaction intermediates for the formation of N₂ in NO decomposition over Ba–CeO₂–Y₂O₃. We concluded that CeO₂ additive does not directly participate in the NO decomposition reaction as catalytically active species.

Since nitrogen oxides (NO_x) are harmful to human health and the global environment, the removal of NO_x emitted from combustion facilities is necessary. Use of catalysts is regarded as an effective method for removing NO_x from exhaust gases. For example, three-way catalysts have already been practically applied for the purification of exhaust gas emitted from gasoline-powered vehicles. Selective catalytic reduction of NO_x using urea or ammonia is the leading technology for meeting NO_x emission from diesel exhaust. In these systems, NO_x are efficiently reduced by reacting with reductants such as CO, H₂, ammonia, and hydrocarbons.

On the other hand, direct decomposition of NO (2NO \rightarrow N₂ + O₂), which does not require use of reductants and is a thermodynamically favorable reaction, is well known as the most desirable reaction. Therefore, the development of effective catalysts for the direct decomposition of NO is a challenging subject of study for the solution of NO_x problems. Numerous studies have been performed so far to explore catalysts showing activity for the direct decomposition of NO, and have led to the discovery of many active catalysts such as Cu–ZSM¹ and perovskite oxides.² However, there is no catalyst that can be used under real conditions in the presence of oxygen, water and carbon dioxide and at high space velocity.

Since oxygen-defect sites are believed to act as active sites for the direct decomposition of NO,³ the strategy to develop highly active catalysts investigated so far has been to design the catalysts with specific structure promoting oxygen desorption. On the other hand, alkaline earth oxides, which do not include oxygen-deficient sites in the lattice, such as Sr/La₂O₃ and Ba/ MgO were reported to effectively catalyze the NO decomposition reaction by Vannice et al.⁴ and Lunsford et al.^{5,6} One of the authors also reported that the catalytic performance of cobalt oxide can be effectively improved by addition of a small amount of alkali or alkaline earth metals such as K and Ba.^{7–9} They proposed a reaction mechanism in which NO₂⁻ species adsorbed on alkali or alkaline earth metals react with adsorbed NO via the migration of NO₂⁻ species to the interface between alkali or alkaline earth metals and cobalt oxide.¹⁰

We have recently investigated the catalytic performance of Ba-doped rare earth oxides prepared by coprecipitation for the direct decomposition of NO, and found that Ba species highly dispersed on rare earth oxides with moderate strength basic sites, such as Dy₂O₃, Sm₂O₃, and Y₂O₃, show relatively high NO decomposition activity.^{11,12} The effectiveness of Ba species and Y2O3 as catalytically active component and catalyst support, respectively, for the direct decomposition of NO has also been reported by many researchers. For example, Ishihara et al.^{13–15} reported Ba containing catalysts such as Ba/BaY₂O₄, Ba/Y₂O₃, and Ba₃Y_{3.4}Sc_{0.6}O₉ as highly active catalysts. Tsujimoto et al.¹⁶ studied the additive effect of BaO into Ctype cubic Y₂O₃–ZrO₂ solid solution on the NO decomposition performance, and found that Y2O3-ZrO2-BaO catalyst exhibits relatively high NO decomposition activity even in the presence of O_2 , H_2O , or CO_2 .

Among the catalysts investigated so far, $Ba-Y_2O_3$ seems to be a highly active catalyst for the direct decomposition of NO. It is of interest that the catalytic performance of $Ba-Y_2O_3$ continuously increased with the reaction time.¹¹ This was explained by the creation of highly dispersed Ba sites along with the decomposition of $BaCO_3$ as catalytically inactive species. We also revealed that the formation of $BaCO_3$ is favorable when Ba species was supported on rare earth oxides with strong basic sites such as La_2O_3 .¹² In other words, the selective formation of highly dispersed Ba species can be expected by controlling the surface basicity of Y_2O_3 , leading to an increase in the NO decomposition activity. In this study, we have investigated the effect of CeO₂, which possesses weak basicity, on the catalytic activity of Ba– Y_2O_3 for the direct decomposition of NO. The purpose of this work is, accordingly, to specify the importance of controlling the surface basicity of support oxide for the creation of catalytically active Ba species.

Experimental

CeO₂-doped Ba-Y₂O₃ was prepared by coprecipitation using $(NH_4)_2CO_3$ as a precipitation agent, with an aqueous solution of yttrium(III) nitrate, barium(II) nitrate, and cerium(III) nitrate. The precipitate thus obtained was washed with distilled water, followed by drying and calcination at 873K for 5h in air. The resulting catalyst powder was finally calcined at 1173 K for 5 h in air. The loading of Ba was fixed at 8 mol %, which was found to be the optimum value,¹¹ while that of CeO₂ was changed from 1 to 20 mol %. The samples are expressed as Ba-CeO₂(x)-Y₂O₃, where x is the loading of CeO₂. The Ba and CeO₂ loadings in the catalysts were estimated by inductively coupled plasma atomic emission spectroscopy (ICP-AES: ICPS-8100, Shimadzu) and documented in Table 1, Cu-ZSM-5 and K/Co₃O₄ with the K/Co atomic ratio of 0.035 as the reference samples were also prepared by the same manner as described elsewhere.⁷

The BET surface area of the samples was measured using a volumetric adsorption apparatus (Micromeritics, TriStar II 3020) by nitrogen adsorption at liquid nitrogen temperature. X-ray diffraction (XRD) patterns were measured using a Rigaku MiniFlex diffractometer with Cu K α radiation at 30 kV and 15 mA to characterize the crystal structure of Ba–CeO₂–Y₂O₃ samples. Scanning electron microscopy (SEM; JSM-7000F, JEOL) with energy-dispersive X-ray spectrometry (EDS) was used to investigate the distributions of Y, Ba, and Ce in the Ba–CeO₂–Y₂O₃ samples.

Temperature-programmed desorption of CO₂ (CO₂-TPD) was performed using an atmospheric flow system (BELCAT, BEL Japan). Before CO₂-TPD measurement, the sample was pretreated in a flow of O₂ at 1173 K for 2 h, and then cooled down to 323 K in flowing He. CO₂ adsorption was performed by passing a gas mixture of 0.5% CO₂/He through the sample bed at 323 K for 1 h. After the adsorption gas was purged with He until no CO₂ was detected in the effluent, TPD

Table 1. Physicochemical Properties of $Ba-CeO_2-Y_2O_3$ Samples

Catalyst	Composition /mol %		BET surface area	Lattice constant of Y ₂ O ₃
	Ba	CeO ₂	$/m^{2}g^{-1}$	/nm
Ba-Y ₂ O ₃	6.7	0	16.6	1.060
$Ba-CeO_2(1)-Y_2O_3$	6.8	1.0	14.0	1.061
$Ba-CeO_2(5)-Y_2O_3$	6.9	4.7	15.4	1.063
Ba-CeO ₂ (10)-Y ₂ O ₃	7.1	9.6	14.5	1.065
Ba-CeO ₂ (20)-Y ₂ O ₃	7.2	19	16.9	1.067

measurement was carried out up to 950 K at a heating rate of 10 Kmin^{-1} in flowing He at a flow rate of $30 \text{ cm}^3 \text{ min}^{-1}$. A quadrupole mass spectrometer (M-201QA-TDM, Canon Anelva) was used to analyze the desorbed CO₂.

The direct decomposition of NO was carried out in a fixedbed continuous flow reactor. The reaction gas composed of 1000 ppm NO with He as the balance gas was fed to a 0.5 g catalyst that had been pretreated in situ in a flow of He at 1173 K for 8 h at a rate of 30 cm³ min⁻¹ ($W/F = 1.0 \text{ g s cm}^{-3}$) unless otherwise noted. The reaction temperature was decreased from 1173 to 873 K in steps of 50 K, and the steady-state catalytic activity was measured at each temperature. The effluent gas was analyzed by gas chromatography (Shimadzu GC-8A) using a Molecular Sieve 5A column (for analysis of O₂ and N₂) and a Porapak Q column (for analysis of N₂O). A chemiluminescence NO_x analyzer (Shimadzu NOA-7000) was used to check the stability of the catalytic activity.

The reaction rate of N_2 formation was also measured under nearly differential conditions giving NO conversion in the range of 10–30% by varying the catalytic weight from 0.1 to 0.5 g. The concentrations of the reactants were varied in the range of 500–3000 ppm for NO and 0–5% for O₂ to determine the kinetic parameters at 1073 K.

Isotopic transient kinetics analysis was performed by switching the flowing gas from 1000 ppm ¹⁴NO to 1000 ppm ¹⁵NO diluted in He at 1173 K for a catalyst sample of 0.5 g. The effluent gas from the reactor was continuously monitored by a quadrupole mass spectrometer (PFEFFER OminiStar) for all the isotopic molecules of NO (at m/e = 30 and 31), N₂ (at 28, 29, and 30), and N₂O (at 44, 45, and 46).

Results and Discussion

Physicochemical Properties of Ba-CeO₂-Y₂O₃. Table 1 summarizes the BET surface area of Ba-CeO₂-Y₂O₃ with different CeO₂ content. It appears that no significant difference in the BET surface area was obtained irrespective of CeO₂ content. Figure 1 shows XRD patterns of Ba-CeO₂-Y₂O₃ with different CeO₂ content. Distinct XRD peaks indexed to the cubic phase of Y₂O₃ were observed for all the samples. It should be noted that a shift of XRD peaks due to Y₂O₃ to lower angle was observed when CeO₂ content was increased (Figure 1C). As also given in Table 1, the lattice constant of Y₂O₃ calculated for the XRD peak due to Y₂O₃ (100) at $2\theta = 29.0^{\circ}$ was increased with increasing CeO₂ content, suggesting the formation of a solid solution. Y^{3+} ions are known to be coordinated by 6 oxide anions in Y2O3.17 According to literature,¹⁸ the ionic radii of Y³⁺, Ce³⁺, and Ce⁴⁺ for 6 coordination are 0.090, 0.101, and 0.087 nm, respectively. Taking into account the fact that the lattice constant of Y2O3 was increased with CeO₂ content, Ce³⁺ ions are suspected to be incorporated into Y₂O₃ lattice. It is also noteworthy that the XRD peak assignable to BaCO₃ gradually decreased with increasing CeO₂ content (Figure 1B), indicating that the dispersion state of Ba species was improved by addition of CeO₂ into Y₂O₃.

In order to obtain further information on the dispersion state of Ba species, elemental mapping at the microstructural level by SEM-EDS was performed for $Ba-Y_2O_3$ and $Ba-CeO_2(10)-Y_2O_3$. As can be seen in Figure 2A, an aggregation of Ba

Figure 1. XRD patterns of Ba–CeO₂–Y₂O₃ with various CeO₂ contents. (a) Ba–Y₂O₃, (b) Ba–CeO₂(1)–Y₂O₃, (c) Ba–CeO₂(5)–Y₂O₃, (d) Ba–CeO₂(10)–Y₂O₃, (e) Ba–CeO₂(20)–Y₂O₃. (\bigcirc) for Y₂O₃, (\blacktriangle) for BaCO₃.

Figure 2. SEM-EDS images of (A) $Ba-Y_2O_3$ and (B) $Ba-CeO_2(10)-Y_2O_3$.

species was observed for Ba– Y_2O_3 . On the other hand, the formation of relatively well dispersed Ba species was observed for Ba–CeO₂(10)– Y_2O_3 (Figure 2B). In addition, Ba species seems to be present on CeO₂ sites, suggesting the creation of Ba–CeO₂ interaction. In accordance with the results of XRD mentioned above, CeO₂ additive can improve the dispersion state of Ba species.

In our previous study, the formation of BaCO₃ was revealed to be favorable when Ba species was supported on rare earth oxides with strong basic sites such as La₂O₃.¹² Therefore, the fact that CeO₂ additive suppressed the formation of BaCO₃ may be ascribed to the creation of weak basic sites on the surface of Y₂O₃ by interacting with CeO₂. In order to confirm this assumption, the surface basicity of Y₂O₃ and CeO₂(10)-Y₂O₃ was evaluated by CO₂-TPD measurement. As can be seen in Figure 3a, Y₂O₃ gave three CO₂ desorption peaks at around 391, 512, and 636 K. Although CeO₂(10)-Y₂O₃ showed similar CO_2 -TPD profile with Y_2O_3 , the presence of CeO_2 caused an increase in the CO₂ desorption at the temperatures below 575 K and a decrease in the CO₂ desorption in the high-temperature region (Figure 3b). In accordance with our assumption, the addition of CeO₂ seems to be lowered the strength of surface basic sites of Y₂O₃, leading to the implementation of the dispersion state of Ba species.

Catalytic Performance of Ba–CeO₂–Y₂O₃ for NO Decomposition. Figure 4 shows the catalytic activity of Ba–CeO₂–Y₂O₃ catalyst with different CeO₂ content for the direct decomposition of NO. A good correlation between N₂ yield and NO conversion was observed (results not shown). O₂ was always formed at a steady state with an O₂/N₂ ratio of approximately unity. The formation of N₂O was hardly observed in the entire temperature range. As can be seen in Figure 4, the NO decomposition activity of Ba–Y₂O₃ was improved by addition of CeO₂. The activity of Ba–CeO₂–Y₂O₃ increased with increasing CeO₂ content, and reached a maxi-

Figure 3. CO_2 -TPD profiles of (a) Y_2O_3 and (b) $CeO_2(10)$ - Y_2O_3 .

Figure 4. Activity of Ba–CeO₂–Y₂O₃ with various CeO₂ contents for NO decomposition. (\bigtriangledown) Y₂O₃, (\blacksquare) CeO₂(10)–Y₂O₃, (\bigcirc) Ba–Y₂O₃, (\blacktriangle) Ba–CeO₂(1)–Y₂O₃, (\square) Ba–CeO₂(5)–Y₂O₃, (\bigcirc) Ba–CeO₂(10)–Y₂O₃, (\bigtriangleup) Ba–CeO₂(20)–Y₂O₃. Conditions: NO: 1000 ppm, gas flow rate: 30 cm³ min⁻¹, $W/F = 1.0 \text{ g s cm}^{-3}$.

mum at the CeO₂ content of $10 \mod \%$. Since Y_2O_3 and CeO₂(10)– Y_2O_3 showed very low NO decomposition activity, Ba species must be the catalytically active component.

We have recently studied the catalytic performance of Badoped rare earth oxide catalysts for NO decomposition, and revealed a good relationship between the N₂ formation rate and the number of Ba species highly dispersed on the surface of rare earth oxide.¹² The number of highly dispersed Ba species was calculated from the amount of CO₂ desorption peak appearing in the temperature range of 573–873 K in the CO₂-TPD profile. In the present study, CO₂-TPD profiles of Ba– CeO₂–Y₂O₃ with different CeO₂ content were measured to evaluate the number of highly dispersed Ba species.

Figure 5 shows the CO_2 -TPD profiles of Ba–CeO₂-Y₂O₃ with different CeO₂ content. From the comparison with CO₂-TPD profile of Y₂O₃ given in Figure 3a, the addition of Ba was found to cause a disappearance of two desorption peaks at 512 and 636 K as well as an appearance of new desorption peak at

Figure 5. CO₂-TPD profiles of Ba–CeO₂–Y₂O₃ with various CeO₂ contents. (a) Ba–Y₂O₃, (b) Ba–CeO₂(1)–Y₂O₃, (c) Ba–CeO₂(5)–Y₂O₃, (d) Ba–CeO₂(10)–Y₂O₃, (e) Ba–CeO₂(20)–Y₂O₃.

Figure 6. Change in the amount of CO_2 desorption (\bigcirc) and the rate of N_2 formation at 1073 K (\blacktriangle) over Ba–CeO₂– Y_2O_3 as a function of CeO₂ content.

858 K, indicating the creation of strong basic sites derived from highly dispersed Ba species. When 1 mol % CeO₂ was added to Ba–Y₂O₃, the CO₂-desorption peak at 858 K was significantly shifted to lower temperature. New CO₂-desorption peak at 624 K was observed. It is of interest that the CO₂ desorption temperature gradually decreased with increasing CeO₂ content. Taking into account the consideration that CO₂ species adsorbed on nanosized Ba sites is easily desorbed at lower temperature, this result clearly indicates that CeO₂ additive can improve the dispersion states of Ba species. This is in agreement with the results of XRD and SEM-EDS analyses.

To gain information on the participation of highly dispersed Ba species as catalytically active sites, the relationship between the amount of desorbed CO_2 in the temperature range of 473– 723 K and the rate of N₂ formation at 1073 K was examined. Figure 6 shows the change in the amount of desorbed CO_2 , as

Figure 7. N₂ formation rate over Ba–CeO₂(10)–Y₂O₃ as a function of (A) O₂ (0.5–5%) and (B) NO (500–3000 ppm) in the absence and presence of 1% O₂ at 1073 K. Conditions: NO: 500–3000 ppm, O₂: 0.5–5%, gas flow rate: 30 cm³ min⁻¹.

well as the N₂ formation rate, as a function of CeO₂ content. It appears that both the amount of desorbed CO₂ and the N₂ formation rate reached the maximum at the CeO₂ content of 10 mol%, indicating that the number of highly dispersed Ba species is responsible for high NO decomposition activity of Ba–CeO₂–Y₂O₃. Since Y₂O₃ and CeO₂(10)–Y₂O₃ showed very low NO decomposition activity (Figure 3), the predominant role of CeO₂ additive is to effectively create the highly dispersed Ba species as catalytically active sites.

Kinetic Studies of NO Decomposition over Ba-CeO₂-Since Ba–CeO₂(10)– Y_2O_3 showed the highest NO Y2O3. decomposition activity, as described above, we performed kinetic studies to gain information on the reaction mechanism. First, the effect of O2 concentration on the activity of Ba-CeO₂(10)-Y₂O₃ was measured. Figure 7A shows ln-ln plots of N₂ formation rate at 1173 K against the concentrations of O₂. Obviously, the N₂ formation rate decreased with increasing O₂ concentration. The reaction order with respect to O_2 was -0.33. In accordance with literature, 3,17,19-21 this result indicates the inhibitor action of O2 due to competitive adsorption between NO and O_2 onto the active sites. However, the negative effect by coexisting O₂ seems to be not serious in this case, compared with conventional perovskite oxides such as La_{0.8}Sr_{o.2}CoO₃,³ $La_{0.7}Ba_{0.3}Mn_{0.8}In_{0.2}O_3$,²⁰ and $Ba_{0.8}La_{0.2}Mn_{0.8}Mg_{0.23}$ ²¹ on which the reaction order with respect to O_2 was -0.81, -0.53, and -0.81, respectively.

Figure 7B shows ln–ln plots of N_2 formation rate over Ba– CeO₂(10)–Y₂O₃ at 1173 K as a function of NO concentration in the absence and presence of 0.1% O₂. The N₂ formation rate was found to monotonically increase with an increase in NO concentration. The reaction order with respect to NO was 1.22 in the presence of O₂ and 1.00 in its absence, suggesting that NO decomposition proceeds via similar reaction pathway irrespective of coexisting O₂.

We have so far measured the kinetic parameters of NO decomposition over alkali metal-doped Co_3O_4 catalysts and reported similar kinetic parameters obtained in this study. Namely, the reaction order with respect to O_2 and NO was -0.37 and 1.29 for K/Co₃O₄ catalyst, respectively.¹⁰ From the

Figure 8. Product responses following the replacement of ¹⁴NO/He with ¹⁵NO/He in the reaction stream on Ba-CeO₂(10)-Y₂O₃ at 1173 K. (●) ¹⁴N₂, (▲) ¹⁴N¹⁵N, (■) ¹⁵N₂, (○) ¹⁴NO, (□) ¹⁵NO. Conditions: NO: 1000 ppm, gas flow rate: 30 cm³min⁻¹, catalyst weight: 0.5 g.

observation of adsorbed NO_x species by in situ FT-IR spectroscopy and isotopic transient kinetic analysis, we proposed a reaction mechanism in which the reaction is initiated by NO adsorption onto alkali metals to form NO₂⁻ species, which migrates to the interface between the alkali metals and Co₃O₄, and then react with the adsorbed NO species to form N₂. Recently, we have measured FT-IR spectra of NO_x species adsorbed on Ba-doped rare earth oxide under the conditions in flowing NO/He at 873 K, and observed the formation of NO₂⁻ species irrespective of rare earth oxide.¹² Therefore, it can be expected that NO decomposition reaction over Ba–CeO₂–Y₂O₃ proceeds via similar reaction mechanism proposed for alkali metal-doped Co₃O₄ catalyst.

In order to confirm the possibility mentioned above, isotopic transient kinetic analysis was made on Ba–CeO₂(10)–Y₂O₃. Figure 8 shows the isotopic product responses following the replacement of ¹⁴NO/He with ¹⁵NO/He in the reaction stream at 1173 K. When ¹⁴NO was introduced to the reaction gas, ¹⁴N₂

Figure 9. Catalytic activity of Ba–CeO₂(10)–Y₂O₃ (\Box , \blacksquare). Cu–ZSM-5 (\triangle , \blacktriangle) and K/Co₃O₄ (K/Co = 0.035) (\bigcirc , \bigcirc) for NO decomposition in the absence and presence of 1% O₂. Conditions: NO: 1000 ppm, O₂: 0 or 1%, gas flow rate: 30 cm³ min⁻¹, *W*/*F* = 0.5 g s cm⁻³. Open symbols (\Box , \triangle , \bigcirc) indicate the results obtained in the absence of O₂, and solid symbols (\blacksquare , \blacktriangle , \bigcirc) in its presence.

and O_2 (not shown) were detected as products. In accordance with the results obtained under the steady-state conditions, no formation of ¹⁴N₂O was observed. When the reaction gas was switched from ¹⁴NO/He to ¹⁵NO/He, a rapid decrease and increase in the formation of ¹⁴N₂ and ¹⁵N₂ were observed, respectively. It should be noted that the evolution of ¹⁴N¹⁵N was simultaneously identified, indicating that the surface NO_x adspecies act as reaction intermediates in the formation of N2 in NO decomposition. The dynamic behavior of ¹⁴N¹⁵N formation on Ba-CeO₂(10)-Y₂O₃ is in good agreement with that on alkali metal-doped Co₃O₄ and Ba-doped rare earth oxide catalysts reported so far. Therefore, we can conclude that NO decomposition reaction over Ba-CeO2-Y2O3 proceeds via similar reaction mechanism proposed for alkali metal-doped Co₃O₄ and Ba-doped rare earth oxide catalysts. CeO2 additive does not directly participate in the NO decomposition reaction as catalytically active sites. The predominant role of CeO₂ additive is to effectively create the highly dispersed Ba species as catalytically active sites.

Comparison of NO Decomposition Activity. Since Ba-CeO₂(10)-Y₂O₃ was found to show relatively high NO decomposition activity even in the presence of O₂ from the kinetic parameters (Figure 7), the catalytic activity of Ba-CeO₂(10)- Y_2O_3 was compared with that of Cu–ZSM-5 and K/Co₃O₄ (K/Co = 0.035) as the reference samples.^{7,22} The *W/F* value was slightly changed from 1.0 to 0.5 g s cm^{-3} by decreasing the sample weight without changing the reaction gas concentration and gas flow rate. Figure 9 shows the catalytic activity of Ba-CeO₂(10)-Y₂O₃, Cu-ZSM-5 and K/Co₃O₄ for NO decomposition in the absence and presence of 1% O₂. It can be seen that the effective temperatures at which high NO decomposition activity was attained changed depending on the catalyst: 623-823 K for Cu-ZSM-5, 823-973 K for K/Co₃O₄ and above 1023 K for Ba-CeO₂(10)-Y₂O₃. Obviously, the addition of O₂ caused a significant decrease in the catalytic activity. The extent of activity depression by O_2 seems to be different depending on the catalyst. The activity depression of Cu–ZSM-5 was the most prominent, while that of Ba–CeO₂–Y₂O₃ was comparable to that of K/Co₃O₄. It is noteworthy that the maximum NO conversion on Ba–CeO₂–Y₂O₃ was higher than those over Cu–ZSM-5 and K/Co₃O₄.

Conclusion

The catalytic activity of Ba-Y2O3 for the direct decomposition of NO was effectively improved by addition of CeO₂. The optimum CeO₂ content was found to be 10 mol %. CO₂-TPD measurements revealed that the addition of CeO2 into Ba-Y₂O₃ caused a significant shift of CO₂ desorption peak at 858 K ascribed to the desorption of CO₂ adsorbed on highly dispersed Ba species to lower temperatures around 588-624 K. Since the relatively good relationship between the amount of desorbed CO₂ in the temperature range of 473–723 K and the rate of N₂ formation at 1073 K was observed, the number of highly dispersed Ba species is responsible for high NO decomposition activity of Ba-CeO₂-Y₂O₃. From the kinetic studies of NO decomposition on Ba-CeO₂(10)-Y₂O₃, the reaction order with respect to O_2 and NO was found to be -0.33 and 1.00–1.22, respectively, suggesting the inhibitor action of O_2 . Isotopic product responses following the ${}^{14}NO \rightarrow {}^{15}NO$ switch revealed the participation of surface NO_x adspecies being reaction intermediates in NO decomposition. The role of CeO₂ additive is not to directly participate in the NO decomposition reaction as catalytically active sites but to effectively create the highly dispersed Ba species as catalytically active sites.

This study was supported by a Grant-in-Aid for Scientific Research (No. 22350068) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1 M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya, S. Kagawa, J. Chem. Soc., Chem. Commun. 1986, 1272.

2 H. Yasuda, N. Mizuno, M. Misono, J. Chem. Soc., Chem. Commun. 1990, 1094.

3 Y. Teraoka, T. Harada, S. Kagawa, J. Chem. Soc., Faraday Trans. **1998**, *94*, 1887.

4 M. A. Vannice, A. B. Walters, X. Zhang, J. Catal. 1996, 159, 119.

5 S. Xie, G. Mestl, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1997, 119, 10186.

6 S. Xie, M. P. Rosynek, J. H. Lunsford, *J. Catal.* **1999**, *188*, 24.

7 M. Haneda, Y. Kintaichi, N. Bion, H. Hamada, *Appl. Catal., B* **2003**, *46*, 473.

8 G. Tsuboi, M. Haneda, Y. Nagao, Y. Kintaichi, H. Hamada, *J. Jpn. Pet. Inst.* **2005**, *48*, 53.

9 M. Haneda, G. Tsuboi, Y. Nagao, Y. Kintaichi, H. Hamada, *Catal. Lett.* **2004**, *97*, 145.

10 M. Haneda, Y. Kintaichi, H. Hamada, *Appl. Catal., B* **2005**, 55, 169.

11 M. Haneda, Y. Doi, M. Ozawa, *Bull. Chem. Soc. Jpn.* **2011**, *84*, 1383.

12 Y. Doi, M. Haneda, M. Ozawa, J. Mol. Catal. A: Chem. 2014, 383–384, 70.

13 K. Goto, H. Matsumoto, T. Ishihara, *Top. Catal.* **2009**, *52*, 1776.

- 14 T. Ishihara, K. Goto, *Catal. Today* 2011, *164*, 484.
- 15 K. Goto, T. Ishihara, Appl. Catal., A 2011, 409–410, 66.

16 S. Tsujimoto, X. Wang, T. Masui, N. Imanaka, *Bull. Chem. Soc. Jpn.* **2011**, *84*, 807.

- 17 N. Imanaka, T. Masui, Appl. Catal., A 2012, 431–432, 1.
- 18 R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32,

751.

- 19 W.-J. Hong, S. Iwamoto, M. Inoue, *Catal. Lett.* **2010**, *135*, 190.
- 20 T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, Y. Takita, *J. Catal.* **2003**, *220*, 104.
- 21 H. Iwakuni, Y. Shinmyo, H. Yano, H. Matsumoto, T. Ishihara, *Appl. Catal.*, *B* 2007, 74, 299.
- 22 M. Iwamoto, H. Hamada, Catal. Today 1991, 10, 57.