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that each (L)3- ligand coordinates to a single Co center in 

a novel tridentate pincer-like coordination mode.6 

 

Figure 1. Preparation of [2]2- and [3]1- from [1]2-. Thermal 

ellipsoid plot of [2]2- is shown at the 45% probability level, 

with H atoms and counter cations omitted for clarity. 

Several spectroscopic techniques were employed to de-

termine the first observable catalytically-relevant inter-

mediate responsible for the divergent reactivity of [1]2-. 

Gas-uptake experiments indicate that [1]2- reacts with O2 

in a 1:2 stoichiometry (see SI), suggesting that one mole-

cule of O2 is taken up per Co center. UV-Vis spectroscopy 

shows isosbestic behavior, indicating clean conversion of 

[1]2- to [3]1- via a short-lived intermediate (Figure S4). 

The resulting burgundy species [3]1- can be isolated or 

used in-situ to perform stoichiometric oxidations with 

PPh3 and 2-PPA, generating the same products of cata-

lytic oxidations using [1]2- (see SI). Along with the mon-

ometallic structure of (Et4N)2[2], this result suggests that 

[1]2- reacts with O2 to form a monometallic Co–O2 spe-

cies, [Co(L)O2]1-, [3]1-. The monomeric nature of [3]1- is 

further supported by MALDI-TOF mass spectrometry, 

which shows that new ions with m/z = 410.49 or 412.47 

amu are produced when [1]2- reacts with 2 equivalents of 
16O2 or 18O2, respectively (Figure S5). These mass values 

are consistent with formulations as [3 – 16/18O]– species, 

similar to mass spectral data observed for a recently re-

ported five-coordinate Co–O2 complex capable of C–H 

bond activation via a postulated CoIV-oxo intermediate.12 

Liquid-cell IR techniques show that [3]1- has an O2 

stretching feature at 1248 cm-1, which shifts to 1203 cm-1 

upon 18O2 labeling (Figure S6). These data are consistent 

with end-on Co–superoxide coordination.13 

This molecular geometry is further supported by analy-

sis of extended X-ray absorption fine structure (EXAFS) 

in the Co K-edge XAS of [2]2- and [3]1- (Figures S7-8, 

Table S1). The EXAFS of [2]2- and [3]1- are qualitatively 

similar, yielding a Co coordination number of four with 

average Co–L distances of 1.98 Å and 1.88 Å, respec-

tively. These distances are in good agreement with the 

crystallographic and DFT-optimized average Co–L dis-

tances of 2.01 Å and 2.04 Å for [2]2-, respectively, and are 

also in good agreement with the calculated average Co–L 

distance for [3]1- at 1.87 Å. These results suggest a similar 

coordination geometry for (L)3- in [2]2- and [3]1-, further 

indicating a monomeric Co(L) end-on superoxide struc-

tural unit for [3]1-. 

Ground state electronic configurations of [2]2- and [3]1- 

were established from their magnetic properties. For [2]2-

, the μeff value of 4.27(3) μB at 298K in CDCl3 is indica-

tive of an S = 3/2 ground state. EPR data (Figure 2a) con-

firm this unusual high-spin state, with observed (effec-

tive) g values of gx = 4.53, gy = 3.97, and gz = 1.95, indi-

cating D > hν. Despite the clear indication of an S = 3/2 

ground state for [2]2-, the EPR spectrum for [3]1- is sur-

prisingly characteristic of an S = 1/2 species, best simu-

lated by gx = 2.20, gy = 2.00, gz = 1.975 (μeff = 2.13 μB at 

298K in CH3CN). The observation of a “high-spin” com-

plex of cyanide, a strong-field ligand, is unusual14 but 

consistent with the low coordination number. Even more 

unusual is that the weaker field O2
– complex, [3]1-, ap-

pears low spin. Co Kβ X-ray emission spectra (XES) of 

[2]2– and [3]1– were measured as a probe of the local spin 

at Co (Figure 2b). Splitting of Kβ (3p1s) main lines 

into Kβ and Kβ1,3 features is a useful metric of spin pop-

ulation since electron delocalization out of metal 3d or-

bitals results in attenuation of the 3d–3p exchange en-

ergy.15 Kβ main line splitting is markedly decreased in 

[3]1– compared to [1]2– and [2]2–, consistent with a de-

creased local Co spin population in [3]1–. 

 

Figure 2. (a) Experimental EPR data and simulations for [2]2- 

and [3]1-. (b) Co Kβ XES main lines of [1]2-–[3]1-. (c) Co K-

edge XANES of [1]2-–[3]1-. Inset: Magnification of the Co 

1s  (Co 3d + L) pre-edge features. (d) Overlay of cali-

brated TDDFT-calculated (B3LYP/def2-TZVP-ZORA) Co 

K-edge XANES pre-edge peaks for [3]1-. 

To defuse this spin state conundrum, DFT calculations 
were employed to produce an electronic structure picture 

consistent with the aggregate structural and spectral data. 
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To this end, we evaluated multiple electronic configura-

tions for [2]2– and [3]1–.16 The quartet state for [2]2- was 

energetically favored over the doublet state by 26.7 

kJ/mol, in agreement with the EPR data and the similarity 

of the Co XANES pre-edge energy of [2]2- with that of 

[1]2-, for the CoII centers in [1]2- are high-spin6  (Figure 

2c). The optimized geometry for [2]2- as a quartet is also 

a superior match to the crystallographic data (Table S5). 

Additionally, the cyanide C≡N stretch predicted to occur 

at 2211 cm-1 is experimentally measured at 2109 cm-1, in 

decent agreement given the well-known tendency for 

DFT to overestimate vibrational frequencies.17 

For [3]1-, calculations support an S = 1/2 end-on super-

oxide species as the configuration with lowest energy (Ta-

ble S6),18 in accord with experimental data. For this spe-

cies, a spin-coupled electronic structure is obtained. 

There are two low-lying doubly-occupied Co-centered e-

type orbitals of the pseudotetrahedral Co d orbital mani-

fold and three singly-occupied orbitals for the t2-derived 

set (Figure 3, S13). The superoxide ligand has two π* va-

lence orbitals––doubly-occupied π1* and singly-occupied 

π2*––that interact with the Co t2-derived orbitals. The π1* 

orbital engages in a 3-electron σ interaction with one Co 

orbital, while the π2* unpaired electron is coupled with 

another Co electron. A second antiferromagnetic interac-

tion exists between the third Co t2-derived electron and a 

ligand-based orbital having significant character from the 

central N atom of L. Therefore, as with [2]2-, the metal 

center in [3]1- contains a high-spin S = 3/2 CoII center. In 

this case, however, two of the three unpaired electrons of 

the CoII center couple with an L radical and a superoxide 

radical to yield an overall S = 1/2 ground state. This elec-

tronic structure explains the divergent reactivity of 

(Et4N)[3] (vide supra), for the half-filled O2 π2* orbital 

can be either a donor orbital for nucleophilic reactivity or 

an acceptor orbital for electrophilic reactivity. 

 

Figure 3. Molecular orbital interactions for [3]1-. (left) 

Green, red, and blue arrows represent electrons in Co-, O2-, 

and ligand-based orbitals, respectively. The red and blue 

brackets show antiferromagnetic coupling between the O2- 

and N-based ligands with Co d electrons. The green dashed 

bracket shows the 3-electron σ interaction between a Co 

electron and the π1* of the O2
– ligand. (right) Representation 

of ligand- and O2-based orbitals. 

The Co K-edge XANES of [1]2-–[3]1- (Figure 2c) de-

serve further comment. All of the other experimental and 

computational data clearly indicate that the CoII oxidation 

state remains constant throughout this series, but the pre-

edge features in the spectra of (Et4N)2[1] and (Et4N)2[2] 

effectively superimpose at 7709.7 eV, while that for [3]1– 

is shifted in energy to 7710.2 eV. Furthermore, rising 

edges distinguish all three compounds (Figure S9). 

TD-DFT analysis of XANES pre-edge features, accom-

plished via calibration to a set of model compounds (Fig-

ure S10), was performed to reconcile the XANES features 

with the electronic structures of [1]2-–[3]1-. For [2]2-, this 

led to a straightforward assignment of the pre-edge tran-

sition as arising from the Co 1s to the valence “t2”-derived 

set. In the case of [3]1- (Figure 2d), the acceptor orbitals 

participating in this excitation have substantial O–O π* 

admixture. Comparison of the spin density plots of [2]2- 

vs [3]1- shows this effect quite clearly; while the spin den-

sity in [2]2- is highly localized on the metal center with 

orbitals having roughly 70% metal character, the spin for 

[3]1- is more delocalized and the orbitals are closer to 50% 

metal in character (Figure S11).  

This delocalization of electron density manifests in the 

calculated Co atomic charges 0.47, 0.55, and 0.64 for 

[1]2–, [2]2–, and [3]1–, respectively. These values correlate 

to a reasonable degree (R2 = 0.94) with the corresponding 

rising edge inflection points (Figure S9). Moreover, the 

trend line extrapolates to 7706 ± 3 eV at a charge of 0, 

consistent with the rising edge inflection of Co metal 

(7709 eV). Consequently, variations in the XANES of 

[3]1– from the other compounds do not necessarily reflect 

a change in the physical oxidation state at Co after reac-

tion with O2. The difference in energy of the Co K-edge 

XANES pre-edge features is due to a difference in the na-

ture of the acceptor orbital when comparing [1]2– and 

[2]2– to [3]1–, as has been seen previously for Cu com-

plexes.19 The shift to higher energy of the rising edge in-

flection point in [3]1– likely reflects the highly covalent 

interaction of Co with an electronegative O-donor. Alt-

hough XANES is widely used as a metric of physical ox-

idation states of transition metal complexes, we empha-

size here that the nature of the coordinated ligands also 

has a strong influence over the spectral profiles. 

In summary, the reaction of [1]2- with 2 equivalents of 

[Et4N]CN yields the unusual, high-spin CoII complex 

[2]2-, which provides structural insight toward the catalyt-

ically relevant intermediate [3]1-. Compound [3]1- is de-

termined to be a monomeric CoII superoxide complex 

supported by the redox non-innocent ligand L in its sin-

gly-oxidized radical form. The local spin state of CoII is S 

= 3/2, but these electrons couple with unpaired electrons 

on L as well as the O2
– ligand to yield an overall S = 1/2 

state, as seen via EPR spectroscopy. The catalytic utility 

of [3]1- is therefore attributable to its redox non-innocent 

L supporting ligand, allowing Co to remain high-spin 

upon activation of O2 and avoiding the kinetic quagmire 

that is a low-spin CoIII complex. 
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Synthetic and spectroscopic methods, full MO diagrams, 

Cartesian coordinates, and CIF for [2]2–. This material is 

available free of charge via the Internet at 

http://pubs.acs.org.  
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