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Abstract: A series of amphiphilic oligo(glycerol-aliphatic) layer-
blocked dendrons with different hydrophilic-lipophilic balance val-
ues (3.5–15.0) was prepared for use in controlled drug delivery and
self-assembly studies. The synthetic strategies involved first a con-
vergent growth of the inner hydrophobic sector followed by a diver-
gent growth of the outer hydrophilic sector.
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Amphiphilic dendrimers are an interesting class of mole-
cules with novel self-assembling properties.1 They are of-
ten prepared either by attaching linear hydrophilic groups
such as oligoethyleneglycol,2 anionic carboxylate3 or cat-
ionic ammonium4 groups to the periphery of a hydropho-
bic dendrimer, or by anchoring linear fatty acid chains to
the surface of a hydrophilic dendrimer.5 They are useful
compounds for gene transfection and for biomedical and
controlled drug delivery applications.6 Hence, the synthe-
sis of amphiphilic dendrimers with new internal hydro-
philic or hydrophobic repeating architecture and
interesting guest-encapsulating properties is still in
demand. To date, only a limited number of hydrophilic
dendritic/hyperbranched compounds based on penta-
erythritol,7 tris(hydroxymethyl)methane,8 or glycerol9 re-
peating units are known, as are hydrophobic dendrimers
based on tetrakis(butylene)methane10 or isoprene11 re-
peating units. For controlled release applications, mole-
cules with an optimal hydrophilic-lipophilic balance
(HLB) are needed.12 Therefore, the availability of a series
of amphiphilic dendrimers with different HLB values is
highly desirable. Herein, we wish to report the synthesis
of a new series of amphiphilic dendrons G[m+n]-(X)k(Y)
(e.g., 1; Figure 1) bearing m outer layers of polyglycerol
and n inner layers of isoprene hydrophobic units with k X
surface groups and a focal point functionality Y. This set
of amphiphilic dendrons possesses a range of HLB (3.5–
15.0) values to cater for different controlled delivery ap-
plications. The present synthetic protocol also makes use
of the advantages of both convergent (fewer defective
products) and divergent (rapid growth of dendrimer) syn-
thetic strategies. Hence, the di-C-allylation of Meldrum’s
acid13 was used for the inward construction of the hydro-

phobic aliphatic inner core to ensure good structural ho-
mogeneity, while the allylation–dihydroxylation
sequence reported by Haag9b was employed for the rapid
outward growth of the hydrophilic polyglycerol outer sec-
tor. This synthesis allows a library of amphiphilic den-
drons of different HLB values to be rapidly assembled in
good yields for various applications.

The starting material was 5-hydroxylmethyl-2,2,5-tri-
methyl-1,3-dioxane (2; Scheme 1).14 The acetonide moi-
ety served as the protective group of the 1,3-diol that
could be elaborated into the hydrophilic polyglycerol lay-
er later in the synthesis. Alcohol 2 was subjected to Swern
oxidation and the resulting aldehyde was immediately re-
acted with Ph3P=CHCO2Me to give the trans-α,β-unsatu-
rated ester 3 in 85% overall yield.15,16 Ester 3 was then
reduced to the corresponding trans-allylic alcohol 4 by di-
isobutylaluminum hydride (DIBAL-H) in 93% yield. Re-
action of two equivalents of 4 with Meldrum’s acid in the
presence of diisopropyl azodicarboxylate (DIAD) in tolu-
ene at –10 °C gave the C-diallylation product 5 in 73%
yield. The acetonide group at the focal point was then
cleaved by NaOMe to produce the monoacid-monoester 6
in 79% yield. Decarboxylation of 6 in pyridine at 110 °C
proceeded smoothly to give diene-ester 7 in 78% yield.
The double bonds were then hydrogenated in the presence
of 10% Pd/C to afford saturated ester 8 in 89% yield. A
small amount of powdered K2CO3 was required to prevent
cleavage of the acetonide groups under the reaction con-
ditions. Finally, the ester was reduced to the correspond-
ing alcohol 9 in 99% yield by lithium aluminum hydride
(LAH). This series of reactions then completed the con-
vergent iterative reaction cycle. The overall yield from
dendron G[0+0]-(dioxane)1(OH) 2 to compound G[0+1]-
(dioxane)2(OH) 9 was 31%.

For the synthesis of the G[0+2] dendrons, alcohol 9 was
subjected to Swern oxidation followed by reaction with
Ph3P=CHCO2Me to give the trans-α,β-unsaturated ester
10 in 96% overall yield (Scheme 2). The ester was then
converted into the corresponding allylic alcohol 11 in
96% yield through DIBAL-H mediated reduction. Mitsu-
nobu C-diallylation of Meldrum’s acid with 11 gave an in-
separable 9:1 mixture of C-diallylation product 12 and O-
monoallylation product 13 in a combined yield of 81%.
Upon treatment of the mixture with NaOMe in MeOH fol-
lowed by chromatographic purification, monoacid-mono-
ester 14 was obtained in pure form in 85% yield.
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Compound 14 was then similarly converted into the cor-
responding G[0+2]-(dioxane)4(OH) 17 in overall 82%
yield through a decarboxylation, hydrogenation and
LAH-mediated reduction sequence.

The same reaction sequence was then applied to the syn-
thesis of the G[0+3]-dendrons (Scheme 3), however, two

issues were identified. First, for the Mitsunobu reaction
between the G[0+2]-(dioxane)4(allylic-OH) 18 with Mel-
drum’s acid, the C-diallylation product 1917 could only be
obtained in 40% yield. The yield could not be improved
by changing the reaction solvent or by adding
[Pd(PPh3)4].

13a Second, the C=C double bonds of product

Figure 1 Structure of amphiphilic dendron 1

CH2OBn

O

O

O

O

O

O

O

O

O

O

O O

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

HO

O

O

O

O

O

O

O

O

O

O

OO

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

OH

1

Scheme 1 Synthesis of G[0+1]-dendrons
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20 could not be saturated when the reduction was con-
ducted in EtOAc, and the reaction was carried out in ace-
tic acid/acetone/2,2-dimethoxypropane. Finally, G[0+3]-
(dioxane)8(OH) 21 was obtained in an overall yield of
17% from compound 17.

After successfully synthesizing the G[0+n]-dendrons, the
divergent growth of the hydrophilic oligo(glycerol) outer
sector employing Haag’s method9b was examined. Thus,
G[0+2]-(dioxane)4(OH) 17 was first converted into the
corresponding benzyl ether G[0+2]-(dioxane)4(OBn) in
98% yield through application of the Williamson synthe-
sis (Scheme 4). The acetonide protecting groups were
then removed in the presence of acetic acid in MeOH to
give the octa-alcohol 22 in 87% yield. Initial O-allylation
of 22 with allyl bromide, NaOH, and tetrabutylammoni-

um iodide (TBAI) in THF/water (1:1) at 45 °C proceeded
very slowly. Although the starting octa-alcohol disap-
peared after two days, only partially allylated intermedi-
ates were formed. After seven days, only a small amount
of the octa-allylated product 23 was isolated. Alternative
reaction conditions employing Williamson ether synthesis
(NaH, allyl bromide, DMF) gave the octa-allylation prod-
uct 23, albeit in poor conversion (ca. 10%). The starting
octa-alcohol was still present in large quantities even us-
ing excess NaH (80 equiv). Interestingly, no partially al-
lylated compounds were found. Hence, it appeared that
once one of the hydroxyl groups was allylated, subsequent
allylations proceeded much faster to give the octa-allylat-
ed compound under the Williamson conditions. Because
Haag’s procedure could afford a mixture of partially al-

Scheme 2 Synthesis of G[0+1]-dendrons
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lylated products, the Haag and Williamson procedures
were then employed sequentially to ensure complete al-
lylation. Hence, the octa-alcohol 22 was first subjected to
Haag’s conditions for two days. After workup, the mix-

ture was subjected to Williamson conditions to produce
the octa-allylated compound 23 in 85% yield. Compound
23 was unstable at room temperature and was immediate-
ly dihydroxylated using a catalytic amount of OsO4 and 4-

Scheme 3 Synthesis of G[0+3]-dendrons

1. DMSO, (COCl)2, 
    CH2Cl2, –78 °C
2. Et3N, –78 to 0 °C

3. Ph3P=CHCO2Me, 
    THF, 65 °C
4. DIBAL-H, toluene, –10 °C

O O

O O

DIAD, Ph3P
toluene, –10 °C

O O

O O

MeOH 

NaOMe, 20 °C

17

19

20 21

CH2OH

18

R
RR

R

R
R

R R R R
R

R

OH OMe

O O

R
R

R R R R
R

R

1. pyridine, 110 °C

R
R

R R R R
R

R

2. H2, 10% Pd/C, AcOH,
    acetone, Me2C(OMe)2, 
    20 °C
3. LiAlH4, THF
    0–20 °C

CH2OH

R = (CH2)3

O

O

Scheme 4 Synthesis of G[1+2]- and G[2+2]-dendrons

1. NaH, DMF, 0 °C
2. BnBr, 20 °C

3. AcOH, 
    MeOH, 20 °C

17

22

OH

OH

HOHO
HO

HO

OH OH

CH2OBn

O
O

O
O

CH2OBn

2. workup
3. NaH, DMF, 0 °C
4. H2C=CHCH2Br, 20 °C

1. H2C=CHCH2Br, 
    NaOH, TBAI, 
    H2O, 45 °C

OO

O

O

CH2OH

OO

O

O

O

O
O

O

O
O

O
O

OsO4, NMO

acetone, H2O, 20 °C

23 24

2. H2, Pd/C, K2CO3

    EtOAc, 20 °C

1. H2C=CHCH2Br, NaOH 
    TBAI, H2O, 45 °C
2. workup

CH2OH

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O O

O

O

O

O
O

O

OO

O

O

CH2OBn

OHHO

HO

HO

HO

HO

OH
HO

O O

O

O

HO OH

OH

OH

OH

OH

HO
OH

1. (MeO)2CMe2, TsOH
    MeOH, CH2Cl2, 20 °C
2. H2, Pd/C, K2CO3

    EtOAc, 20 °C

3. NaH, DMF, 0 °C
4. H2C=CHCH2Br, 20 °C
5. OsO4, NMO, acetone
    H2O, 20 °C

1

25
26

1. (MeO)2CMe2, TsOH
     MeOH, CH2Cl2, 
     20 °C

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f P

itt
sb

ur
gh

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Amphiphilic Dendrons 205

© Georg Thieme Verlag  Stuttgart · New York Synlett 2013, 24, 201–206

methylmorpholine N-oxide (NMO) in aqueous acetone to
give the G[1+2]-(OH)16(OBn) 24 as a mixture of diaste-
reoisomers in 64% yield. The allylation–dihydroxylation
sequence was once again employed on 24 to give the cor-
responding G[2+2]-(OH)32(OBn) 1,18 after purification by
dialysis in MeOH, in overall 87% yield. Compound 1 has
24 chiral centers and is a mixture of more than 106 stereo-
isomers. The peripheral 1,2-diols in compounds 24 and 1
could be protected as the dioxalanes using 2,2-dimethoxy-
propane and the focal point benzyl ether functionality
could be removed by hydrogenolysis to produce com-
pounds 25 (64%) and 26 (70%), respectively. The focal
point alcohol functionality can serve as a handle for its
attachment to other molecular entities.

The conversion efficiency of the divergent allylation–
dihydroxylation reaction was assessed by mass spectros-
copy using either electrospray or MALDI-TOF ionization
techniques.16 For example, the MALDI-TOF mass spec-
trum of G[2+2]-(OH)32(OBn) 1 showed a major peak at
m/z 2569 [M + Na]+, and several structurally defective
peaks of less than 10% relative intensity corresponding to
peaks with one or two non-allylated, or one non-dihydrox-
ylated species (Figure 2). Based on the relative intensities
of these defective peaks, one could estimate that 80% of
the sample was the defect-free dendron after two iterative
growth cycles, highlighting the good efficiency of Haag’s
divergent synthetic protocol.

Figure 2  MALDI-TOF spectrum of G[2+2]-(OH)32(OBn) 1

The aqueous solubility of G[0+2]-(OH)8(OBn) 22,
G[1+2]-(OH)16(OBn) 24 and G[2+2]-(OH)32(OBn) 1
were found be to <10–3, 2.9 and >7.5 M, respectively, re-
flecting the gradual increase of HLB value [22 (3.5), 24
(10.7) and 1 (15.0)].16 Apparently, the highly polar nature
of the larger-sized oligo(glycerol) sector overwhelmed
the non-polar nature of the aliphatic core and enabled
compounds 24 and 1 to become miscible with water
through unimolecular micelle and aggregate formation.

In summary, we have reported the versatile synthesis of a
series of new amphiphilic layer-block dendrons. The syn-
thesis made use of favorable attributes of both divergent

and convergent strategies to enable their efficient synthe-
sis and good structural homogeneity. The divergent
growth strategy, in principle, can also be applied to the
G[0+1]- and G[0+3]-dendrons to furnish amphiphilic
dendrimers with a broader range of HLB values for future
self-assembly and controlled release property studies.
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COCHH), 3.55 (AB system, J = 11.4 Hz, 16 H, COCHH), 
5.20 (dt, J = 15.3, 7.2 Hz, 2 H, CH2CH=CH), 5.36 (dd, J = 
15.0, 8.4 Hz, 2 H, CH2CH=CH); 13C NMR (75 MHz, 
CDCl3): δ = 19.8, 20.2, 23.7, 24.1, 24.5, 30.2, 32.7, 34.0, 
34.5, 34.6, 35.6, 36.0, 37.4, 42.7, 43.1, 56.1, 69.6, 97.9, 
105.3, 121.8, 142.3, 168.8; MS (FAB): m/z (%) = 1823 (100) 
[M – CH3

+]; HRMS (FAB): m/z calcd for (C110H196O20 – 
CH3)

+: 1822.4080; found: 1822.4113. 
(18) Synthesis of G[2+2]-(OH)32(OBn) 1: OsO4 (2.5 wt% in t-

BuOH, 0.44 mL, 0.044 mmol) was added dropwise to a 

solution of 16-ene 32 (873 mg, 0.44 mmol) and NMO (1.23 
g, 10.46 mmol) in acetone–H2O (20 mL, 10:1, v/v) at 0 °C. 
The mixture was stirred at 20 °C for 48 h and the progress of 
the reaction was monitored by NMR analysis until all allyl 
groups had reacted. The solvent was removed in vacuo and 
the dark-brown residue was purified by membrane dialysis 
in MeOH using regenerated cellulose (MWCO = 1,000) to 
give the target compound 1 (1.02 g, 92%) as a viscous brown 
liquid. Rf = 0.08 (EtOAc–MeOH, 1:3); 1H NMR (300 MHz, 
DMSO-d6): δ = 0.78 (s, 12 H, CH3), 0.92–1.45 (m, 38 H), 
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J = 5.7 Hz, 10 H, OH and PhCH2O), 4.47 (t, J = 5.7 Hz, 8 H, 
OH), 4.51 (t, J = 4.8 Hz, 8 H, OH), 4.60 (dd, J = 4.8, 1.2 Hz, 
8 H, OH), 7.16–7.45 (m, 5 H, ArH); 13C NMR (75 MHz, 
DMSO-d6): δ = 19.6, 20.0, 23.4, 31.8, 33.7, 34.6, 35.1, 36.8, 
37.8, 38.7, 63.4, 63.5, 70.7, 70.9, 71.0, 71.3, 71.89, 71.93, 
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(MALDI-TOF): m/z calcd for (C117H228O57 + Na)+: 
2569.4869; found: 2569.4974. 
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