

Copper-Mediated Aerobic Synthesis of 3-Azabicyclo[3.1.0]hex-2-enes and 4-Carbonylpyrroles from N-Allyl/Propargyl Enamine Carboxylates

Kah Kah Toh, Yi-Feng Wang, Eileen Pei Jian Ng, and Shunsuke Chiba*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

Supporting Information

ABSTRACT: Synthetic methods for 3-azabicyclo[3.1.0] hex-2-enes and 4-carbonylpyrroles have been developed that use copper-mediated/catalyzed reactions of N-allyl/propargyl enamine carboxylates under an O_2 atmosphere and involve intramolecular cyclopropanation and carbooxygenation, respectively. These methodologies take advantage of orthogonal modes of chemical reactivity of readily available N-allyl/propargyl enamine carboxylates; the complementary pathways can be accessed by slight modification of the reaction conditions.

Nitrogen-containing heterocycles (azaheterocycles) are an iconic component of numerous natural products, potent pharmaceutical drugs, and synthons for material-based applications. Although diverse approaches to azaheterocycle synthesis have been developed, there remains a demand for versatile methodologies to construct azaheterocycles with selective control of substitution patterns from readily accessible building blocks. Herein we report a copper-mediated/catalyzed aerobic synthesis of 3-azabicyclo[3.1.0]hex-2-enes and 4-carbonylpyrroles from readily available *N*-allyl/propargyl enamine carboxylates through cyclopropanation and carbooxygenation, respectively. The different modes of reactivity may be accessed by slight modification of the reaction conditions (see Scheme 1 for examples using an *N*-allyl enamine carboxylate).

During the course of our research program on coppercatalyzed aerobic oxygenation/oxidation reactions, we became interested in the potential chemical reactivity of N-alkenyl/ alkynyl enamine carboxylates, which are easily prepared by acid-mediated condensation of the corresponding amines with β -keto esters or by conjugate addition of the amines to acetylene carboxylates. Aerobic oxidative functionalization of the pendant unsaturated bonds could be envisioned to occur through the formation of a putative copper—azaenolate species.

Our investigation commenced with copper-mediated aerobic reactions of ethyl 3-allylamino-3-phenylacrylate (1a) (Table 1). To our surprise, when 1a was treated with 3 equiv of CuBr·SMe₂ in DMSO at 60 °C under an O₂ atmosphere, an intramolecular cyclopropanation product, ethyl 2-phenyl-3-azabicyclo[3.1.0] hex-2-ene-1-carboxylate (2a) was isolated in 67% yield (entry 1). While the 3-azabicyclo[3.1.0] scaffold is found in the basic core of several biologically active natural products⁵ and drug candidates, synthetic methods to construct this framework have been limited.^{7–9} The unprecedented formation of 3-azabicyclo[3.1.0] hex-2-ene 2a via a mechanistically intriguing cyclopropanation

Scheme 1. Synthesis of 3-Azabicyclo[3.1.0]hex-2-enes and 4-Formylpyrroles from *N*-Allyl Enamine Carboxylates

$$\begin{array}{c} \text{CuBr} \cdot \text{SMe}_2 \\ \text{2,2'-bipyridine} \\ \text{Ph} \\ \text{CO}_2 \text{Et} \\ \hline \\ \text{Cyclopropanation} \\ \end{array} \\ \begin{array}{c} \text{CuBr} \cdot \text{SMe}_2 \\ \text{2,2'-bipyridine} \\ \text{DMSO, } 60 \text{ °C} \\ \text{O}_2 \text{ (1 atm)} \\ \hline \\ \text{CO}_2 \text{Et} \\ \hline \\ \text{Carbooxygenation} \\ \end{array} \\ \begin{array}{c} \text{Cat. } \text{Cu}(\text{OAc})_2 \\ \text{DABCO} \\ \text{K}_2 \text{CO}_3 \\ \text{DMSO, } 80 \text{ °C} \\ \text{O}_2 \text{ (1 atm)} \\ \hline \\ \text{Co}_2 \text{Et} \\ \hline \\ \text{Carbooxygenation} \\ \end{array}$$

Table 1. Optimization of the Reaction Conditions^a

$$\begin{array}{c} \text{NH} \\ \text{Ph} \\ \text{CO}_2\text{Et} \\ \text{1a} \end{array} \begin{array}{c} \text{Cu salts} \\ \text{additive} \\ \text{DMSO}, 60 ^{\circ}\text{C} \\ \text{under O}_2 (1 \text{ atm}) \end{array} \begin{array}{c} \text{N} \\ \text{Ph} \\ \text{CO}_2\text{Et} \\ \text{2a} \end{array} \begin{array}{c} \text{HN} \\ \text{H} \\ \text{Ph} \\ \text{CO}_2\text{Et} \\ \text{3a} \end{array}$$

				% yield ^{b,c}				
	Cu salt	additive	time					
entry	(equiv)	(equiv)	(h)	2a	3a			
1	$CuBr \cdot SMe_2(3)$	_	1.5	67	0			
2	$CuBr \cdot SMe_2$ (2.1)	DABCO (20)	0.7	(50)	0			
3	$CuBr \cdot SMe_2$ (2.1)	DMAP (2 0)	1.5	83	0			
4	$CuBr \cdot SMe_2$ (2.1)	1,10-phenanthroline (2.1)	1.5	88	0			
5	$CuBr \cdot SMe_2$ (2.1)	2,2'-bipyridine (2.0)	1.5	93	0			
6	$CuBr \cdot SMe_2$ (1.1)	2,2'-bipyridine (1.1)	3	89	0			
7^d	$CuBr \cdot SMe_2$ (1.1)	2,2'-bipyridine (1.1)	12	$(10)^{e}$	0			
8	CuCl (1.1)	2,2'-bipyridine (1.1)	25	(67)	0			
9	$CuBr_2$ (1.1)	2,2'-bipyridine (1.1)	12	0	0			
10	$Cu(OAc)_2$ (1.1)	2,2'-bipyridine (1.1)	12	0	0			
11	$CuBr \cdot SMe_2 (0.5)$	2,2'-bipyridine (0.5)	3	(61)	(4)			
12	$CuBr \cdot SMe_2 (0.2)$	2,2'-bipyridine (2.0)	48	$(17)^f$	(3)			
13	$CuBr \cdot SMe_2 (0.2)$	DMAP (3.0)	7	(34)	(6)			
14	$CuBr \cdot SMe_2 (0.2)$	DABCO (5.0)	2	44	(12)			
All of the goestions years comical out using 0.5 mm all of M allyl on aming								

 a All of the reactions were carried out using 0.5 mmol of N-allyl enamine carboxylate 1a in DMSO at 60 °C under an O $_2$ atmosphere. b Isolated yields. c 1 H NMR yields are shown in parentheses. d The reaction was carried out under an Ar atmopshere. e 1a was recovered in 75% yield. f 1a was recovered in 40% yield.

reaction ¹⁰ drove us to optimize the reaction conditions further. The yield of product **2a** was improved by the addition of amines

Received: July 15, 2011 Published: August 08, 2011

Chart 1. Scope of the Synthesis of 3-Azabicyclo [3.1.0] hex-2-enes: Substituents on the Alkene^{a,b}

^aAll of the reactions were carried out using 0.5 mmol of *N*-allyl enamine carboxylate 1 with 1.1 equiv of CuBr·SMe₂ and 1.1 equiv of 2,2′-bipyridine in DMSO at 60 °C under an O₂ atmosphere for 2−3.5 h. ^bIsolated yields are reported. ^cThe reaction was run using 1.1 equiv of CuBr·SMe₂ and 1.1 equiv of DMAP.

(2 equiv) to CuBr·SMe₂ (2.1 equiv) (entries 2–5); these additives may work as ligands for copper salts. The highest yield of 2a was achieved using 2,2'-bipyridine (93% yield; entry 5). Utilization of 1.1 equiv of CuBr·SMe₂ with 1.1 equiv of 2,2'-bipyridine resulted in comparable yield of 2a (entry 6). Under an Ar atmosphere, the reaction was sluggish and provided 2a in 10% yield along with 75% yield recovery of 1a after 12 h (entry 7). Although CuCl exhibited selective formation of 2a (entry 8), Cu(II) complexes such as CuBr₂ and Cu(OAc)₂ failed to provide any 2a (entries 9 and 10). Attempts to render this process catalytic gave unsatisfactory results (entries 11–14). Under these conditions, the highest yield of 2a (44%) was obtained using 20 mol % CuBr·SMe₂ with 5 equiv of DABCO (entry 14). In these cases, 4-formylpyrrole 3a was formed as a minor product via carbooxygenation of the alkene.

Using the $\text{CuBr} \cdot \text{SMe}_2 - 2,2'$ -bipyridine system (Table 1, entry 6), we examined the generality of the synthesis of substituted 3-azabicyclo[3.1.0]hex-2-enes 2. Varying the substituent R^1 of N-allyl enamines 1 (Chart 1) showed that benzene rings bearing either an electron-donating group (MeO in $2\mathbf{b}$ and $2\mathbf{c}$) or an electron-withdrawing group (CF3 in $2\mathbf{f}$) were tolerated and that the C-Br bond remained intact when a bromine substituent ($2\mathbf{d}$ and $2\mathbf{e}$) was introduced. 3-Azabicyclo[3.1.0]hexenes 1 bearing naphthyl ($2\mathbf{g}$ and $2\mathbf{h}$), thienyl ($2\mathbf{i}$), and benzofuranyl ($2\mathbf{j}$) groups as well as alkyl groups ($2\mathbf{k}-\mathbf{m}$) were all formed in good yields. Interestingly, the reaction of N-allyl enamine $1\mathbf{m}$ bearing an additional pendant alkene as R^1 revealed that the cyclization reaction exclusively selects the alkene tethered to the nitrogen atom, furnishing 3-azabicyclo[3.1.0]hex-2-ene $2\mathbf{m}$ in 77% yield.

Next, the effect of the substituent on the allyl moiety in the synthesis of 3-azabicyclo[3.1.0]hexenes **2** was examined (Table 2). The reactions of both (Z)- and (E)-N-3-phenylallyl derivatives **1n** provided nearly 1:1 mixtures of **2n**¹² and **2n**' in good combined yields (entry 1), suggesting that the present cyclopropanation proceeds in a stepwise manner. The reaction of N-3,3-dimethylallyl enamine **1o** under the standard reaction conditions afforded the corresponding azabicyclo[3.1.0]hexene **2o** in 36% yield along with bromomethyl dihydropyrrole **4o-Br** (X = Br) in 13% yield. Using CuCl as the copper source with 2,2'-bipyridine provided **2o** and **4o-Cl** (X = Cl) in 58 and 23% yield, respectively. Using DMAP as the additive improved the yield of

Table 2. Scope of the Synthesis of 3-Azabicyclo [3.1.0] hex-2-enes: Substituents on the Allyl Group a

entry	enamines 1		products ^b		
1	Ph NH NH CO ₂ Et	<i>Z</i> -1n <i>E</i> -1n	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2	Me NH NH CO ₂ Et	10	Me N Me Me Me Me CO ₂ Et CO ₂ Et 20: 36% 40-Br: 13% ^c (X = Br) ^e 20: 63% 40-Br: 55% (X = Br) ^e		
3	Ph NH Ph CO ₂ Et	1p	Ph CO ₂ Et CO ₂ Et 5p : 25%		
4	Ph NH CO ₂ Et	1q	Ph Ph Ph N Ph N Ph H CO ₂ Et CO ₂ Et 2 q - <i>\varphi</i> . 5%		
5	NH CO ₂ Et	1r	Ph		
6	NH Ph CO ₂ Et	1s	H.		

^a All of the reactions were carried out using 0.5 mmol of *N*-allyl enamine carboxylate 1 with 1.1 equiv of CuBr⋅SMe₂ and 1.1 equiv of 2,2′-bipyridine in DMSO at 60 °C under an O₂ atmosphere for 1.5−4 h. ^b Isolated yields are reported. ^c ¹H NMR yield. ^d The reaction was run using 2.1 equiv of CuCl and 1.1 equiv of 2,2′-bipyridine. ^e The reaction was run using 1.1 equiv of CuBr⋅SMe₂ and 1.1 equiv of DMAP.

Scheme 2. Proposed Reaction Pathway for the Formation of 3-Azabicyclo[3.1.0]hexenes

$$\begin{array}{c} \text{CuBr-SMe}_2 & \text{O}_2 \\ + \\ 2,2\text{-bipyridine} & \text{N} & \text{Cu}^{\parallel - O} \\ + \\ 1a & \begin{array}{c} \text{I} & \text{CO}_2\text{Et} \\ \text{O} & \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{N} & \text{Cu}^{\parallel - O} \\ \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \\ \end{array} & \begin{array}{c} \text{CO}_2\text{$$

20 to 63% yield and suppressed the formation of 4o-Br to <5% (entry 2). Subjecting chloromethyl dihydropyrrole 4o-Cl to the standard reaction conditions resulted in a sluggish reaction that generated a complex mixture of products (see the Supporting Information). This indicates that halomethyl dihydropyrroles 4o likely are not involved in the second C—C bond-forming step of the cyclopropanation. In the case of 2-phenylallyl enamine 1p, 3-azabicyclo[3.1.0]hexene 2p and trisubstituted pyridine 5p were formed in 43 and 25% yield, respectively (entry 3). Diastereoselective

Scheme 3. Selective Formation of 4-Formylpyrroles

$$\begin{array}{c} \text{Cu(OAc)}_2 \text{ (20 mol \%)} \\ \text{DABCO (50 mol \%)} \\ \text{NH} \\ \text{R}^1 \\ \text{CO}_2 \text{Et} \end{array} \begin{array}{c} \text{Cu(OAc)}_2 \text{ (20 mol \%)} \\ \text{DABCO (50 mol \%)} \\ \textbf{K}_2 \textbf{CO}_3 \text{ (2.0 equiv)} \\ \text{DMSO, 80 °C, 3 h} \\ \text{under O}_2 \text{ (1 atm)} \end{array} \begin{array}{c} \text{3a: R}^1 = \text{Ph; 56\% (41\%)}^a \\ \text{3b: R}^1 = 4 \text{-MeOC}_6 \text{H}_4; 52\% \\ \text{3d: R}^1 = 3 \text{-BrC}_6 \text{H}_4; 52\% \\ \text{3f: R}^1 = 4 \text{-CF}_3 \text{C}_6 \text{H}_4; 53\% \\ \text{3l: R}^1 = 4 \text{-CF}_3 \text{-CP}_7; 31\% \end{array}$$

Scheme 4. Proposed Reaction Pathway for the Formation 4-Formylpyrroles

• Formation of pyrrole 3o from enamine 1o with C-C bond cleavage

cyclization was observed from 1-phenylallyl enamine 1q, affording α - and β -phenyl $2q^{12}$ in 77 and 5% yield, respectively (entry 4). The further potential of this method was probed by the reactions of cyclic N-allyl enamines 1r and 1s, which delivered highly strained fused tricyclic compounds (entries 5 and 6).

On the basis of these results, a mechanistic proposal is outlined in Scheme 2. In this senario, Cu^IBr reacts first with molecular oxygen to form a Cu^{II} peroxo species in either monomeric or dimeric form.¹³ The reaction of *N*-allyl enamine 1a with the resulting Cu^{II} peroxo species forms copper azaenolates (A and B), which may then undergo intramolecular carbocupration of the tethered alkene moiety to generate organocopper intermediate C. Presumably, formation of metallacyclobutane D followed by a C–C bond-forming reductive elimination ¹⁴ would complete the cyclopropanation to deliver 3-azabicyclo[3.1.0]hexene 2a. This process would allow the construction of sterically congested and highly strained molecules (e.g., 2o, 2r, and 2s).

Futher exploration into reaction optimization revealed that 4-formylpyrroles 3 could be generated selectively over 3-azabicyclo [3.1.0]hex-2-enes 2 simply by adding K_2CO_3 (Scheme 3). In this case, ethyl 4-formyl-2-phenylpyrrole-3-carboxylate (3a)¹² was formed as a single product from N-allyl enamine 1a with both Cu(I) and Cu(II) complexes.¹⁵ The best result (56% yield) was obtained using $Cu(OAc)_2$ (20 mol %) with 50 mol % DABCO and 2 equiv of K_2CO_3 . Conversely, using $CuBr \cdot SMe_2$ (20 mol %) with 20 mol % DABCO and 2 equiv of K_2CO_3 lowered the yield of 3a to 41%. Several 2-aryl-4-formylpyrroles could be synthesized in yields of 52—56%, while the yield of 2-cyclopropyl-4-formylpyrrole 3l was moderate (31%).

Although the role of K₂CO₃ in influencing the product selectivity remains uncertain, we propose in Scheme 4 one

Scheme 5. Synthesis of 4-Benzoylpyrroles

$$\begin{array}{c} \text{Ph} \\ \text{NH} \\ \text{Ph} \\ \text{CO}_2\text{Et} \\ \\ \text{E-1n} \\ \end{array} \begin{array}{c} \text{Cu(OAc)}_2 \ (20 \ \text{mol \%}) \\ \text{DABCO} \ (50 \ \text{mol \%}) \\ \text{NBO, 80 °C} \\ \text{under O}_2 \ (1 \ \text{atm}) \\ \end{array} \begin{array}{c} \text{NH} \\ \text{NH} \\ \text{NH} \\ \text{NH} \\ \text{CO}_2\text{Et} \\ \end{array} \begin{array}{c} \text{CuCl}_2 \ (20 \ \text{mol \%}) \\ \text{DABCO} \ (2 \ \text{equiv}) \\ \hline \text{DMSO, 80 °C, 2 h} \\ \text{under O}_2 \ (1 \ \text{atm}) \\ \end{array} \begin{array}{c} \text{NH} \\ \text{R}^1 \\ \end{array} \begin{array}{c} \text{CuCl}_2 \ (20 \ \text{mol \%}) \\ \text{DABCO} \ (2 \ \text{equiv}) \\ \hline \text{DMSO, 80 °C, 2 h} \\ \text{under O}_2 \ (1 \ \text{atm}) \\ \end{array} \begin{array}{c} \text{NH} \\ \text{R}^1 \\ \end{array} \begin{array}{c} \text{CO}_2\text{Et} \\ \end{array} \begin{array}{c} \text{NH} \\ \text{R}^2 \\ \end{array} \begin{array}{c} \text{CO}_2\text{Et} \\ \end{array} \\ \end{array} \begin{array}{c} \text{1t} \quad (R^1 = \text{Ph; R}^2 = \text{Ph}) \\ \text{1u} \quad (R^1 = 4\text{-MeOC}_6\text{H}_4; R^2 = \text{Ph}) \\ \text{1v} \quad (R^1 = \text{Ph; R}^2 = 4\text{-MeOC}_6\text{H}_4) \\ \text{1x} \quad (R^1 = \text{Ph; R}^2 = 4\text{-MeOC}_6\text{H}_4) \\ \text{1y} \quad (R^1 = \text{Ph; R}^2 = 4\text{-CIC}_6\text{H}_4) \\ \end{array} \begin{array}{c} \text{3v } 54\% \\ \text{3v } 53\% \\ \text{3y } 52\% \end{array}$$

possible reaction pathway for the 4-formylpyrrole formation. After formation of organocopper peroxide intermediate C (see Scheme 2 for details), subsequent isomerization gives peroxide E. Elimination of $[Cu^n-OH]$ then affords dihydropyrrole F bearing the formyl group. Further oxidation establishes aromatic pyrrole 3a. Interestingly, the reaction of N-3,3-dimethylallyl enamine 1o provided ethyl 2-phenylpyrrole-3-carboxylate (3o) in 24% yield via cleavage of the particular C-C bond between the carbons marked in blue and green. This result suggests the presence of a peroxide intermediate such as 1o-E, which undergoes fragmentation to give 3o along with elimination of acetone and $[Cu^{n-1}-OH]$.

This carbonylative pyrrole formation, however, could not be applied to the synthesis of 4-benzoylpyrrole 3n from N-3-phenylallyl enamine (E)-1n under the present conditions, producing instead a complex mixture of products (eq 1 in Scheme 5). It was found that the use of N-3-phenylpropargyl enamines 1t in place of N-allyl enamines overcame this drawback (eq 2 in Scheme 5). Treatment of 1t with 20 mol % CuCl and 2 equiv of DABCO in DMSO at $80\,^{\circ}$ C under an O_2 atmosphere gave 4-benzoylpyrrole 3t (the same as pyrrole 3n) in 60% yield. 17,18 The reactions of several N-propargyl enamines 1u-y afforded the corresponding 3-benzoylpyrroles 3u-y in good to moderate yields.

In summary, intriguing chemical reactivities of *N*-allyl/propargyl enamine carboxylates have been exploited to synthesize 3-azabicyclo[3.1.0]hex-2-enes and 4-carbonylpyrroles under Cumediated/catalyzed aerobic oxidation conditions. Slight modification of the reaction conditions allowed for a complete reversal of product selectivity. Further investigation of the scope, detailed mechanisms, and synthetic applications of the present processes to other types of molecules is currently underway.

■ ASSOCIATED CONTENT

Supporting Information. Experimental procedures, characterization of all new compounds, complete ref 6a, NMR spectra, and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author shunsuke@ntu.edu.sg

Author Contributions

[†]These authors contributed equally.

■ ACKNOWLEDGMENT

This work was supported by funding from Nanyang Technological University and the Singapore Ministry of Education (Academic Research Fund Tier 2: MOE2010-T2-1-009). We thank Dr. Yongxin Li (Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University) for assistance in X-ray crystallographic analysis.

■ REFERENCES

- (1) For recent reviews, see: (a) Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, U.K., 2008; Vol. 20 and others in this series. (b) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Pergamon: Oxford, U.K., 2008. (c) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Pergamon: Oxford, U.K., 2008. (d) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., McKillop, A., Eds.; Pergamon: Oxford, 1996 and references therein. (e) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH: Weinheim, Germany, 2003.
- (2) (a) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. **2011**, 13, 1622. (b) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. **2010**, 12, 3682. (c) Chiba, S.; Zhang, L.; Lee, J.-Y. J. Am. Chem. Soc. **2010**, 132, 7266.
- (3) For reviews, see: (a) Stanovnik, B.; Svete, J. Chem. Rev. 2004, 104, 2433. (b) Elassar, A.-Z. A.; El-Khair, A. A. Tetrahedron 2003, 59, 8463.
- (4) For a review of additions of metal enolates to unsaturated carbon—carbon bonds, see: Dénès, F.; Pérez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366.
- (5) (a) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J. A. *Chem. Rev.* **1997**, *97*, 787. (b) Yamashita, F.; Hotta, K.; Kurasawa, S.; Okami, Y.; Umezawa, H. *J. Antibiot.* **1985**, *38*, 58.
- (6) (a) Micheli, F.; et al. *J. Med. Chem.* **2010**, *53*, 2534. (b) Fujimoto, Y.; Irreverre, F.; Karle, J. M.; Karle, I. L.; Witkop, B. *J. Am. Chem. Soc.* **1971**, 93, 3471. (c) Mamai, A.; Madalengoitia, J. S. *Org. Lett.* **2001**, 3, 561–564. (d) Schlag, W.-R.; Vilsmaier, E.; Maas, G. *Tetrahedron* **1994**, *50*, 3123.
- (7) For reactions of metal carbenes, see: (a) Trost, B. M.; Breder, A.;
 O'Keefe, B. M.; Rao, M.; Franz, A. W. J. Am. Chem. Soc. 2011, 133, 4766.
 (b) Cao, B.; Xiao, D.; Joullié, M. M. Org. Lett. 1999, 1, 1799.
 (c) Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 6984. (d) Harvey, D. F.; Sigano, D. M. J. Org. Chem. 1996, 61, 2268. (e) Hegedus, L. S.; Miller, D. B., Jr. J. Org. Chem. 1989, 54, 1241.
- (8) For the use of Pd-catalyzed tandem cyclization, see: (a) Ohno, H.; Takeoka, Y.; Miyamura, K.; Kadoh, Y.; Tanaka, T. Org. Lett. 2003, 5, 4763. (b) Böhmer, J.; Grigg, R.; Marchbank, J. D. Chem. Commun. 2002, 768. (c) Grigg, R.; Rasul, R.; Redpath, J.; Wilson, D. Tetrahedron Lett. 1996, 37, 4609.
- (9) For the use of α-dichlorocarbonyl compounds, see: (a) Baldovini, N.; Bertrand, M.-P.; Carriere, A.; Nouguier, R.; Plamcher, J.-M. *J. Org. Chem.* **1996**, *61*, 3205. (b) Chan, S.; Braish, T. F. *Tetrahedron* **1994**, *50*, 9943.
- (10) For reports on oxidative cyclopropanation of alkenes with active methylene moieties of 1,3-dicarbonyl derivatives, see: (a) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496. (b) Moreau, B.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 18014. (c) Müller, P.; Ghanem, A. Org. Lett. 2004, 6, 4347. (d) Yang, D.; Gao, Q.; Lee, C.-S.; Cheung, K.-K. Org. Lett. 2002, 4, 3271. (e) Snider, B. B.; McCarthy, B. A. Tetrahedron 1993, 49, 9447. (f) Galeazzi, R.; Geremia, S.; Mobbili, G.; Orena, M. Tetrahedron: Asymmetry 1996, 7, 3573. (g) Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. J. Am. Chem. Soc. 1989, 111, 6443.
- (11) Liebeskind reported Cu(I)-catalyzed aerobic C–C bond-forming cross-coupling reactions of thiol esters and boronic acids, which did not proceed with Cu(II) complexes efficiently. See: (a) Liebeskind, L. S.; Yang,

- H.; Li, H. Angew. Chem., Int. Ed. **2009**, 48, 1417. (b) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. **2007**, 129, 15734.
- (12) The structures of 2n, 2q- α , and 3a were confirmed by X-ray crystallographic analyses (see the Supporting Information).
- (13) For recent reviews of dioxygen—copper systems, see: (a) Rolff, M.; Tuczek, F. Angew. Chem., Int. Ed. 2008, 47, 2344. (b) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047. (c) Gamez, P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J. Chem. Soc. Rev. 2001, 30, 376. (d) Fontecave, M.; Pierre, J.-L. Coord. Chem. Rev. 1998, 170, 125.
- (14) For recent reports on C—C bond formation via reductive elimination from putative organocopper intermediates, see: (a) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (b) Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469. (c) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050. (d) Norinder, J.; Bäckvall., J.-E.; Yoshikai, N.; Nakamura, E. Organometallics 2006, 25, 2129. (e) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693. (f) Jiang, Y.; Wu, N.; Wu, H.; Hem, M. Synlett 2005, 2731. (g) Yamanaka, M.; Kato, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 6278. (h) Hennessy, E. J.; Buchwald, S. L. Org. Lett. 2002, 4, 269.
- (15) For optimization of the reaction conditions, see the Supporting Information.
- (16) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678.
- (17) The CuBr-catalyzed reaction of N-propargyl β -enaminones under a N_2 atmosphere provided the corresponding pyridines. See: Cacchi, S.; Fabrizi, G.; Filisti, E. *Org. Lett.* **2008**, *10*, 2629.
- (18) For optimization of the reaction conditions and a proposed reaction mechanism, see the Supporting Information.