DOI: 10.1002/asia.201100050

Cooperative Activation of Alkyne and Thioamide Functionalities; Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,β-Unsaturated Thioamides

Ryo Yazaki,^[a, b] Naoya Kumagai,^{*[a]} and Masakatsu Shibasaki^{*[a]}

On the occasion of the 150th anniversary of Department of Chemistry, The University of Tokyo

enolate functioned as a Brønsted base

to generate copper alkynylide from the

terminal alkyne, thus driving the cata-

lytic cycle through an efficient proton

transfer between substrates. These find-

ings led to the identification of a more

convenient catalyst using potassium

Keywords: alkynes • asymmetric

catalysis · copper · proton transfer ·

thioamide

Abstract: A detailed study of the direct catalytic asymmetric conjugate addition of terminal alkynes to α,β -unsaturated thioamides is described. A soft Lewis acid/hard Brønsted base cooperative catalyst, comprising [Cu(CH₃CN)₄]PF₆, bisphosphine ligand, and Li(OC₆H₄-*p*-OMe) simultaneously activated both substrates to compensate for the low reactivity of copper alkynylide. A series of control experiments revealed that the intermediate copper-thioamide

Introduction

Cooperative catalysis has gained increasing attention in asymmetric catalysis as an effective strategy to simultaneously activate multiple substrates with explicit control of the stereochemical course of the reaction.^[1] In particular, the significance of this strategy is highlighted in so-called direct catalytic asymmetric C–C bond-forming reactions,^[2] in which the enantioselective intermolecular C–C bond formation proceeds in a catalytic manner by proton transfer

[a]	R. Yazaki, Dr. N. Kumagai, Prof. Dr. M. Shibasaki								
	Institute of Microbial Chemistry, Tokyo								
	3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)								
	Fax: (+81)3-3447-7779								
	E-mail: mshibasa@bikaken.or.jp								
	nkumagai@bikaken.or.jp								
	Homepage: http://www.bikaken.or.jp/research/group/shibasaki/								
	shibasaki-lab/index.html								
[b]	R. Yazaki								
	Graduate School of Pharmaceutical Sciences								
	The University of Tokyo								
	7-3-1 Hongo, Bunkvo-ku, Tokvo 113-0033 (Japan)								

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201100050.

ONLINE LIBRARY

1778

hexamethyldisilazane (KHMDS) as the Brønsted base, which was particularly effective for the reaction of silylacetylenes. Divergent transformation of the thioamide functionality and a concise enantioselective synthesis of a GPR40 receptor agonist AMG-837 highlighted the synthetic utility of the present catalysis.

through the activation of both reaction partners. Recently, in pursuit of direct-type catalytic asymmetric reactions, we devoted much effort to exploiting the soft Lewis basic character of a thioamide functionality, which can be activated as a nucleophile by a soft Lewis acid/hard Brønsted base cooperative catalyst. Although thioamides are widely utilized in organic synthesis, especially for the construction of sulfurcontaining heterocyclic compounds,^[3] their use in asymmetric catalysis has been limited. Chemoselective activation through soft-soft interaction allows for in situ catalytic generation of thioamide enolates, thereby leading to the development of direct catalytic asymmetric Mannich-type and aldol reactions of thioamides (Scheme 1 a).^[4] In our continuing program on thioamide chemistry, we turned our attention to incorporating electrophilic activation of a thioamide functionality in direct-type catalytic asymmetric reactions. In the nucleophilic activation of thioamides, our primary focus was on chemoselective activation in the presence of hard Lewis basic substrates. In this study, we envisioned simultaneous activation of both reaction partners by using the soft Lewis acid/hard Brønsted base cooperative catalyst, which can be represented by a catalytic asymmetric conjugate addition of soft Lewis basic α,β -unsaturated thioamides as the

CHEMISTRY

In this context, our attention

was directed toward the development of the direct catalytic asymmetric addition of terminal alkynes to α,β -unsaturated thioamides **1**.^[15] which addresses

the above-mentioned drawback

and proves the effectiveness of

a simultaneous activation strategy. Despite the similar electronegativity of sulfur and carbon

atoms, the C=S bond of thioa-

mides shows a higher dipole moment than that of the C=O

bond of the corresponding amides.^[16,17] In conjunction with

the soft Lewis basic nature of sulfur atoms, the electrophilicity

at the β -position of α , β -unsatu-

rated thioamides **1** can be enhanced by activation with a soft

a) thioamide as pronucleophile in the chemoselective activation strategy

softLA: soft Lewis acid hard BB: hard Brønsted base

Scheme 1. Two modes of activation strategy with the soft Lewis acid/hard Brønsted base cooperative catalytic system.

electrophile and soft Lewis basic terminal alkynes as the pronucleophile (Scheme 1b).

Catalytic asymmetric conjugate addition to an electrondeficient olefin is one of the most efficient methodologies to synthesize useful chiral building blocks for biologically active compounds.^[5] Terminal alkynes have established their utility as carbon pronucleophiles in carbon–carbon bondforming reactions,^[6] including catalytic asymmetric 1,2-additions^[7] and C(sp²)–C(sp) coupling reactions such as the Sonogashira reaction,^[8] but catalytic asymmetric conjugate addition of terminal alkynes suffers from limited substrate

scope. Although preformed metal alkynylides are effective nucleophiles in catalytic asymmetric conjugate addition,^[9] in situ generation of active metal alkynylides is more desirable in terms of both atom and step economy.^[10] Pioneering work on a direct catalytic asymmetric conjugate addition of terminal alkynes was reported by Carreira et al.; this involved employing highly electron-deficient olefins as electrophiles to compensate for the inherent would allow for the facile deprotonation of soft Lewis acidactivated terminal alkynes **2** to generate a metal-alkynylide, which would engage in an enantioselective coupling, with **1** activated in close proximity. On the basis of this hypothesis, we identified that the soft Lewis acid/hard Brønsted base/ hard Lewis base cooperative catalyst comprising [Cu-(CH₃CN)₄]PF₆, biaryl-type chiral bisphosphine ligands **3**, Li(OC₆H₄-*p*-OMe), and phosphine oxide **4** efficiently promoted the desired conjugate addition of **2** to **1** under proton-transfer conditions (Scheme 2).^[18] Herein, we report

Lewis acid. The combined use of a hard Brønsted base

Scheme 2. Direct catalytic asymmetric conjugate addition of terminal alkynes 2 to α,β -unsaturated thioamides 1 under proton-transfer conditions.

low nucleophilicity of copper alkynylides.^[11] Indeed, the inert nature of copper alkynylides is exploited in organocuprate additions, in which alkynes function as dummy ligands.^[12] Hayashi and co-workers^[13] and Fillion and Zorzitto^[14] subsequently showed that rhodium catalysis is effective for enantioselective conjugate addition to enones, enals, and nitro olefins. Conjugate addition to α , β -unsaturated carboxylic acid derivatives, however, has remained elusive because of their attenuated electrophilicity, despite the synthetic util-

a comprehensive study on this synthetically versatile transformation, which delivers enantiomerically enriched β -alkynyl thioamides **5**. Control experiments and kinetic studies revealed mechanistic insights of the efficient proton-transfer process. The utility of the present protocol culminated in the concise enantioselective synthesis of AMG-837, a potent agonist of the G-protein coupled receptor GPR40.

Chem. Asian J. 2011, 6, 1778–1790

ity of enantioenriched β-alkynylcarboxylic acid derivatives.

Results and Discussion

Mechanistic Elucidation

Recently our group reported a soft Lewis acid/hard Brønsted base cooperative catalytic system comprising cationic copper(I), chiral bisphosphine ligand, and lithium aryloxide to promote several direct-type C–C bond-forming reactions with high enantioselectivity under proton-transfer conditions.^[19] The application of 5 mol% of a cooperative catalyst prepared from [Cu(CH₃CN)₄]PF₆, 2,2'-bis(diphenylphosphino)-1,1'-biphenyl (BIPHEP)-type ligand (*R*)-**3a**, and Li(OC₆H₄-*p*-OMe) to the attempted reaction of phenylacetylene (**2a**) and α , β -unsaturated thioamide **1a** delivered the desired β -alkynylthioamide **5 aa** in 81% yield and 94% *ee* (Scheme 3a, entry 1).^[18,20] In the absence of either the hard

a) soft Lewis acid or hard Brønsted base catalyst

Scheme 3. Control experiments of direct catalytic asymmetric conjugate addition of phenylacetylene (2a) to α , β -unsaturated thioamides (1a).

Brønsted base Li(OC₆H₄-*p*-OMe) or the soft Lewis acid $[Cu(CH_3CN)_4]PF_6$, the reaction did not proceed at all, thereby verifying that both the soft Lewis acid and hard Brønsted base were essential for catalysis (Scheme 3a, entries 2 and 3). In ¹H NMR analysis of the tetrahydrofuran solution of $[Cu(CH_3CN)_4]PF_6$ and Li(OC₆H₄-*p*-OMe), coalescing peaks were observed derived from *para*-methoxyphenoxide at various temperatures;^[21] this suggests that ([Cu/(R)-**3a**]PF₆+Li(OC₆H₄-*p*-OMe)) and ($[Cu(OC_6H_4-p-OMe)]/(R)-$ **3a**+LiPF₆) were in equilibrium (Figure 1).^[19j,22,23] The lithium-free catalyst prepared from mesitylcopper,^[24] *para*-me-

Figure 1. Equilibrium of the catalyst components.

thoxyphenol, and (*R*)-**3a**, in which $Cu(OC_6H_4-p-OMe)/(R)$ -**3a** was produced, exhibited almost identical catalytic activity to promote the desired alkynylation reaction (Scheme 3b). In the absence of lithium salt, $Li(OC_6H_4-p-C_6H_$

OMe) was never formed, therebv indicating that both $Li(OC_6H_4-p-OMe)$ and $Cu(OC_6H_4-p-OMe)/(R)-3a$ would function as a Brønsted base in this catalytic system to generate copper alkynylide. This is in marked contrast to the catalytic asymmetric addition of allyl cyanide to ketones promoted by a similar catalytic system, in which Li(OC₆H₄-p-OMe) is the actual Brønsted lithium-free base and Cu(OC₆H₄-p-OMe) failed to promote the reaction.^[19j] To gain more insight in this crucial deprotonation step, in which the active nucleophile copper alkynylide was formed, the kinetic profile of the reaction was traced by using deuterated phenylacetylene $[D_1]$ 2a. By comparing the initial rate of the reaction with that of 2a revealed a kinetic isotope effect of $k_{\rm H}$ / $k_{\rm D} = 1.9$, thus suggesting that copper alkynylide formation, rather than the nucleophilic addition step of copper alkynylide is likely the rate-determining

step (Figure 2).^[25] Higher catalytic efficiency was observed owing to the presence of hard Lewis basic bisphosphine oxide **4**, which coordinated to the lithium cation to enhance the basicity of Li(OC_6H_4 -*p*-OMe).^[26] With a catalyst loading of 2 mol%, the combined use of 4 mol% of **4** was effective for accelerating the deprotonation step to complete the reaction without a detrimental effect on enantioselectivity (Scheme 4).^[19],27,28] The smooth conjugate addition to thioamides would be explained by assuming that the copper-activated thioamide was located in close proximity to copper alkynylide, with a favorable topology for carbon–carbon bond

Figure 2. Kinetic isotope effect.

Scheme 4. Effect of phosphine oxide 4 as hard Lewis basic additive.

formation at the β -position through the six-membered transition state, thereby highlighting the benefit of simultaneous activation (Figure 3). This assumption was consistent with the observation that the attempted reaction using α , β -unsaturated thiolactam **1b** and **1c**, the locked *s*-*trans* conformation of which disrupted the formation of the six-membered transition state, resulted in no reaction at all, even in the presence of **4** (Scheme 5).^[29,30] The linear relationship be-

AN ASIAN JOURNAL

Figure 3. Proposed six-membered transition state.

Scheme 5. The reaction with α , β -unsaturated thiolactams.

tween the enantiopurity of (R)-**3a** and the enantioselectivity of **5aa** implied that the monomeric Cu/(R)-**3a** complex was involved in the enantiodiscrimination step (Figure 4).^[31]

After the addition of copper alkynylide to thioamide, the possible proton source for protonation of the intermediary copper-thioamide enolate is HOC_6H_4 -*p*-OMe or the terminal alkyne. If the protonation with HOC_6H_4 -*p*-OMe is operative, the first catalyst set is regenerated with liberation of the product. If the proton exchange between the intermediary copper-thioamide enolate and the terminal alkyne occurs, the copper-alkynylide nucleophile for the next catalytic cycle is directly formed and the reaction system can be

simplified by omitting the alkali metal aryloxide base. The attempted reaction of **1a** and phenylacetylene (**2a**) using a catalyst prepared from copper alkynylide of phenylacetylene (**2a**) and (R)-**3a** proceeded smoothly to afford **5aa**, thus indicating the efficient proton transfer from **2a** to the copperthioamide enolate to generate the copper alkynylide of **2a** (Scheme 6a). The catalyst prepared from mesitylcopper^[24] and (R)-**3a** was also effective,

and is applicable to the reaction with any terminal alkynes (Scheme 6b). These experimental results together clearly revealed that the catalytic cycle efficiently drives the proton transfer between terminal alkyne and copper-thioamide enolate after the initial formation of copper alkynylide. We sought a more operationally simple catalyst set and identified a catalyst comprising $[Cu(CH_3CN)_4]PF_6$, (*R*)-**3a**, and KHMDS that was effective, and all of the necessary materi-

Figure 4. Linear relationship between the enantioselectivity of 5aa and enantiopurity of (R)-3a.

als are commercially available and storable (Scheme 6c).^[32] Potassium alkynylide generated at the first cycle was converted to copper alkynylide by transmetallation and the copper alkynylide drove the following catalytic cycle. The proton-transfer process was further investigated by using *N*,*N*-dimethylthiomethacrylamide (1d) as a probe. The α methyl group of 1d is expected to provide information on the stereoselection at the protonation step. Under the standard conditions using (R)-DTBM-Segphos (R)-3b and $Li(OC_6H_4-p-OMe)$ as the Brønsted base, the alkynylation product 5da was obtained with only 9% ee (Scheme 7a; DTBM=3,5-di-tert-butyl-4-methoxy). On the other hand, the copper alkynylide/(R)-3b catalyst delivered 5da in 60% ee; this suggests that a different protonation pathway was operative (Scheme 7b); in the presence of HOC_6H_4 -p-OMe, copper-thioamide enolate underwent proton transfer prefer-

entially with HOC₆H₄-*p*-OMe with poor enantioselection; in the absence of HOC₆H₄-*p*-OMe, partial enantioselective proton transfer with copper-coordinated phenylacetylene (**2a**) occurred under the influence of the asymmetric environment provided by ligand (*R*)-**3b**. This result is consistent with the observed similar enantioselectivity (59% *ee*) of **5da** with the [Cu(CH₃CN)₄]PF₆/(*R*)-**3b**/KHMDS catalytic system, in which the proton transfer proceeded between copper-thioamide enolate and phenylacetylene (**2a**; Scheme 7c).

On the basis of the experimental results mentioned above, the proposed catalytic cycle is illustrated in Figure 5. When a catalyst comprising $[Cu(CH_3CN)_4]PF_6$, (R)-3a, $Li(OC_6H_4$ -p-OMe) (referred to as catalyst 1) is used, both $[CuPF_6/(R)-3a+Li(OC_6H_4-p-OMe)]$ and $[Cu(OC_6H_4-p-$ OMe)/(R)-3a+LiPF₆] states under equilibrium are catalytically active to deprotonate phenylacetylene (2a) to give copper alkynylide A. Bisphosphine oxide 4 enhances the basicity of Li(OC₆H₄-p-OMe) and facilitates the deprotonation. Thioamide **1a** then coordinates to copper through a soft-soft interaction, and this leads to a six-membered transition state **B** for enantioselective carbon-carbon bond formation, in which both of the substrates are activated in close proximity and overcome the intrinsic low reactivity of copper alkynylide A. Indeed, the reaction with more electrophilic α,β -unsaturated ketone (chalcone) 6 does not proceed at all with this catalytic system, thus highlighting the significance of the simultaneous activation of **1a** and **2a** (Scheme 8). The thus-obtained copper-thioamide enolate C is protonated preferentially with HOC₆H₄-p-OMe, which is formed in the initial deprotonation step, liberating the desired product 5aa with regeneration of the catalyst. In the case of catalyst 2, comprising the copper alkynylide of 2a

> and (R)-3a, coordination of 1a affords the key transition state structure **B**. Subsequent proton transfer directly proceeds with the copper-activated phenylacetylene (2a) as shown in D, and the coordination of 1a leads to the transition state **B**, thereby completing the catalytic cycle. Therefore, once the copper alkynylide is formed, these two substrates in the engage carbon-carbon bond formation catalytically through efficient proton transfer. Other catalyst sets, such as mesitylcopper and (*R*)-3a (catalyst 3), [Cu- $(CH_3CN)_4]PF_6,$ (R)-**3a**, and KHMDS (catalyst 4), also generate copper alkynylide at the first stage of the reaction, and the following catalytic cycle is the same as that of catalyst 2.

Scheme 6. Control experiments using different types of copper catalyst. KHMDS = potassium hexamethyldisilazane.

1782 www.chemasianj.org

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 7. Catalytic asymmetric conjugate alkynylation of thiomethacrylamide 1d.

Scope of Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,β-Unsaturated Thioamides

The substrate scope of the direct catalytic asymmetric conjugate alkynylation of α,β -unsaturated thioamide with catalyst **1** ([Cu(CH₃CN)₄]PF₆+(*R*)-**3a**+Li(OC₆H₄-*p*-OMe)) reinforced with a hard Lewis base **4** is summarized in Table 1. Further reduction in the catalyst loading to 1 mol% was achieved by changing the solvent from tetrahydrofuran to *n*hexane, presumably because the formation of an intimate copper alkynylide/thioamide association was enhanced in the nonpolar reaction medium (entry 1 vs 2). A morpholine thioamide other than *N*,*N*-dimethylthioamide was a suitable substrate to achieve high enantioselectivity, albeit 5 mol%

Scheme 8. Direct catalytic asymmetric conjugate alkynylation in the presence of chalcone (6).

Chem. Asian J. 2011, 6, 1778-1790

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMISTRY

of catalyst was required (entry 4). Substituents at the ortho- or para-position did not interfere with enantioselection (entries 5 and 6). The present catalysis is sensitive to the electronic nature of the β -substituent of thioamide; thioamides 1h and 1i bearing methoxy substituents required 80 °C to promote the reaction efficiently and thioamide 1j with a 3,4methylenedioxy group afforded the desired product in 56% yield and high enantioselectivity with 5 mol% of catalyst (entries 7-9). Thioamides 1a and 1k bearing para-bromine substituents exhibited high reactivity in the present catalytic system and trials to reduce catalyst loading conducted with these substrates led to the reaction with a catalyst loading of 0.5 and 0.25 mol%, respectively, without any loss of enantioselectivity (entries 2, 3, 10, and 11). The conjugate alkynylation of $\alpha,\beta,\gamma,\delta$ -unsaturated thioamide 11 derived from sorbic acid proved that the alkynylation proceeded exclusively at

the β -position with high enantioselectivity (entry 12). Thioamides **1m** and **1n** having β -alkyl substituents were applicable with 5 mol% of the catalyst (entries 13 and 14), and the 1,3-enyne **2b** afforded the product in 96% *ee*, albeit in moderate yield.

Conjugate addition using saturated aliphatic terminal alkynes proved elusive even after ligand screening. Using 1heptyne (1c) as a model substrate, catalyst 1 using (R)-3a with phosphine oxide 4 exhibited poor catalytic activity in tetrahydrofuran, and this produced the product 5ac in less than 10% yield with 60% ee (Scheme 9, entry 1).^[33] The other biaryl-type ligand (R)-DTBM-Segphos (R)-3b increased the yield but the stereoselectivity remained unsatisfactory (entry 2). None of the reactions using other phospholane-type ligands 7 and 8 and ferrocene-conjugated ligands 9 and 10 improved enantioselectivity (entries 3-6). These results prompted us to focus on other strategies to solve this problem. We turned our attention to the counter anion, located near the copper cation, which we expected could be used to influence the asymmetric environment. We planned to endow the counter anion with chirality as an additional stereocontrolling element to reinforce stereodiscrimination at the transition state.^[34,35] Various chiral phosphoric acids were used with mesitylcopper and ligand (R)-**3b**,^[36] generating the copper/(R)-3b phosphate as a new soft Lewis

Table 1. Direct catalytic asymmetric conjugate alkynylation.^[a]

$Me_2N \xrightarrow{S} R^1 + H \xrightarrow{R^2} R^2 \xrightarrow{A 2x \text{ mol } \%} Me_2N \xrightarrow{S} R^2$									
Entry	Thioamide 1 \mathbf{R}^1		Alkyne 2 R ²		x	<i>T</i> [°C]	Product	Yield ^[b] [%]	ee [%]
1 ^[c]	Ph	1a	Ph	2 a	1	50	5 a a	51	94
2	Ph	1a	Ph	2 a	1	50	5 aa	98	98
3	Ph	1a	Ph	2 a	0.5	50	5 aa	72	98
4 ^[d]	Ph	1e	Ph	2 a	5	50	5ea	84	94
5	o-Me-C ₆ H ₄	1 f	Ph	2 a	1	50	5 fa	97	98
6	p-Me-C ₆ H ₄	1 g	Ph	2 a	1	50	5 ga	74	97
7 ^[e]	m-MeO-C ₆ H ₄	1h	Ph	2 a	1	80	5ha	77	95
8 ^[e]	p-MeO-C ₆ H ₄	1i	Ph	2 a	1	80	5 ia	81	94
9	3,4-methylenedioxy	1j	Ph	2 a	5	50	5ja	56	99
10	<i>p</i> -Br-C ₆ H ₄	1 k	Ph	2 a	1	50	5 ka	98	97
11	p-Br-C ₆ H ₄	1 k	Ph	2 a	0.25	50	5 ka	83	97
12	(E)-CH ₃ CH=CH	11	Ph	2 a	5	50	5 la	51	94
13	Me	1 m	Ph	2 a	5	50	5 ma	97	80
14	iPr	1n	Ph	2 a	5	50	5 na	63	92
15	Ph	1a	1-cyclohexeny	1 2b	1	50	5 ab	58	96

[a] 1: 0.2 mmol; 2	: 0.4 mmol.	. [b] Isolate	d yield.	[c] THF	was used	l as the	solvent	instead	of <i>n</i> -hexa	ane.	[d] Mor-
pholine thioamide	e was used	instead of	N,N-di	nethylthi	ioamide.	[e] <i>n</i> -H	eptane	was used	instead	of n-	-hexane.

Figure 5. Proposed catalytic cycle.

acid entity bearing a chiral phosphate anion.^[37] In this catalyst design, a hard Lewis basic phosphate would function as a hard Lewis base in the same manner as phosphine oxide **4**. The screening of the chiral phosphoric acid is summarized in Table 2. In the absence of chiral counter anion, the ([Cu-(CH₃CN)₄]PF₆/(*R*)-**3**b/Li(OC₄H₂-*p*-OMe)) catalyst

 $Li(OC_6H_4-p-OMe))$ catalyst performed better in n-hexane and gave 5 ac in 90% yield with 82% ee. The use of the parent nonsubstituted binaphthyl-type phosphoric acid 11a hardly affected the stereochemical course of the reaction irrespective of its chirality (entries 2 and 3). In contrast, bulkier phosphoric acid (S)-11b, in which the 2,4,6-triisopropylphenyl groups were installed at the 3,3'-positions, improved enantioselectivity to 89% ee (entry 5). Intriguingly, its antipode (R)-11b completely shut down the reaction, thus suggesting that the chiral phosphate anion is involved in the enantioselective carbon-carbon bond formation. Other even bulkier phosphoric acids 11c-e with (S)-axial chirality were examined, and (S)-11b proved optimal for this purpose (entries 6-8). The thus-identified optimal reaction conditions for aliphatic terminal alkynes were evaluated in the reaction of various alkynes (Table 3). Although 5 mol% of catalyst was required, branched and nonbranched aliphatic terminal alkynes 2c-g provided the desired alkynylation product in moderate to high yield with up to 91% ee (entries 1-5). The combination of aliphatic terminal alkyne and a thioamide bearing β-alkyl substituent remained difficult to achieve high enantioselectivity, thereby giving the alkynylation product 5mc with 69% ee (entry 6). The use of silvlacetylenes in alkyny-

Scheme 9. Direct catalytic asymmetric conjugate alkynylation of 1-heptyne (2c). DTBM=3,5-di-tert-butyl-4methoxy, Ph-BPE = 1,2-bis(2,5-diphenylphospholano)ethane.

Table 2. Direct catalytic asymmetric conjugate alkynylation of 1-heptyne (2c) using a chiral counter anion.^[a]

S MeoN	$ \begin{array}{c} $	copper horic acid 11 H_4 - <i>p</i> -OMe) mol % re, 50 °C, 24 h	Me ₂ N	
1	a 2c		5ac	` <i>n</i> C₅H₁
Entry	Chiral phosphoric acid 11		Yield ^[b] [%]	ee [%]
1 ^[c]	_	-	90	82
2	(R), R = H	(R)- 11 a	88	81
3	$(S), \mathbf{R} = \mathbf{H}$	(S)- 11 a	90	81
4	$(R), R = 2,4,6-(iPr)_3C_6H_2$	(R)- 11b	0	-
5 ^[d]	$(S), R = 2,4,6-(iPr)_3C_6H_2$	(S)- 11b	90	89
6	$(S), R = SiPh_3$	(S)-11c	89	81
7	(S), R = 9-anthracenyl	(S)-11 d	83	87
8	(S)-VAPOL phosphoric acid	(S)- 11e	74	84

[a] 1: 0.2 mmol, 2: 0.4 mmol. [b] Determined by ¹H NMR analysis with 2methoxynaphthalene as an internal standard. [c] The reaction conditions were identical to those described in Table 1 except for phosphine ligand $((R)-3\mathbf{b} \text{ instead of } (R)-3\mathbf{a})$. $([Cu(CH_3CN)_4]PF_6/(R)-3\mathbf{b}/Li(OC_6H_4-p-4)/R)$ OMe)): 5 mol%, 4: 10 mol%. [d] Isolated yield. VAPOL=2,2'-diphenyl-3,3'-(4-biphenanthrol).

Chem. Asian J. 2011, 6, 1778-1790

AN ASIAN JOURNAL

lation is of particular significance because they are generally regarded as acetylene equivalents.^[38] The direct application of catalyst 1 in the reaction of trimethylsilylacetylene (2h)produced only trace amounts of the desired product (entry 1). On the basis of the mechanistic studies, the key to the present catalysis is the generation of copper alkynylides. We envisioned applying catalyst 4 with a strong HMDS-type base to the reaction of silvlacetylenes, thereby generating alkali metal alkynylides to trigger the alkynylation reaction. In entries 2-4, the HMDS-type base proved effective and the HMDS-type base of the more electropositive alkali metal performed even better. The bulkier triethylsilylacetylene (2i) displayed diminished reactivity to afford the product in 63% yield, even **KHMDS** with the base (entry 5), and no products were

obtained with tert-butyldimethylsilyl (TBS) or triisopropylsilyl (TIPS) substituted acetylenes 2j and 2k (entries 6 and 7). Increasing the amount of 2h led to a higher chemical yield (entry 8). Under these optimal conditions, (trimethylsilyl)methylacetylene (21) and TMS-protected propargyl alcohol (2m) furnished the desired alkynylation product with 86% ee and 87% ee, respectively (entries 9 and 10). The involvement of copper alkynylide was confirmed by the reaction using catalyst 3 comprising mesitylcopper and (R)-3b, and this exhibited a similar reaction outcome. The ineffectiveness of catalyst 1, in which $Li(OC_6H_4$ -p-OMe) was used as the base and HOC₆H₄-p-OMe existed in the reaction mixture, can be explained by assuming that the copper silvlacetylide has higher aptitude for reprotonation with HOC₆H₄*p*-OMe, thereby reducing the concentration of active copper silvlacetylide. In the absence of Li(OC₆H₄-p-OMe) with catalyst 3 or catalyst 4, reprotonation of copper acetylide with HMDS or silvlacetylenes would be slower (Table 4).

Utility of Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,β-Unsaturated Thioamides

The utility of the present catalysis is due to the highly chemoselective nature of the reaction and divergent transformation of thioamide functionality.^[3] The reaction using substrate **1p** bearing both α,β -unsaturated thioamide and α,β unsaturated ester moieties showcased the stringent chemoselectivity (Scheme 10). By using catalyst 2 comprising copper alkynylide of phenylacetylene (2a) and (R)-3a, the

Table 3. Direct catalytic asymmetric conjugate alkynylation of aliphatic terminal alkynes using a chiral counter anion.^[a]

[a] 1: 0.2 mmol, 2: 0.4 mmol. [b] Isolated yield.

Table 4. Direct catalytic asymmetric conjugate alkynylation of silylacetylenes using $[Cu(CH_3CN)_4]PF_6$, (*R*)-**3b**, and HMDS-type bases.^[a]

	Me	s ∋₂N	R ¹ + н—≡		(Cu(CH (<i>R</i>)- 3b base 5 r <i>n</i> -hexane	3 ^{CN})₄]PF ₆) nol % , 50 °C, 24 h Me ₂ N	R ¹	P ²	
			1 2				5		
Entry	Thioamide 1 \mathbf{R}^1		Aliphatic alkyne R ²	2	Equiv	Base	Product	Yield ^[b] [%]	ee [%]
1 ^[c]	Ph	1a	TMS	2 h	2	$Li(OC_6H_4-p-OMe)$	5 ah	trace	-
2	Ph	1a	TMS	2 h	2	LiHMDS	5 ah	32	89
3	Ph	1 a	TMS	2 h	2	NaHMDS	5 ah	59	88
4 ^[d]	Ph	1a	TMS	2 h	2	KHMDS	5 ah	74	92
5	Ph	1a	TES	2i	2	KHMDS	5 ai	63	92
6	Ph	1a	TBS	2j	2	KHMDS	5 aj	0	_
7	Ph	1a	TIPS	2 k	2	KHMDS	5 ak	0	_
8 ^[d]	Ph	1a	TMS	2 h	5	KHMDS	5 ah	85	91
9 ^[d]	p-I-C ₆ H ₄	10	TMSCH ₂	21	5	KHMDS	5 ol	72	86
10 ^[d]	Ph	1a	$TMSOCH_2$	2 m	5	KHMDS	5 am	79	87

[[]a] 1: 0.2 mmol. [b] Determined by ¹H NMR analysis with 2-methoxynaphthalene as an internal standard. [c] 10 mol% of phosphine oxide **4** was used. [d] Isolated yield.

enantioselective conjugate addition of 2a proceeded exclusively at the β -position of α,β -unsaturated thioamide and $_{Me_2N}$ the intermediate copper-thioamide enolate underwent diastereoselective intramolecular conjugate addition to the α,β unsaturated ester to give rise to cyclopentane 5pa with three continuous stereogenic centers as a single diastereomer with 97% ee. The present catalysis can be performed with a catalyst loading of 1 mol% on the gram scale without any problem and facile recrystallization provided an operationally simple procedure to produce the enantioenriched β alkynyl thioamide entity (Scheme 11). Transformation of the thioamide functionality of the alkynylation product is outlined in Scheme 12. Conversion into other carboxylic acid derivatives is useful from a synthetic point of view; activa- ${}^{\mathsf{Me}_2\mathsf{N}}$ tion of thioamide with $MeI/H_2O^{[39]}$ or trifluoroacetic anhydride (TFAA) ^[40] provided the corresponding thioester 12 and amide 13, respectively. S-Methylation with MeOTf^[41] followed by alkylation with MeLi gave methyl ketone 14 in 88% yield. Treatment with MeI and subsequent hydride reduction with NaBH₄ afforded tertiary amine 15 in 86%

yield.^[42] An Eschenmoser reaction using methyl bromoacetate promoted by PPh₃ and 2,6-lutidine furnished β -ketoester **16** in 66% yield.^[43]

We envisioned applying the present catalysis to the concise enantioselective synthesis of the G-protein coupled receptor GPR40 agonist AMG-837. GPR40 has received growing attention as a potential therapeutic target for insulin-derived disorders, such as type-2 diabetes.^[44] Recently, the β -alkynyl acid derivative AMG-837 was documented to be a potent GPR40 agonist at Amgen (Applied Molecular Genetics).^[45] In their report, the introduction of chirality to a β -alkynyl acid entity was achieved using a stoichiometric amount of Me₂Zn and cinchonidine.[46] Considering the clinical potency of AMG-837, it would be a viable synthetic target to demonstrate the utility of the present catalysis. We began our study by examining the direct catalytic asymmetric conjugate alkynylation of trimethylsilylacetylene (2h) of thioamides bearing a para-oxygen functionalized β-

Scheme 10. Direct catalytic asymmetric conjugate alkynylation followed by intramolecular diastereoselective conjugate addition.

Scheme 11. Direct catalytic asymmetric conjugate alkynylation performed on the gram scale.

Scheme 12. Divergent transformation of the alkynylation product.

AMG-837 potent GPR40 receptor agonist

aryl substituent (Table 5).^[47] As described in Table 1, the present catalysis is sensitive to the electronic nature of the β -aryl substituent, and only trace amounts of product **1ih** were obtained in the reaction with thioamide **1i** bearing a

Table 5. Direct catalytic asymmetric conjugate alkynylation of trimethyl-silylacetylene (2h).^[a]

Me ₂ N	S 1 + 2h	MS	([Cu(CH ₃ CN) ₄]f (S)- 3b KHMDS <u><i>x</i> mol %</u> <i>n</i> -hexane, 50	°C	Me ₂ N 5		
Entry	R		x	Product	<i>t</i> [h]	Yield ^[b] [%]	ee [%]	
1	OMe	1i	10	5 ih	18	trace	_	
2	OAc	1 q	10	5 qh	18	58	92	
3	OPiv	1r	10	5 rh	18	31	-	
4	OMs	1s	10	5 sh	18	ND	-	
5	OAc	1q	10	5 qh	40	80	90	
6	OAc	1q	5	5 qh	40	83 ^[c]	91	

[a] 1: 0.2 mmol, 2h: 1.0 mmol. [b] Determined by ¹H NMR analysis with 2-methoxynaphthalene as an internal standard. [c] Isolated yield.

CHEMISTRY

para-methoxy group, even with catalyst 4 using KHMDS (entry 1). Thioamides 1q and 1r with a *para*-acyloxy group improved the chemical yield (entries 2 and 3), while thioamide 1s with a more electronwithdrawing para-mesylate group resulted in no reaction (entry 4). The reaction of thioamide 1q was further improved by extending the reaction time to afford the product 5qh in 80% vield and 90% ee (entry 5). The catalyst loading could be reduced to 5 mol% (entry 6). Although the alkynylation using propyne (2n) significantly simplified the enantioselective synthesis of AMG-837, the desired alkynylation product 5qn was obtained in 24% yield with 81% ee under the same reaction conditions. The absolute configuration of 5 qh was unequivocally deter-

mined by single crystal X-ray crystallographic analysis (Figure 6).^[48]

The highly crystalline character of 5qh allowed for a facile recrystallization in a dichloromethane/n-hexane binary solvent system to give 5qh in enantiomerically pure form (Scheme 13). The synthesis was initiated with 5 qh, which has the requisite stereogenic center for the synthesis of AMG-837. The protocol for thioester formation was used with MeI in the presence of H₂O under an acidic medium,^[39] followed by methanolysis of the acetyl group and thioester moiety with Cs2CO3/MeOH as well as removal of TMS group, affording methy lester 18. Without purification, an ether side chain was installed using aryl bromide 19, and this afforded 20 in 48% yield over 3 steps from 5 qh. Introduction of a methyl group at the terminal alkyne was achieved by Sonogashira coupling with MeI, using a bulky carbene ligand generated from precursor 21, to give 22 in 63% vield.^[49] Finally, conventional basic hydrolysis of methyl ester delivered AMG-837, a potent GPR40 agonist.

Conclusions

In summary, we have developed a catalytic asymmetric conjugate addition of terminal alkynes to thioamides based on a simultaneous activation strategy. A prototype soft Lewis acid/hard Brønsted base cooperative catalyst comprising $[Cu(CH_3CN)_4]PF_6$, bisphosphine ligand, and Li(OC₆H₄-*p*-OMe) was effective. A series of control experiments revealed that the copper-thioamide enolate intermediate functioned as a Brønsted base to generate copper alkynylides

Chem. Asian J. 2011, 6, 1778-1790

Figure 6. Ortep drawing of a single crystal of 5 qh.

Scheme 13. Enantioselective synthesis of AMG-837.

for the subsequent catalytic cycle, thus achieving highly efficient proton transfer between substrates to promote enantioselective carbon–carbon bond formation. Examination of the catalytic cycle indicated that the copper alkynylide was an entry point into the catalytic cycle, allowing for the identification of a more operationally simple catalyst comprising $[Cu(CH_3CN)_4]PF_6$, bisphosphine ligand, and KHMDS, all of which are commercially available. Divergent transformation of the thioamide functionality of the alkynylation product is of particular importance for the synthetic utility of the present catalysis. The production of an enantioenriched β -alkynyl carboxylic acid derivative through the present alkynylation methodology was successfully applied to a concise enantioselective synthesis of AMG-837, a potent GPR40 receptor agonist.

Experimental Section

See the Supporting Information for characterization data, experimental procedures, and NMR spectra.

Acknowledgements

This work was financially supported by a Grant-in-Aid for Scientific Research (S). N. K. thanks the Sumitomo Foundation for finantial support. R. Y. thanks the JSPS predoctral fellowship. Dr. Motoo Shiro at the Rigaku Corporation is gratefully acknowledged for X-ray crystallographic analysis of **5aa** and **5qh**.

- Recent reviews on cooperative catalysis, see: Lewis acid/Brønsted base a) M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187; b) S. Matsunaga, M. Shibasaki, Bull. Chem. Soc. Jpn. 2008, 81, 60. Lewis acid/Lewis base: c) M. Kanai, N. Kato, E. Ichikawa, M. Shibasaki, Synlett 2005, 1491; d) D. H. Paull, C. J. Abraham, M. T. Scerba, E. Alden-Danforth, T. Lectka, Acc. Chem. Res. 2008, 41, 655. Lewis acid/Brønsted acid and Lewis acid/Lewis acid: e) H. Yamamoto, K. Futatsugi, Angew. Chem. 2005, 117, 1958; Angew. Chem. Int. Ed. 2005, 44, 1924; f) H. Yamamoto, K. Futatsugi in Acid Catalysis in Modern Organic Synthesis (Eds.: H. Yamamoto, K. Ishihara), Wiley-VCH, Weinheim, 2008.
- [2] For reviews of direct aldol reactions, see: a) B. Alcaide, P. Almendros, *Eur. J. Org. Chem.* 2002, 1595; b) W. Notz, F. Tanaka, C. F. Barbas, III, *Acc. Chem. Res.* 2004, *37*, 580; c) S. Mukherjee, W. J. Yang, S. Hoffmann, B. List, *Chem. Rev.* 2007, *107*, 5471. Also see ref. 1a. For reviews of direct Mannich(-type) reactions, see: d) M. M. B. Marques, *Angew. Chem.* 2006, *118*, 356; *Angew. Chem. Int. Ed.* 2006, *45*, 348; e) A. Ting, S. E. Schaus, *Eur. J. Org. Chem.* 2007, 5797; f) J. M. M. Verkade, L. J. C. van Hemert, P. J. L. M. Quaedflieg, F. P. J. T. Rutjes, *Chem. Soc. Rev.* 2008, *37*, 29.
- [3] Utility of thioamide functionality, see: S. T. Jagodziński, Chem. Rev. 2003, 103, 197.
- [4] a) Y. Suzuki, R. Yazaki, N. Kumagai, M. Shibasaki, Angew. Chem.
 2009, 121, 5126; Angew. Chem. Int. Ed. 2009, 48, 5026; b) M. Iwata,
 R. Yazaki, Y. Suzuki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc.
 2009, 131, 18244; c) M. Iwata, R. Yazaki, N. Kumagai, M. Shibasaki, Tetrahedron: Asymmetry 2010, 21, 1688.
- [5] For general reviews of catalytic asymmetric conjugate addition: a) P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, 1992; b) N. Krause, A. Hoffmann-Röder, Synthesis 2001, 0171; c) M. P. Sibi, S. Manyem, Tetrahedron 2000, 56, 8033; d) M. Kanai, M. Shibasaki in Catalytic Asymmetric Synthesis, 2nd ed., (Ed.: I. Ojima), Wiley, New York, 2000, pp. 569; e) M. Yamaguchi, in Comprehensive Asymmetric Catalysis (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Heidelberg, Germany, 2003, Suppl. 1, pp. 151; f) A. Alexakis, C. Benhaim, Eur. J. Org. Chem. 2002, 3221; g) J. Christoffers, A. Baro, Angew. Chem. 2003, 115, 1726; Angew. Chem. Int. Ed. 2003, 42, 1688; h) S. B. Tsogoeva, Eur. J. Org. Chem.
- [6] For reviews, see: a) S. Fujimori, T. F. Knöpfel, P. Zarotti, T, Ichikawa, D. Boyall, E. M. Carreira, *Bull. Chem. Soc. Jpn.* 2007, 80, 1635;
 b) B. M. Trost, A. H. Weiss, *Adv. Synth. Catal.* 2009, 351, 963; c) For a review of metal alkynyl σ complexes, see: N. J. Long, C. K. Williams, *Angew. Chem.* 2003, 115, 2690; *Angew. Chem. Int. Ed.* 2003, 42, 2586.
- [7] For reviews, see: a) L. Pu, *Tetrahedron* 2003, 59, 9873; b) P.G.
 Cozzi, R. Hilgraf, N. Zimmermann, *Eur. J. Org. Chem.* 2004, 4095;
 c) C. Wei, Z. Li, C.-J. Li, *Synlett* 2004, 9, 1472; d) L. Zani, C. Bolm,

Chem. Commun. 2006, 4263; e) C.-J. Li, Acc. Chem. Res. 2010, 43, 581.

- [8] a) K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 16, 4467; b) R. Chinchilla, C. Nájera, *Chem. Rev.* 2007, 107, 874.
- [9] Catalytic asymmetric conjugate addition of preactivated terminal alkynes, see: a) Y.-S. Kwak, E. J. Corey, Org. Lett. 2004, 6, 3385;
 b) T. R. Wu, J. M. Chong, J. Am. Chem. Soc. 2005, 127, 3244;
 c) O. V. Larionov, E. J. Corey, Org. Lett. 2010, 12, 300.
- [10] a) B. M. Trost, *Science* **1991**, *254*, 1471; b) P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, *Acc. Chem. Res.* **2008**, *41*, 40.
- [11] a) T. F. Knöpfel, E. M. Carreira, J. Am. Chem. Soc. 2003, 125, 6054;
 b) T. F. Knöpfel, P. Zarotti, T. Ichikawa, E. M. Carreira, J. Am. Chem. Soc. 2005, 127, 9682; c) S. Fujimori, E. M. Carreira, Angew. Chem. 2007, 119, 5052; Angew. Chem. Int. Ed. 2007, 46, 4964.
- [12] E. J. Corey, D. J. Beams, J. Am. Chem. Soc. 1972, 94, 7210.
- [13] a) T. Nishimura, X.-X. Guo, N. Uchiyama, T. Katoh, T. Hayashi, J. Am. Chem. Soc. 2008, 130, 1576; b) T. Nishimura, S. Tokuji, T. Sawano, T. Hayashi, Org. Lett. 2009, 11, 3222; c) T. Nishimura, T. Sawano, T. Hayashi, Angew. Chem. 2009, 121, 8201; Angew. Chem. Int. Ed. 2009, 48, 8057; d) T. Nishimura, T. Sawano, S. Tokuji, T. Hayashi, Chem. Commun. 2010, 46, 6837.
- [14] E. Fillion, A. K. Zorzitto, J. Am. Chem. Soc. 2009, 131, 14608.
- [15] α,β-Unsaturated thioamides as electrophiles, see: alkyllithium or magnesium: a) Y. Tamaru, T. Harada, H. Iwamoto, Z. Yoshida, J. Am. Chem. Soc. 1978, 100, 5221; b) Y. Tamaru, M. Kagotani, Z. Yoshida, Tetrahedron Lett. 1981, 22, 3409; c) Y. Tamaru, T. Harada, S. Nishi, Z. Yoshida, Tetrahedron Lett. 1982, 23, 2383. Lithium enolates: d) Y. Tamaru, T. Harada, Z. Yoshida, J. Am. Chem. Soc. 1979, 101, 1316. Nitroalkanes: e) J. G. Sośnicki, Tetrahedron 2009, 65, 1336.
- [16] Sulfur has an electronegativity close to that for carbon: a) L. Pauling in *The Nature of Chemical Bond*, 3rd ed., Cornel University, Ithaca, NY, **1960**, pp. 88; b) K. B. Wiberg, Acc. Chem. Res. **1999**, 32, 922; for the dipole moment of thioamides, see: c) C. H. Lee, W. D. Kumler, J. Org. Chem. **1962**, 27, 2052. Considerable charge transfer from nitrogen to sulfur is suggested for thioamides, see: d) K. B. Wiberg, P. R. Rablen, J. Am. Chem. Soc. **1995**, 117, 2201; e) D. Lauvergnat, P. C. Hiberty, J. Am. Chem. Soc. **1997**, 119, 9478; f) B. Galabov, S. Ilieva, B. Hadjieva, E. Dinchova, J. Phys. Chem. A **2003**, 107, 5854.
- [17] These observations are consistent with the rotational barrier of the C-N bond of thioamides is larger than that of the corresponding amides. For the rotational barriers of thioamides, see: a) K. A. Jensen, Acta. Chem. Scand. 1963, 17, 551; b) A. Loewenstein, A. Melera, P. Rigny, W. Walter, J. Phys. Chem. 1964, 68, 1597; c) W. E. Stewart, T. H. Siddall, Chem. Rev. 1970, 70, 517.
- [18] R. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 10275.
- [19] For selected examples of catalytic asymmetric C-C bond formation using copper alkoxides, see: a) J. Krüger, E. M. Carreira, J. Am. Chem. Soc. 1998, 120, 837; b) B. L. Pagenkopf, J. Krüger, A. Stojanovic, E. M. Carreira, Angew. Chem. 1998, 110, 3312; Angew. Chem. Int. Ed. 1998, 37, 3124; c) Y. Suto, N. Kumagai, S. Matsunaga, M. Kanai, M. Shibasaki, Org. Lett. 2003, 5, 3147; d) Y. Suto, R. Tsuji, M. Kanai, M. Shibasaki, Org. Lett. 2005, 7, 3757; e) R. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687; f) R. Motoki, M. Kanai, M. Shibasaki, Org. Lett. 2007, 9, 3901; h) R. Yazaki, T. Nitabaru, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 130, 14477; i) R. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 3195; j) R. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 5522.
- [20] For CuOtBu catalyzed asymmetric 1,2-addition reaction of terminal alkynes, see: Refs. [19 f] and [19g].
- [21] See the Supporting Information.
- [22] Formation of CuOAr upon addition of alkali metal aryloxide to Cu¹ salt, see: a) W. T. Reichie, *Inorg. Chim. Acta* **1971**, *5*, 325; b) P. G. Eller, G. J. Kubas, *J. Am. Chem. Soc.* **1977**, *99*, 4346.

- [23] Li(OC₆H₄-p-OMe) itself is known to exist as a tetramer in [D₈]THF and is characterized in the literature: a) D. J. MacDougall, B. C. Noll, A. R. Kennedy, K. W. Henderson, *Dalton Trans.* 2006, 1875; b) T. J. Boyle, D. M. Pedrotty, T. M. Alam, S. C. Vick, M. A. Rodriguez, *Inorg. Chem.* 2000, *39*, 5133.
- [24] Synthesis, characterization, and application of mesitylcopper, see: a) T. Tsuda, T. Yazawa, K. Watanabe, T. Fujii, T. Saegusa, J. Org. Chem. 1981, 46, 192; b) T. Tsuda, Encyclopedia of Reagents for Organic Synthesis (L. Paquette), Wiley, New York, 1995, p. 3271; c) H. Eriksson, M. Håkansson, Organometallics 1997, 16, 4243.
- [25] A recent comprehensive review of the kinetic isotope effect, see: T. Giagou, M. P. Meyer, *Chem. Eur. J.* 2010, *16*, 10616.
- [26] Phosphine oxide **4** preferentially coordinated to the lithium cation in the presence of Cu^{l} cation, see Ref. [19j].
- [27] A comprehensive review of Lewis base catalysis: a) S. E. Denmark, G. L. Beutner, Angew. Chem. 2008, 120, 1584; Angew. Chem. Int. Ed. 2008, 47, 1560 and references therein. Selected examples for Lewis base activation of Brønsted base, see: b) M. J. McGrath, P. O'Brien, J. Am. Chem. Soc. 2005, 127, 16378; c) S. Saito, T. Tsubogo, S. Kobayashi, J. Am. Chem. Soc. 2007, 129, 5364; d) H. Morimoto, T. Yoshino, T. Yukawa, G. Lu, S. Matsunaga, M. Shibasaki, Angew. Chem. 2008, 120, 9265; Angew. Chem. Int. Ed. 2008, 47, 9125.
- [28] Enhanced Lewis basicity of LiOPh was observed by using bidentate phosphine oxide 4 in Mukaiyama aldol reactions. X-ray crystallographic analysis revealed that 4 coordinates to the lithium cation in a bidentate fashion. M. Hatano, E. Takagi, K. Ishihara, *Org. Lett.* 2007, 9, 4527.
- [29] For conjugate addition of alkynylaluminium to 2-cyclohexenone, see: J. Hooz, R. B. Rayton, J. Am. Chem. Soc. 1971, 93, 7320.
- [30] The possibility that the low reactivity of 1b and 1c is due to the Z-geometry of the olefin cannot be ruled out.
- [31] For recent comprehensive reviews on nonlinear effects in asymmetric catalysis: a) C. Girard, H. B. Kagan, Angew. Chem. 1998, 110, 3088; Angew. Chem. Int. Ed. 1998, 37, 2922; b) D. G. Blackmond, Acc. Chem. Res. 2000, 33, 402; c) T. Satyanarayana, S. Abraham, H. B. Kagan, Angew. Chem. 2009, 121, 464; Angew. Chem. Int. Ed. 2009, 48, 456 and references therein.
- [32] Li(OC₆H₄-p-OMe) was prepared from HOC₆H₄-p-OMe and nBuLi under strictly anhydrous conditions and used immediately.
- [33] The reaction of **1a** and **2c** using 5 mol% of catalyst **4** ([Cu-(CH₃CN)₄]PF₆ 5 mol%, (R)-**3b** 5 mol%, KHMDS 5 mol%) afforded **5 ac** in 67% yield with 83% *ee*.
- [34] For reviews on chiral counteranions, see: a) J. Lacour, V. Hebbe-Viton, *Chem. Soc. Rev.* 2003, *32*, 373; b) A. Macchioni, *Chem. Rev.* 2005, *105*, 2039; c) J. Lacour, D. Moraleda, *Chem. Commun.* 2009, 7073.
- [35] Recent examples of catalytic asymmetric reactions using chiral counteranions, see: a) D. B. Llewellyn, D. Adamson, B. A. Arndtsen, Org. Lett. 2000, 2, 4165; b) C. Carter, S. Fletcher, A. Nelson, Tetrahedron: Asymmetry 2003, 14, 1995; c) D. B. Llewellyn, B. A. Arndtsen, Tetrahedron: Asymmetry 2005, 16, 1789; d) S. Mayer, B. List, Angew. Chem. 2006, 118, 4299; Angew. Chem. Int. Ed. 2006, 45, 4193; e) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496; f) S. Mukherjee, B. List, J. Am. Chem. Soc. 2007, 129, 11336; g) I. T. Raheem, P. S. Thiara, E. A. Peterson, E. N. Jacobsen, J. Am. Chem. Soc. 2007, 129, 13404; h) S. E. Reisman, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 7198; i) X. Wang, B. List, Angew. Chem. 2008, 120, 1135; Angew. Chem. Int. Ed. 2008, 47, 1119; j) G. L. Hamilton, T, Kanai, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 14984; k) P. García-García, F. Lay, P. García-García, C. Rabalakos, B. List, Angew. Chem. 2009, 121, 4427; Angew. Chem. Int. Ed. 2009, 48, 4363; 1) K. Aikawa, M. Kojima, K. Mikami, Angew. Chem. 2009, 121, 6189; Angew. Chem. Int. Ed. 2009, 48, 6073; m) S. J. Zuend, M. P. Coughlin, M. P. Lalonde, E. N. Jacobsen, Nature 2009, 461, 968; n) S. J. Zuend, M. P. Coughlin, M. P. Lalonde, E. N. Jacobsen, J. Am. Chem. Soc. 2009, 131, 15358; o) R. L. LaLonde, Z. J. Wang, M. Mba, A. D. Lackner, F. D. Toste, Angew. Chem. 2010, 122, 608; Angew. Chem. Int. Ed. 2010, 49, 598; p) S. Liao, B. List, Angew. Chem. 2010, 122, 638; Angew. Chem. Int.

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Ed. **2010**, *49*, 628; q) H. Xu, S. J. Zuend, M. P. Woll, Y. Tao, E. N. Jacobsen, *Science* **2010**, *327*, 986.

- [36] For reviews of chiral phosphoric acids, see: a) T. Akiyama, *Chem. Rev.* 2007, 107, 5744; b) M. Terada, *Chem. Commun.* 2008, 4097.
- [37] Chiral copper(I) phosphate was reported in the diamination of conjugated olefins, see: B. Zhao, H. Du, Y. Shi, J. Org. Chem. 2009, 74, 8392.
- [38] a) D. Boyall, F. López, H. Sasaki, D. Frantz, E. M. Carreira, Org. Lett. 2000, 2, 4233; b) S. Harada, R. Takita, T. Ohshima, S. Matsunaga, M. Shibasaki, Chem. Commun. 2007, 948.
- [39] D. C. Harrowven, M. C. Lucas, P. D. Howes, *Tetrahedron* 1999, 55, 1187.
- [40] R. Masuda, M. Hojo, T. Ichi, S. Sasano, T. Kobayashi, C. Kuroda, *Tetrahedron Lett.* 1991, 32, 1195.
- [41] Y. Mutoh, T. Murai, Org. Lett. 2003, 5, 1361.
- [42] R. J. Sundberg, C. P. Walters, J. D. Bloom, J. Org. Chem. 1981, 46, 3730.
- [43] a) M. Roth, P. Dubs, E. Götschi, A. Eschenmoser, *Helv. Chim. Acta* 1971, 54, 710; b) P. Marchand, M.-C. Fargeau-Bellassoued, C. Bellec, G. Lhommet, *Synthesis* 1994, 1118.

- [44] For a comprehensive review, see: S. B. Bharate, K. V. S. Nemmani, R. A. Vishwakarma, *Expert Opin. Ther. Pat.* 2009, 19, 237 and references therein.
- [45] a) M. Akerman, J. Houze, D. C. H. Lin, J. Liu, J. Luo, J. C. Medina, W. Qiu, J. D. Reagan, R. Sharma, S. J. Shuttleworth, Y. Sun, J. Zhang, L. Zhu, Int. Appl. PCT, WO 2005086661, **2005**; b) Y. Xie, W. Tao, H. Morrison, R. Chiu, J. Jona, J. Fang, N. Couchon, *J. Pharm. Sci.* **2008**, *362*, 29.
- [46] a) S. Cui, S. D. Walker, J. C. S. Woo, C. J. Borths, H. Mukherjee, M. J. Chen, M. M. Faul, *J. Am. Chem. Soc.* 2010, *132*, 436; b) J. C. S. Woo, S. Cui, S. D. Walker, M. M. Faul, *Tetrahedron* 2010, *66*, 4730; c) H. Morrison, J. Jona, S. D. Walker, J. C. S. Woo, L. Li, J. Fang, *Org. Process Res. Dev.* 2011, *15*, 104 and references therein.
- [47] R. Yazaki, N. Kumagai, M. Shibasaki, Org. Lett. 2011, 13, 952.
- [48] The crystallographic data of **5 qh** is reported in Ref. [46].
- [49] M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642.

Received: January 22, 2011 Published online: May 2, 2011