Carboxylation

The Renaissance of an Old Problem: Highly Regioselective Carboxylation of 2-Alkynyl Bromides with Carbon Dioxide

Bukeyan Miao,^[a] Gen Li,^[b] and Shengming $Ma^{*^{[b, c]}}$

Abstract: A steric effect-controlled, zinc-mediated carboxylation of different 2-alkynyl bromides under an atmospheric pressure of CO_2 has been developed by careful tuning of different reaction parameters, including the metal, solvent, temperature, and additive. 2-Substituted 2,3-allenoic acids were afforded from primary 2-alkynyl bromides, whereas the carboxylation of secondary 2-alkynyl bromides yielded 3-alkynoic acids in decent yields. A rationale for the observed regioselectivity has been proposed.

Despite its extensive applications in constructing various different kinds of heterocyclic compounds,^[1-5] synthetic approaches towards 2,3-allenoic acids are still underdeveloped. The established approach is hydrolysis of 2,3-allenoates, but this method suffers from poor atom- or step-economy, the use of toxic carbon monoxide, and unsatisfying regioselectivity between the allenoic acid and 3-alkynoic acid in some cases (Scheme 1 a).^[1c, 6-8] We envisioned that the carboxylation of propargylic derivatives with carbon dioxide would be the most straightforward approach for the synthesis of allenoic acids.^[9] Interestingly, despite comprehensive studies on the reaction of propargylic/allenylic metallic species with aldehydes and ketones,^[10,11] no careful study of this reaction with CO₂ has, to our knowledge, been reported to date.^[12] For the reaction of aldehydes or ketones, controlling the selectivity between allenylic and propargylic alcohols is always a challenge; the structures of propargylic derivatives and carbonyl compounds codetermined the selectivity.^[10b, 11b] In Al-, In-, and Ga-mediated reactions, terminal propargylic bromides selectively afforded homopropargylic alcohols, whereas non-terminal 2-alkynyl bromides selectively produced 2,3-allenyl alcohols (Scheme 1 b).^[10]

[a] B. Miao

Shanghai Key Laboratory of Green Chemistry and Chemical Process Department of Chemistry, East China Normal University 3663 North Zhongshan Lu, Shanghai 200062 (P. R. China)

[b] G. Li, Prof. Dr. S. Ma Department of Chemistry, Fudan University 220 Handan Lu, Shanghai 200433 (P. R. China) E-mail: masm@sioc.ac.cn

[c] Prof. Dr. S. Ma State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 (P. R. China)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201503494. However, in zinc-mediated reactions, the selectivity control has not yet been established.^[11a,13] Herein we report such a carboxylation of 2-alkynyl bromides in the presence of CO_2 and zinc with an excellent regioselectivity by applying the steric effect of R^2 , demonstrating a completely different regioselectivity control to that with aldehydes or ketones (R^1 ; Scheme 1 c).

Our initial attempt at the reaction of 2-heptynylic bromide 1 a and indium powder with CO₂ (provided by a balloon), mediated with LiCl in THF led to a complicated product mixture (Table 1, entry 1). Screening of other metal powders, including Mn, Al and Bi, failed to yield either allenoic acid 2a or 3-alkynoic acid 3a with recovery of starting material 1a (Table 1, entries 2-4). After some trial and error, we observed that the reaction of **1a** with CO₂ mediated by zinc powder afforded 61% yield of allenoic acid 2a. However, 3-heptynoic acid 3a was also formed in 17% yield, as confirmed by ¹H NMR spectroscopic analysis of the crude product (Table 1, entry 5). The reaction in DMF or DMSO gave lower yields and selectivities to 2a/3a (Table 1, entries 6 and 7). Ethereal solvents such as dioxane and methyl tert-butyl ether (MTBE) gave a higher selectivity to 2a/3a, albeit with unsatisfactory yields (Table 1, entries 8 and 9). Pleasingly, a dramatic solvent effect was observed when dimethyl ether (DME) was used; allenoic acid 2a was afforded in 73% yield with an allene/alkyne (2a/ 3a) selectivity of 6:1 (Table 1, entry 10). Replacing LiCl with LiOAc gave much lower yields (Table 1, entry 11). Finally, it was exciting to observe that the ratio between allene 2a and alkyne 3a was improved to >99:1 when the reaction was run at 65 °C in the presence of LiCl, affording 2a in 71% yield (Table 1, entries 12 and 13). The yield dropped to 59% in the absence of LiCl at 65 °C, with a similar regioselectivity (Table 1, entry 14).

After this optimization, the carboxylation of various different primary 2-alkynyl bromides was tested with typical results given in Table 2. 2-Alkyl-substituted 2,3-allenoic acids 2a-d were afforded exclusively in moderate to good yields (Table 2, entries 1–4). The carboxylation reaction may be easily scaled up to 100 mmol, affording 10 g of 2a in a yield of 71 % with a selectivity of > 99:1, showing its practicality (Table 2, entries 1). The introduction of a bulkier isobutyl group and a CH_2CH_2Ph group did not affect the yield or selectivity (Table 2, entries 5 and 6). Synthetically useful functional groups, such as halides (F and Cl) and OMe, were tolerated. Allyl or benzyl group-substituted 2-alkynyl bromides 1j and 1k also gave the corresponding terminal allenoic acids 2j and 2k in moderate yields under the optimized conditions (Table 2, entries 10 and 11).

Chem. Eur. J. 2015, 21, 17224 - 17228

Wiley Online Library

Scheme 1. Classical methodologies (a, b) and the CO₂-based approach to synthesis of 2,3-allenoic acids (c).

2-Butyl-2,3-butadienoic acid **2a** could easily be transformed to benzyl allenoate **2aa** and allenoyl amide **2ab**.^[14] Furanone

<i>n</i> Bu—	Bu metal powder (x equiv.) Bu additive (1.0 equiv.) Br CO ₂ (balloon) solvent, temp 24 h		nBu		÷C	оон	
	1a		2a			3a	
Entry	Entry Metal powder (equiv) ^[b]		Additive	T [°C]	Yields [%] ^[c]		
					2 a	3 a	1 a
1	ln (0.70)	THF	LiCl	20	coi	mplica	ated
2	AI (0.70)	THF	LiCl	20	-	-	66
3	Bi (0.70)	THF	LiCl	20	-	-	24
4	Mn (1.05)	THF	LiCl	20	-	-	74
5	Zn (1.05)	THF	LiCl	20	61	17	-
6	Zn (1.05)	DMF	LiCl	20	40	26	3
7	Zn (1.05)	DMSO	LiCl	20	37	23	-
8	Zn (1.05)	MTBE	LiCl	20	37	3	9
9	Zn (1.05)	dioxane	LiCl	20	17	2	2
10	Zn (1.05)	DME	LiCl	20	73	13	-
11	Zn (1.05)	DME	LiOAc	20	58	11	-
12	Zn (1.05)	DME	LiCl	60	72	2	-
13	Zn (1.05)	DME	LiCl	65	71	< 1	-
14	Zn (1.05)	DME	-	65	59	<1	-
[a] Reaction conditions: 1a (1.0 mmol), metal powder, and additive (1.0 mmol) under a CO ₂ (balloon) atmosphere in anhydrous solvent (5 mL). [b] All metal powders were washed sequentially with 3 M HCl, acetone, and Et ₂ O for 3 times each and dried under vacuum before use. [c] NMR yield.							

2 ac was obtained from a palladium-catalyzed cyclization–allylation process^[3g] and the reaction of **2 a** with diethyl azodicarboxylate (DEAD) and Ph₃P yielded the pyrazolone **2 ad** in 80 % yield (Scheme 2).^[4]

To our surprise, when secondary 2-alkynyl bromides were applied at 20 °C (Table 3), the selectivity was reversed: 3-alkynoic acids were formed with merely a trace amount of 2,3-allenoic acids.[15] 4-Phenyl-3-butynoic acid 31 was afforded in 64% yield (Table 3, entry 1). The carboxylation worked smoothly with different non-terminal secondary 2-alkynyl bromides 1ms (Table 3, entries 2-8). Chloride and trimethylsilyl (TMS) substituents survived under the optimized conditions (Table 3, entries 9 and 10). Allyl-substituted propargylic bromide 1v was also successfully converted (Table 3, entry 11). Even a terminal C=C triple bond was tolerated to yield the terminal 3-alkynoic acid

3 w in 46 % yield (Table 3, entry 12).

It is worth mentioning that 3-alkynoic acids **3** could be easily transformed into trisubstituted 2,3-allenoic acids **4** by a KOH-mediated rearrangement: **4n** and **4p** were afforded in decent yields, which addresses the concern of the scope limitation for the synthesis of allenoic acids shown in Table 2 (Scheme 3).

A mechanistic rationale for the observed regioselectivity is depicted in Scheme 4. We proposed that LiCl accelerates the reaction by forming a RZnX-LiCl complex in zinc-mediated reactions, thus also increasing the solubility of the metallic species.^[16] The reaction of propargyl or allenyl zinc species with a carbonyl functionality most likely proceeds by a cyclic S_E2' type process of the allenyl or propargylic species with CO₂.^[13] With a primary propargylic bromide, the in situ-formed propargylic zinc reagent would react with CO₂ via a cyclic transition state **IM-1** to give the allenoic acids **2**; for the secondary 2-al-kynyl bromide, a cyclic transition state involving allenyl intermediate **IM-2** would give the 3-alkynoic acid **3**. The steric effect of the R² group determines the equilibrium between the propargyl zinc species and the allenyl zinc intermediate.^[17,18]

In summary, a highly selective carboxylation of readily available propargylic bromides mediated by zinc powder under 1 atm CO_2 was developed with the regioselectivity controlled by the steric effects of the 2-alkynyl bromides: 2-substituted 2,3-allenoic acids were afforded from primary 2-alkynyl bromides, whereas secondary bromides yielded 2-alkynoic acids under mild reaction conditions. The nature of the R² group has

Chem. Eur. J. 2015, 21, 17224-17228

www.chemeurj.org

CHEMISTRY A European Journal Communication

Table 2. Substrates scope of primary 2-alkynyl bromides. [a,b]			
R- <u></u>	Zn powder (1.05 equiv.)		
Br	CO ₂ (balloon)	Соон	
1	DME, 65 °C, 24 h	2	
Entry	R	Yield of 2 [%] ^[c]	
1	<i>n</i> -C ₄ H ₉ (1 a)	71 (71) ^[d] (2 a)	
2	<i>n</i> -C ₆ H ₁₃ (1 b)	67 (2 b)	
3	<i>n</i> -C ₈ H ₁₇ (1 c)	60 (2 c)	
4	<i>n</i> -C ₁₀ H ₂₁ (1 d)	58 (2 d)	
5	<i>i-</i> C ₄ H ₉ (1 e)	61 (2 e)	
6	CH_2CH_2Ph (1 f)	60 (2 f)	
7	$CH_2CH_2CH_2F$ (1 g)	57 (2 g)	
8	CH ₂ CH ₂ CH ₂ CI (1 h)	53 (2 h)	
9	CH ₂ CH ₂ CH ₂ OMe (1 g)	52 (2 i)	
10	allyl (1j)	60 (2 j)	
11	Bn (1 k)	45 (2 k)	
[a] Poaction condi	tions (unloss otherwise	stated): 2 allownul bromide	

[a] Reaction conditions (unless otherwise stated): 2-alkynyl bromide (1.0 mmol) and zinc powder (1.05 mmol) under CO₂ (balloon) in anhydrous DME (5 mL) at 65 °C. [b] Zinc powder was treated sequentially with 3 $\,$ M HCl, and then washed with acetone and Et₂O for 3 times each and dried under vacuum before use. [c] Yields refer to isolated products. [d] Value in parentheses refers to reaction conducted on a 100 mmol scale.

Scheme 2. Derivatization of 2-butyl-2,3-butadienoic acid 2a.

a profound effect on the structure of the in situ-generated zinc reagents, which react with CO_2 via a S_E2' -type cyclic intermediate to afford the allenoic or 3-alkynoic acids. Further studies on the reaction are still ongoing in our group.

Experimental Section

Synthesis of 2-butyl-2,3-allenoic acid (2 a)

To a flame-dried 25 mL Schlenk tube equipped with a magnetic stirring bar were added zinc powder (68.7 mg, 1.05 mmol) and an-

Table 3. Substrate scope of secondary propargylic bromides. ^[a,b]				
p1	R ² Zn pow	der (1.05 equiv.) (1.0 equiv.)	R ²	
	Br CC	D ₂ (balloon)	к — _соон	
1	DME	E, 20 ºC, 24 h	3	
Entry	R ¹	R ²	Yield of 3 $[\%]^{[c]}$	
1	Ph	Me (11)	61 (3 I)	
2	n-C₄H ₉	Me (1 m)	58 (3 m)	
3	n-C ₆ H ₁₃	Me (1 n)	63 (3 n)	
4	n-C ₈ H ₁₇	Me (1 o)	73 (3 o)	
5	n-C ₁₀ H ₂₁	Me (1 p)	71 (3 p)	
6	t-C₄H ₉	Me (1 q)	70 (3 q)	
7	Су	Me (1 r)	80 (3 r)	
8	CH_2CH_2Ph	Me (1 s)	57 (3 s)	
9	CH ₂ CH ₂ CH ₂ CI	Me (1 t)	65 (3 t)	
10	TMS	Me (1 u)	62 (3 u)	
11	allyl	Me (1 v)	61 (3 v)	
12	Н	<i>n</i> -C ₄ H ₉ (1 w)	46 (3 w) ^[d]	
13	$t-C_4H_9$	Et (1 x)	57 (3 x)	

[a] Reaction conditions (unless otherwise stated): 2-alkynyl bromide (1.0 mmol) and zinc powder (1.05 mmol) under CO₂ (balloon) in anhydrous DME (5 mL) at 20 °C. [b] Zinc powder was treated sequentially with 3 μ HCl, and then washed with acetone and Et₂O 3 times each and dried under vacuum before use. [c] Yields refer to isolated products. [d] Reaction conducted at 65 °C.

Scheme 3. Synthesis of trisubstituted 2,3-allenoic acids by KOH-mediated rearrangement of 3-alkynoic acids.

hydrous LiCl (42.6 mg, 1.00 mmol) inside a glove box. The Schlenk tube was then dried under vacuum with a heat gun. 1 a (175.3 mg, 1.00 mmol) and DME (5 mL) were then added sequentially under Ar atmosphere. The mixture was then frozen with a liquid nitrogen bath and the tube's argon atmosphere was completely replaced with CO₂ via a balloon. The Schlenk tube was then allowed to stand until the mixture thawed and the resulting mixture was stirred at 65 °C for 24 h. The resulting mixture was then quenched with 3 M aqueous HCl (10 mL) and the aqueous layer was extracted with ethyl acetate (5×10 mL). The combined organic layer was washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (gradient elution: 5:1 petroleum ether/ ethyl acetate to 20:1 dichloromethane/methanol) to afford 2a as a white solid (99.5 mg, 0.71 mmol, 71%). M.p. 70-72 °C (petroleum ether); ¹H NMR (300 MHz, CDCl₃) δ = 10.42 (bs, 1 H, COOH), 5.19 (t, J = 3.2 Hz, 2 H, CH₂=), 2.27–2.15 (m, 2 H, CH₂), 1.52–1.28 (m, 4 H, 2× CH₂), 0.91 ppm (t, J=7.2 Hz, 3 H, CH₃); 13 C NMR (75 MHz, CDCl₃) δ = 214.8, 173.0, 100.0, 79.2, 30.0, 27.4, 22.1, 13.8 ppm; MS (ESI) 457 $[(3M-2H+K)^{-}]$, 301 $[(2M-2H+Na)^{-}]$, 235 $[(2M-CO_{2}-H)^{-}]$, 139 $[(M-H)^{-}]$; IR (neat) $\tilde{\nu} = 3600-2200$ (br), 1957, 1913, 1673, 1458, 1415, 1375, 1334, 1289, 1264, 1241, 1123, 1074, 1053, 1005 $\rm cm^{-1}.$

To a flame-dried 2 L three-necked flask equipped with a magnetic stirring bar were added zinc powder (6.87 g, 105 mmol) and anhydrous LiCl (4.24 g, 100 mmol) inside a glove box. DME (500 mL)

Chem. Eur. J. 2015, 21, 17224 – 17228

www.chemeurj.org

Scheme 4. Rationale for the observed regioselectivity.

and 1a (17.51 g, 100 mmol) were then added sequentially under Ar atmosphere. The mixture was then frozen with a liquid nitrogen bath and the flask's argon atmosphere was completely replaced with CO2 via a balloon. The reaction flask was then allowed to stand until the mixture thawed and the resulting mixture was stirred at 65 °C for 12 h. A new CO₂ balloon was equipped and the mixture was stirred at 65 °C for another 12 h. The mixture was quenched with 3 M aqueous HCl (500 mL) and the aqueous layer was extracted with ethyl acetate (5×150 mL). The combined organic layer was washed with brine (500 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (gradient elution: 5:1 petroleum ether/ethyl acetate to 20:1 dichloromethane/methanol) to afford 2a as a white solid (9.96 g, 71 mmol, 71%). ¹H NMR (300 MHz, CDCl₃) $\delta = 11.76$ (bs, 1 H, COOH), 5.18 (t, J = 3.2 Hz, 2 H, CH₂=), 2.26-2.16 (m, 2H, =CCH₂), 1.51-1.25 (m, 4H, 2×CH₂), 0.91 ppm (t, J=7.2 Hz, 3 H, CH₃).

Acknowledgements

Financial support from National Basic Research Program of China (2015CB856600), National Natural Science Foundation of China (21232006) and Shanghai Municipal Committee of Science and Technology (12JC1403700) is greatly appreciated. We thank Mr. Shangze Wu in this group for reproducing the results of entry 3 in Table 2, entry 4 in Table 3, and **2 ad** in Scheme 2.

Keywords: allenylation · carbon dioxide fixation · propargylation · regioselectivity · zinc

- a) The Chemistry of Ketenes, Allenes, and Related Compounds, Part 1 (Ed.: S. Patai), Wiley, New York, **1980**; b) H. F. Schuster, G. M. Coppola, Allenes in Organic Synthesis, Wiley, New York, **1984**; c) The Chemistry of the Allenes, Vol. 1 (Ed.: S. R. Landor), Academic Press, London, **1982**; d) Modern Allene Chemistry, Vols. 1–2 (Eds.: N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, **2004**; e) Handbook of Cyclization Reactions, Vol. 1 (Ed.: S. Ma) Wiley-VCH, Weinheim, **2010**.
- [2] a) R. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, *Chem. Rev.* 2000, 100, 3067; b) A. Hoffmann-Röder, N. Krause, *Angew. Chem. Int. Ed.* 2004, 43, 1196; *Angew. Chem.* 2004, 116, 1216; c) S. Ma, *Chem. Rev.* 2005, 105, 2829; d) S. Ma, *Acc. Chem. Res.* 2003, 36, 701; e) J. Ye, S. Ma, *Acc. Chem. Res.* 2014, 47, 989.
- [3] For typical reactions in building furanones via cyclization of allenoic acids developed by our group, see: a) S. Ma, Z. Shi, L. Li, J. Org. Chem. 1998, 63, 4522; b) S. Ma, Z. Shi, J. Org. Chem. 1998, 63, 6387; c) S. Ma, Z. Yu, S. Wu, Tetrahedron 2001, 57, 1585; d) S. Ma, Z. Yu, Angew. Chem. Int. Ed. 2002, 41, 1775; Angew. Chem. 2002, 114, 1853; e) S. Ma, Z. Yu, Org. Lett. 2003, 5, 1507; f) S. Ma, Z. Yu, Angew. Chem. Int. Ed. 2003, 42, 1955; Angew. Chem. 2003, 115, 1999; g) S. Ma, Z. Yu, J. Org. Chem. 2003, 68, 6149; h) S. Ma, Z. Yu, Z. Gu, Chem. Eur. J. 2005, 11, 2351; i) S. Ma, Z. Gu, J. Am. Chem. Soc. 2005, 127, 6182; j) Z. Gu, S. Ma, Angew. Chem. Int. Ed. 2006, 45, 6002; Angew. Chem. 2006, 118, 6148.
- [4] R. Lü, X. Cheng, X. Zheng, S. Ma, Chem. Commun. 2014, 50, 1537.
- [5] a) S. Ma, S. Wu, J. Org. Chem. 1999, 64, 9314; b) S. Ma, S. Wu, Chem. Commun. 2001, 441.
- [6] For the synthesis of allenoates via Wittig-type reactions, see: a) J. A. Marshall, E. D. Robinson, A. Zapata, J. Org. Chem. 1989, 54, 5854; b) C. Li, X. Wang, X. Sun, Y. Tang, J. Zheng, Z. Xu, Y. Zhou, L. Dai, J. Am. Chem. Soc. 2007, 129, 1494.
- [7] For the synthesis of allenoates via transition metal-catalyzed carboxylation of 2-alkynyl derivatives with CO and alcohol insertion, see: a) J. A. Marshall, M. A. Wolf, J. Org. Chem. **1996**, *61*, 3238; b) J. A. Marshall, M. A. Wolf, E. M. Wallace, J. Org. Chem. **1997**, *62*, 367; c) Y. Wang, W. Zhang, S. Ma, Org. Chem. Front. **2014**, *1*, 807; d) Y. Wang, S. Ma, Adv. Synth. Catal. **2013**, 355, 741.
- [8] Y. Wang, W. Zhang, S. Ma, J. Am. Chem. Soc. 2013, 135, 11517.
- [9] For recent reviews on CO₂ activation, see: a) J. Louie, *Curr. Org. Chem.* 2005, 9, 605; b) T. Sakakura, J.-C. Choi, H. Yasuda, *Chem. Rev.* 2007, 107, 2365; c) M. Aresta, A. Dibenedetto, *Dalton Trans.* 2007, 2975; d) A. Correa, R. Martin, *Angew. Chem. Int. Ed.* 2009, 48, 6201; *Angew. Chem.* 2009, 121, 6317; e) S. N. Riduan, Y. Zhang, *Dalton Trans.* 2010, 39, 3347; f) C. Federsel, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* 2010, 49, 6254; *Angew. Chem.* 2010, 122, 6392; g) K. Huang, C. Sun, Z. Shi, *Chem. Soc. Rev.* 2011, 40, 2435; h) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kuhn, *Angew. Chem. Int. Ed.* 2011, 50, 8510; *Angew. Chem.* 2011, 123, 8662.
- [10] a) P. H. Lee, H. Kim, K. Lee, M. Kim, K. Noh, H. Kim, D. Seomoon, Angew. Chem. Int. Ed. 2005, 44, 1840; Angew. Chem. 2005, 117, 1874; b) P. H. Lee, H. Kim, K. Lee, Adv. Synth. Catal. 2005, 347, 1219; c) C. Park, P. H. Lee, Org. Lett. 2008, 10, 3359; d) S. Kim, K. Lee, D. Seomoon, P. H. Lee, Adv. Synth. Catal. 2007, 349, 2449; e) L. Guo, H. Gao, P. Mayer, P. Knochel, Chem. Eur. J. 2010, 16, 9829; f) J. Park, S. H. Kim, P. H. Lee, Org. Lett. 2008, 10, 5067; g) T. Hirashita, Y. Suzuki, H. Tsuji, Y. Sato, K. Naito, S. Araki, Eur. J. Org. Chem. 2012, 5668.
- [11] a) L. W. Bieber, M. F. D. Silva, R. C. D. Costa, L. O. S. Silva, *Tetrahedron Lett.* **1998**, 39, 3655; b) F. Barbot, Ph. Miginiac, J. Organomet. Chem. **1992**,
 440, 249; c) J. Muñoz-Bascón, I. Sancho-Sanz, E. Alvare-Manzaneda, A. Rosales, J. E. Oltra, Chem. Eur. J. **2012**, *18*, 14479.
- [12] For early reports on the reactions of allenyl lithium, sodium, and magnesium with CO₂ affording 2,3-allenoic acids with very limited substrates scope, see: a) J. H. Ford, C. D. Thompson, C. S. Marvel, J. Am. Chem. Soc. **1935**, *57*, 2619; b) J. C. Clinet, G. Linstrumelle, Synthesis **1981**, 875.
- [13] a) E. Favre, M. Gaudemar, J. Organomet. Chem. 1974, 76, 297; b) E.
 Favre, M. Gaudemar, J. Organomet. Chem. 1974, 76, 305; c) X. Creary, J.
 Am. Chem. Soc. 1977, 99, 7632; d) N. R. Pearson, G. Hahn, G. Zweifel, J.
 Org. Chem. 1982, 47, 3364; e) S. Ma, A. Zhang, J. Org. Chem. 2002, 67, 2287; f) S. Ma, A. Zhang, Y. Yu, W. Xia, J. Org. Chem. 2000, 65, 2287.
- [14] C. Feng, T.-P. Loh, Angew. Chem. Int. Ed. 2013, 52, 12414; Angew. Chem. 2013, 125, 12640.

Chem	Fur I	2015	21	17224 - 17228
Chem.	Lui. J.	2013,	21,	1/224 - 1/220

www.chemeurj.org

- [15] For a pioneering report on cobalt-catalyzed carboxylation of propargylic acetates with the help of Mn powder forming 3-alkynoic acids with substrates bearing a bulky *t*Bu and TMS substituent at the sp carbon atom, see: K. Nogi, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Commun.* **2014**, *50*, 13052.
- [16] A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; Angew. Chem. 2006, 118, 6186.
- [17] J. Bejjani, C. Botuha, F. Chemla, F. Ferreira, S. Magnus, A. Perez-Luna, Organometallics 2012, 31, 4876.
- [18] B. W. Gung, X. Xue, N. Knatz, J. A. Marshall, *Organometallics* **2003**, *22*, 3158.

Received: September 1, 2015 Published online on October 23, 2015

Please note: Minor changes have been made to this manuscript since its publication in *Chemistry—A European Journal* Early View. The Editor.