

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 1299-1301

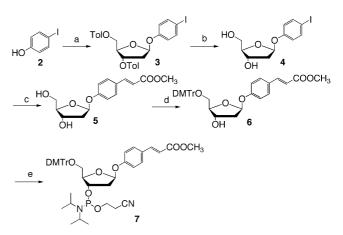
Interstrand photocrosslinking of DNA via *p*-carbamoylvinyl phenol nucleoside

Yoshinaga Yoshimura,^{b,*} Yoshiaki Ito^a and Kenzo Fujimoto^{a,b,*}

^aThe School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan ^bPRESTO, Japan Science and Technology Agency, Ishikawa 923-1292, Japan

Received 26 November 2004; revised 11 January 2005; accepted 13 January 2005

Abstract—We report a novel interstrand photocrosslinking of oligodeoxynucleotides (ODNs). In this system, a modified ODN containing *p*-carbamoylvinyl phenol nucleoside reacts by photoirradiation at 366 nm with adenine residue of a complementary template ODN to yield a crosslinked ODN in 97% yield.


© 2005 Elsevier Ltd. All rights reserved.

The linkage of DNA binding agents to ODNs has become a popular strategy to enhance the efficiency of antisense and triplex inhibition of cellular processes.¹ Psoralens have been used for many years as interstrand photocrosslinker of nucleic acids.² Psoralens form a reversible intercalative complex with DNA and can undergo subsequent photoactivation with near-UV light and then crosslink through a [2 + 2] cycloaddition with thymine residues. However, interstrand photocrosslink occurs between thymine residues at the duplex site 5'-TA-3' preferentially.³ To overcome such a sequence dependence, the study of photocrosslinker has been developed. The photochemical [2 + 2] cycloaddition of cinnamic acid and its methyl esters with alkenes is one of the most extensively investigated and synthetically useful of photochemical reactions.⁴ These photoreactions of cinnamic acid are expected to use as photocrosslinker for the study of interstrand photocrosslink of nucleic acids. Template directed reversible DNA photoligation via 5-vinyldeoxyuridine has already reported as a tool for DNA engineering and nanotechnology.⁵

Here we report the development of a novel interstrand photocrosslink via *p*-carbamoylvinyl phenol nucleoside $({}^{p-CV}P)$ in duplex DNA.⁶ We also demonstrate that the modified ODN containing ${}^{p-CV}P$ was photocrosslinked with adjacent adenine residue by UV irradiation.

Keywords: Photocrosslink; Nucleoside; Cycloaddition.

The synthesis of the phosphoramidite of methyl ester of $p^{-CV}P$ is outlined in Scheme 1. Compound 3 was synthesized from 4-iodophenol and Hoffer's α -chlorosugar. Deprotection of 3 with sodium methoxide afforded 4. Compound 4 was coupled with methylacrylate to afford 5.⁷ Compound 5 was dimethoxytritylated, and converted into the nucleoside phosphoramidite 7. The assignments of β -stereochemistry at C1' for 5 was based on COSY and NOESY spectra, which showed the cross-peak between H1' and H4'. The modified ODN

Scheme 1. Reagents and conditions: (a) NaH, chlorosugar, THF, room temperature, 19 h, 62%; (b) NaOCH₃, THF, room temperature, 15 h, 49%; (c) methyl acrylate, Pd(OAc)₂, PPh₃, Et₃N, dioxane, 115 °C, 4 h, 41%; (d) 4,4'-dimethoxytrityl chloride, DMAP, pyridine, room temperature, 16 h, 47%; (e) $(iPr_2N)_2PO(CH_2)_2CN$, 1*H*-tetrazole, acetonitrile, room temperature, 1 h, quant.

^{*} Corresponding authors. Tel.: +81 761511673; fax: +81 761511665; e-mail: yosinaga@jaist.ac.jp

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.01.029

containing ${}^{p-\text{CV}}\text{P}$ was prepared according to the standard phosphoramidite chemistry on a DNA synthesizer using phosphoramidite 7. After HPLC purification, 5'-d(${}^{p-\text{CV}}\text{PGCGTG}$)-3' (ODN 1) was characterized by the nucleoside composition and MALDI-TOF MS [calcd 1858.3528 for (M-H)⁻, found 1858.3695]. The modified ODN 5'-d(TGTGCC ${}^{p-\text{CV}}\text{PGCGTG}$)-3' (ODN 2) was characterized by the nucleoside composition and MALDI-TOF MS [calcd 3706.49 for (M+H)⁺, found 3706.34] (Fig. 1).

When 5'-d($^{p-CV}$ PGCGTG)-3' (ODN 1) was irradiated at 366 nm for 30 min in the presence of template ODN 3 (Scheme 2), ODN 4 was produced in 96% yield as determined by HPLC analysis (Fig. 2).⁸ The reaction mixture (total volume 60 µL) containing ODN 1 (30 µM, strand concn) in the presence of template ODN 3 (20 µM, strand concn) in 50 mM sodium cacodylate buffer (pH 7.0) and 100 mM sodium chloride was irradiated with transilluminator (366 nm) at 0 °C for 30 min.⁹ MALDI-TOF MS indicated that isolated ODN 4 obtained from HPLC purification was a crosslinked prod-

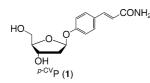
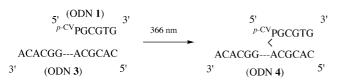
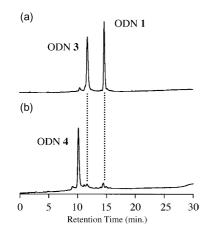
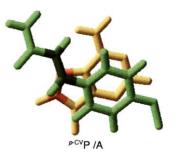
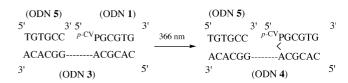
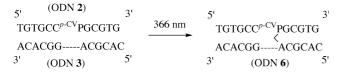




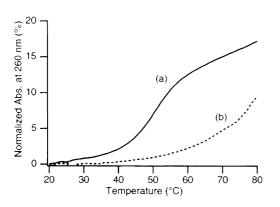
Figure 1. Structure of *p*-carbamoylvinyl phenol nucleoside (^{p-CV}P).


Scheme 2. Interstrand photocrosslink of ODN 1 in the presence of template ODN 3.


Figure 2. HPLC analysis of 366 nm irradiated ODN **1** and template ODN **3**; (a) before photoirradiation, (b) irradiation at 366 nm for 30 min, 96% yield. The progress of photoreaction was monitored by HPLC on a 5-ODS-H column (4.6×150 mm, elution with a solvent mixture of 50 mM ammonium formate, pH 7.0, linear gradient over 30 min from 3% to 20% acetonitrile at a flow rate 1.0 mL/min).

uct of ODN 1 and ODN 3 [calcd 5485.74 for $(M+H)^+$, found 5485.98]. The isolated ODN 4 was digested with AP, svPDE, and P1 nuclease at 37 °C for 4 h. Enzymatic digestion of isolated ODN 4 showed the formation of dC, dG, dI, and dT in a ratio of 6:6:3:1 together with $dI_{-}^{p-CV}P$ photoadduct that was a deaminated product of $dA_{-}^{p-CV}P$ adduct during enzymatic digestion process.¹⁰ The dI-^{*p*-CV}P adduct was confirmed by MAL-DI-TOF MS [calcd 532.2043 for (M+H)⁺, found 532.1096]. We examined molecular modeling studies of the duplex $1 \cdot 3$. As shown in Figure 3, the vinyl group of ^{p-CV}P is stacked on N7–C8 double bond of adjacent adenine residue of ODN 3. It is known that photoreaction of adenine-thymine dinucleotide analog proceeds via [2+2] cycloaddition between the C5–C6 double bond of thymine and the N7-C8 double bond of adenine.¹¹ As judged from the molecular modeling, it is strongly suggested that the photocrosslink reaction proceed via [2 + 2] cycloaddition between the double bond of ^{*p*-CV}P and the N7–C8 double bond of adenine giving rise to the formation of aza-cyclobutane structure.


To demonstrate the feasibility of this photocrosslink, we examined two photoreactions of interstrand crosslink of the modified ODN containing ^{p-CV}P . When ODN 1 was irradiated at 366 nm for 30 min in the presence of template ODN 3 together with ODN 5, ODN 4 was produced in 96% yield as determined by HPLC analysis (Scheme 3).⁸ The reaction mixture (total volume 60 µL) containing ODN 1 (30 µM, strand concn) and ODN 5 (20 µM, strand concn) in the presence of template ODN 3 (20 µM, strand concn) in 50 mM sodium cacodylate buffer (pH 7.0) and 100 mM sodium chloride was irradiated with transilluminator (366 nm) at 0 °C for 30 min. When ODN 2 was irradiated at 366 nm for 30 min in the presence of template ODN 3, ODN 6 was produced in 97% yield as determined by HPLC analysis (Scheme 4).8 The reaction mixture (total volume $60 \,\mu\text{L}$) containing ODN 2 (34 μ M, strand concn) in the


Figure 3. Molecular modeling of stacked geometry in B-form DNA. The model was optimized by AMBER* force field in water by using MacroModel version 8.1.

Scheme 3. Interstrand photocrosslink using ODN 1.

Scheme 4. Interstrand photocrosslink using ODN 2.

Figure 4. Melting curves of the $2 \cdot 3$ duplex (a) and ODN 6 (b). $T_{\rm m}$ values of the $2 \cdot 3$ duplex (5.0 μ M) and ODN 6 (5.0 μ M) were measured in 50 mM sodium cacodylate and 100 mM sodium chloride, pH 7.0.

presence of template ODN **3** (20 μ M, strand concn) in 50 mM sodium cacodylate buffer (pH 7.0) and 100 mM sodium chloride was irradiated with transilluminator (366 nm) at 0 °C for 30 min. MALDI-TOF MS indicated that isolated ODN **6** obtained from HPLC purification was a crosslinked product of ODN **2** and ODN **3** [calcd 7330.92 for (M+H)⁺, found 7331.57].

To examine the influence of photocrosslink reaction on the thermal stability, the melting temperature (T_m) of the duplex $2 \cdot 3$ or ODN 6 was determined by UV-monitored thermal denaturation. As shown in Figure 4, the duplex $2 \cdot 3$ showed a melting temperature of 50.5 °C, whereas ODN 6 melted at over 80 °C. Example of this behavior has been seen for crosslinked ODNs by the introduction of thiol groups.¹² Thus, photocrosslinking increased T_m of ODN, a dramatic stabilization of the duplex form.

In conclusion, we demonstrate here that a modified ODN containing ^{p-CV}P can be crosslinked by irradiating at 366 nm with adjacent adenine residue in a [2 + 2] manner. This feature of the photoreactivity may provide the intriguing methodology that is applicable to antisense and antigene.

References and notes

- (a) Hélène, C. Curr. Opin. Biotechnol. 1993, 4, 29–36; (b) Luce, R. A.; Hopkins, P. B. Methods Enzymol. 2001, 340, 396–412.
- (a) Takasugi, M.; Guendouz, A.; Chassignol, M.; Decout, J. L.; Lhomme, J.; Thuong, N. T.; Hélène, C. *Proc. Natl. Acad. Sci. U.S.A.* **1991**, *88*, 5602–5606; (b) Thuong, N. T.; Hélène, C. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 666–690; (c) Gasparro, F. P.; Harve, P. A.; Olack, G. A.; Gunther, E. J.; Glazer, P. M. *Nucleic Acids Res.* **1994**, *22*, 2845– 2852.
- (a) Zhen, W.-P.; Buchardt, O.; Nielsen, H.; Nielsen, P. E. Biochemistry 1986, 25, 6598–6603; (b) Weidner, M. F.; Millard, J. T.; Hopkins, P. B. J. Am. Chem. Soc. 1989, 111, 9270–9272.
- Lewis, F. D.; Quillen, S. L.; Hale, P. D.; Oxman, J. D. J. Am. Chem. Soc. 1988, 110, 1261–1267.
- (a) Fujimoto, K.; Matsuda, S.; Takahashi, N.; Saito, I. J. Am. Chem. Soc. 2000, 122, 5646–5647; (b) Fujimoto, K.; Matsuda, S.; Ogawa, N.; Hayashi, M.; Saito, I. Tetrahedron Lett. 2000, 41, 6451–6454; (c) Fujimoto, K.; Matsuda, S.; Hayashi, M.; Saito, I. Tetrahedron Lett. 2000, 41, 7897–7900; (d) Fujimoto, K.; Ogawa, N.; Hayashi, M.; Matsuda, S.; Saito, I. Tetrahedron Lett. 2000, 41, 9437– 9440; (e) Saito, I.; Miyauchi, Y.; Saito, Y.; Fujimoto, K. Tetrahedron Lett. 2005, 46, 97–99.
- For recent reports for the synthesis of crosslinked duplex DNA, see: (a) Harwood, E. A.; Sigurdsson, S. T.; Edfeldt, N. B.; Reid, B. R.; Hopkins, P. B. J. Am. Chem. Soc. 1999, 121, 5081–5082; (b) Nakatani, K.; Yoshida, T.; Saito, I. J. Am. Chem. Soc. 2002, 124, 2118–2119.
- 7. Spectroscopic data for selected compounds are as follows. Compound **5**: ¹H NMR (CDCl₃, 300 MHz) δ 2.32 (dt, 1H, J = 14.2 Hz, 5.7 Hz), 2.55 (ddd, 1H, J = 14.2 Hz, 6.9 Hz, 1.7 Hz), 3.61–3.75 (m, 2H), 3.77 (s, 3H), 4.07–4.11 (m, 1H), 4.62–4.68 (m, 1H), 5.90 (dd, 1H, J = 5.7 Hz, 1.7 Hz), 6.30 (d, 1H, J = 16.2 Hz), 7.05 (d, 2H, J = 8.6 Hz), 7.44 (d, 2H, J = 8.6 Hz), 7.62 (d, 1H, J = 16.2 Hz), HRMS (MALDI): calcd for C₁₅H₁₈O₆Na [(M+Na)⁺] 317.0996, found 317.0938, UV (H₂O/CH₃OH = 1:1) λ_{max} (ε) 306 nm (14,300 M⁻¹ cm⁻¹), $\varepsilon_{366} = 155$.
- 8. The yield was calculated on the basis of ODN 3.
- 9. Isolation of each interstrand crosslinked photoproducts that were produced in two photoreactions of ODN 1 in the presence of template ODN 5'-d(CACGCTGGCACA)-3' or 5'-d(CACGCCGGCACA) -3' was not successful due to furnish lower conversions of photo-induced crosslinking reactions.
- 10. dI_ $^{p-CV}$ P adduct: UV (H₂O) λ_{max} (ϵ) 256 nm (7540 M⁻¹ cm⁻¹).
- 11. Paszyc, S.; Skalski, B.; Wenska, G. Tetrahedron Lett. 1976, 6, 449–450.
- 12. Ferentz, A. E.; Keating, T. A.; Verdine, G. L. J. Am. Chem. Soc. 1993, 115, 9006–9014.