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ABSTRACT: Catalytic carbonylations of organohalides are 
important C–C bond formations in chemical synthesis. Car-
bonylations of unactivated alkyl halides remain a challenge, and 
currently require the use of alkyl iodides under harsh condi-
tions and high pressures of CO. Herein, we report a palladium-
catalyzed alkoxycarbonylation of secondary alkyl bromides that 
proceeds at low pressure (2 atm CO) under mild conditions. 
Preliminary mechanistic studies are consistent with a hybrid 
organometallic-radical process. These reactions efficiently deliv-
er esters from unactivated alkyl bromides across a diverse range 
of substrates and represent the first catalytic carbonylations of 
alkyl bromides with carbon monoxide.    

The catalytic carbonylation of organohalides is a fundamen-
tal transformation of organometallic catalysis, most notably 
demonstrated by the Monsanto-Cativa acetic acid synthesis.1 
Carbonylations of aryl or vinyl electrophiles, or activated sp3-
hybridized substrates, have also been used in diverse transfor-
mations for the synthesis of small molecules (Figure 1).2 Con-
versely, there are few efficient catalytic carbonylations of unacti-
vated alkyl halides.3,4 Recent studies have demonstrated the 
utility of palladium catalysts in these processes, but require the 
use of alkyl iodides under high pressures of CO (∼50 atm) using 
elevated temperatures or intense Xe lamp irradiation.3b,5,6 Alter-
natively, nickel-catalyzed carboxylations of unactivated alkyl 
halides have recently been reported; however, substrates are 
limited to primary bromides.7 The lack of simple, general pro-
tocols for carbonylations of unactivated alkyl halides significant-
ly limits applications in chemical synthesis.  
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Figure 1. Palladium-catalyzed carbonylations of organohalides.  

There are a number of challenges inherent to a catalytic car-
bonylation of unactivated alkyl halides with carbon monoxide. 

The oxidative addition of alkyl halides is expected to be more 
challenging in the presence of π-acidic CO, which would de-
crease the electron density on the metal center.8 Moreover, 
should a successful oxidative addition take place, undesired β-
hydride elimination of an alkylmetal intermediate is prone to 
occur,9 especially at lower CO pressures. Herein, we report the 
development of an efficient catalytic alkoxycarbonylation of 
unactivated secondary alkyl bromides that overcomes these 
challenges. This palladium-catalyzed transformation enables a 
mild, low-pressure synthesis of diverse esters and constitutes the 
first examples of catalytic carbonylations of unactivated alkyl 
bromides with CO.  

Our studies commenced with the alkoxycarbonylation of un-
activated secondary alkyl bromide 1 (Table 1). We determined 
that a catalytic system comprised of 5 mol % Pd(PPh3)2Cl2 and 
10 mol % of the N-heterocyclic carbene ligand IMes (IMes = 
N,N’-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) facilitated an 
efficient alkoxycarbonylation of substrate 1, providing ester 2 in 
high yield (85%, entry 1).10  Other palladium precatalysts, such 
as [Pd(allyl)Cl]2 and PdCl2, were inferior to Pd(PPh3)2Cl2 (en-
tries 2–3). Decreasing the amount of IMes ligand (5 mol %) 
slightly reduced the reaction yield (80% yield instead of 85% 
yield, entry 4). Substituting less electron-donating SIMes (SIMes 
= N,N’-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) 
for IMes greatly reduced reaction efficiency, and the absence of 
IMes led to no alkoxycarbonylation (entries 5–6). Amine bases 
did not facilitate the reaction (entry 7), and the use of 1 atm of 
CO (balloon) was inferior to the optimized conditions (2 atm, 
entry 8). Performing the reaction in n-BuOH diminished the 
yield (entry 9), and no product was formed in the absence of 
Pd(PPh3)2Cl2 (entry 10).  

Table 1. Palladium-catalyzed alkoxycarbonylation of an unac-
tivated secondary alkyl bromide.  

BrPh

5 mol % Pd(PPh3)2Cl2
10 mol % IMes 

2 atm CO
2 equiv Cs2CO3

n-heptane:n-BuOH 1:1, 50 oC, 24 h

Ph
OBu

O
NN MesMes

IMes1 2  
entry variation from standard conditions above % yielda 

1 none 85 
2 2.5 mol % [Pd(allyl)Cl]2 instead of Pd(PPh3)2Cl2 53 
3 5 mol % PdCl2 instead of Pd(PPh3)2Cl2 6 
4 5 mol % IMes instead of 10 mol % IMes 80 
5 10 mol % SIMes instead of IMes 6 
6 no IMes  <2 
7 2 equiv Et3N instead of Cs2CO3 <2 
8 1 atm (balloon) CO instead of 2 atm CO 31 
9 no n-heptane 35 

10 no Pd(PPh3)2Cl2 <2 
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Reactions were performed with [substrate]0 = 0.5 M. aYields de-
termined by 1H NMR spectroscopy of crude reaction mixture using 
an internal standard.  

Upon identifying suitable conditions for the alkoxycarbonyl-
ation, we surveyed reactions involving a range of alkyl bromides 
(Table 2). A variety of aryl-substituted substrates provided esters 
in good yields, including one with pendant benzamide func-
tionality (entries 1–5). Aliphatic substrate 2-bromooctane deliv-
ered butyl ester 12 in moderate yield (65%, entry 6), indicating 
that the aryl ring plays no role in substrate activation. Silyl pro-
tecting groups were compatible with the catalytic conditions, as 
demonstrated by the reaction of tert-butyldimethylsilyl ether 13 
(entry 7). While pendant ester functionality was tolerated under 
the reaction conditions, transesterification necessitated the use 
of n-butyl esters (entry 8). The alkoxycarbonylation of substitut-
ed N-methylpyrrole 17 delivered ester 18 in good yield, high-
lighting the utility of the reaction in the presence of electron-
rich aromatic systems (entry 9). Five- and six-membered carbo-
cycles and heterocycles also reacted efficiently using our ap-
proach. Substrates examined included cyclohexyl, cyclopentyl, 
and tetrahydropyranyl bromides, in addition to Boc-protected 
piperidine and pyrrolidine substrates (entries 10–14). Lastly, 
exo-bromonorbornane 29 yielded primarily the exo-
alkoxycarbonylation product 30 (5.4:1 dr, entry 15). Control 
experiments indicated that formation of the minor endo prod-
uct is most likely the result of partial epimerization of the exo 
product under the basic reaction conditions.11  

Table 2. Low-pressure alkoxycarbonylations of secondary alkyl 
bromides.  

entry substrate product yield 
(%)a 

 Br

R

 

CO2Bu

R

 

 

1 1: R = H 2: R = H 72 
2 3: R = Cl 4: R = Cl 70 
3 5: R = F 6: R = F 83 
4 7: R = OMe 8: R = OMe 81 
5 9: R = CONEt2 10: R = CONEt2 75 
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11 21: X = NBoc 
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12 23: X = O 
 

24: X = O 
 

75 

 
 X
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X
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13 25: X = CH2 
 

26: X = CH2 
 
 

70 
14 27: X = NBoc 

 
28: X = NBoc 

 
74b 

15 Br  
29 

CO2Bu  
30 

79 

5.4:1 dr 

See Table 1 for conditions. aIsolated yield. bReaction yields de-
termined by 1H NMR spectroscopy of crude reaction mixtures 
using an internal standard.  

We next surveyed a range of alcohols in the alkoxycarbonyla-
tion (Table 3). Importantly, these studies demonstrate the via-
bility of the transformation when the alcohol is used in slight 
excess (2 equiv) rather than as reaction co-solvent. A number of 
primary alcohols, including those with β-branching, delivered 
the respective ester products in useful yields with only 2 equiva-
lents of the alcohol as nucleophile (entries 1-5). Secondary al-
cohols were also effective in the alkoxycarbonylation (entries 6-
8), but the reactions of isopropanol and cyclohexanol were 
more efficient using our standard conditions (n-heptane:alcohol 
1:1).    

Table 3. Alkoxycarbonylations of an unactivated secondary 
alkyl bromide with diverse alcohols.  

Br
OR

O
5 mol % Pd(PPh3)2Cl2

10 mol % IMes 
2 atm CO

2 equiv Cs2CO3
solvent, ROH, 50 oC, 24 h

MeO MeO

 

entry alcohol yield (%)a 

1 OH  64b 

2 OH  70b 

3 
OH

 
61b 

4 OH
 

72b 

5 
O

OH  
41b 

6 
OH  

53c 

7 OH

 

53b,d 

8 OH
 

59c 

aIsolated yield. bReactions were performed with [substrate]0 = 1.0 
M in PhCF3 with 2 equiv of alcohol. cReactions were performed 
with [substrate]0 = 0.5 M in a mixture of n-heptane:alcohol = 1:1. 
dReaction time 48 h. 

The relative stability of alkyl bromides over alkyl iodides 
combined with the ease of accessing alkyl bromides from their 
parent alcohols offers attractive opportunities for late stage C—
C bond formation. As an initial demonstration of a late-stage 
alkoxycarbonylation, we studied the reaction of androsterone 
bromide 31 (eq 1). Under our optimized conditions for this 
substrate, the catalytic alkoxycarbonylation delivered n-butyl 
ester 32 in moderate yield as a mixture of diastereomers (53% 
isolated yield, 1.4:1 dr). The mild, catalytic transformation is 
successful in the presence of ketone functionality, which would 
present challenges in classical carboxylation using stoichio-
metric organometallic reagents.4e   
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The potential for palladium to react with alkyl electrophiles 

via both two-electron (SN2) and single-electron pathways opens 
the door to a number of possible pathways for the catalytic 
alkoxycarbonylation.8,12 Our initial mechanistic studies com-
menced with reaction of alkenyl radical clock substrate 33. Un-
der our reaction conditions, substituted cyclopentane ester 34 
was the sole product, in which 5-exo cyclization preceded the 
carbonylation step. Importantly, the diastereoselectivity ob-
served in the reaction is similar to reported free radical cycliza-
tions of similar substrates (Scheme 1).3b,13 In addition, primary 
alkyl bromides failed to carbonylate under our conditions de-
spite the known faster rate for SN2 oxidative addition of these 
substrates.11,12b These results are both consistent with the partic-
ipation of radical intermediates in the carbonylation process.  

In order to uncover further details regarding the radical na-
ture of the reaction, we studied the effect of radical inhibitors 
and varying pressures of carbon monoxide (Scheme 1). Reac-
tions performed in the presence of radical inhibitors BHT and 
hydroquinone provided esters with only a modest decrease in 
yield (52% and 57% yield, respectively).14 These results are con-
sistent with a metal-catalyzed process involving tightly associated 
or caged radical intermediates instead of a purely free radical 
carbonylation with no metal involvement.15 Furthermore, in 
contrast to standard, high-pressure free radical carbonylation,4a-c 
we found that the efficiency of the catalytic process decreased 
with increasing pressures of carbon monoxide. This observation 
is consistent with the necessity of an open coordination site on 
the palladium center in an inner-sphere substrate activation 
step, and provides evidence against an outer-sphere electron 
transfer.8 The high oxidation potential of alkyl bromides (∼2.5 
V versus SCE)16 disfavors an outer-sphere electron transfer 
mechanism as well. We currently favor an activation involving 
bromine atom abstraction by the palladium center.8 Finally, the 
carbonylation of an enantioenriched form of substrate 1 (96% 
ee) stopped at partial conversion returned the substrate with no 
erosion of enantiopurity, consistent with an irreversible activa-
tion step.11  

Scheme 1. Studies Probing the Reaction Mechanism 
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   A mechanistic proposal consistent with our current studies 
is depicted in Scheme 2. The palladium catalyst irreversibly 
abstracts a bromine atom from the substrate (1), generating a 
carbon-centered radical (35) and a palladium(I) intermediate. 
This step is followed either by radical addition to a bound CO 
ligand, or CO migratory insertion of a putative alkylpalladi-
um(II) intermediate formed by recombination of the carbon-
centered radical and the catalyst. Both of these potential path-
ways have been proposed in carbonylation catalysis,17 and fur-
ther studies are required to distinguish between the two possi-
bilities. Either of these two mechanistic variants delivers an 
acylpalladium(II) species (36) which, upon nucleophilic dis-
placement by butoxide, furnishes the product ester 2.  

Scheme 2. Plausible Catalytic Cycle for the Alkoxycarbonyla-
tion 
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In conclusion, we have developed a mild, low-pressure palla-

dium-catalyzed alkoxycarbonylation applicable to diverse unac-
tivated alkyl bromides. Employing a strongly donating NHC 
ligand enabled the development of a catalytic, fundamental C–
C bond-forming transformation with simple alkyl halide build-
ing blocks which previously required harsh conditions, more 
reactive iodide substrates, and high pressures of carbon monox-
ide. Mechanistic investigations support a proposed hybrid or-
ganometallic-radical pathway instead of more common two-
electron transformations.  Applications in complex organic 
synthesis and the development of enantioselective variants of 
the current reactions are underway.  
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