

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 12 (2004) 1101-1109

Synthesis of D- and L-apio nucleoside analogues with 2'-hydroxyl group as potential anti-HIV agents

Dong Zhe Jin,^a Sung Hee Kwon,^b Hyung Ryong Moon,^c Prashantha Gunaga,^b Hea Ok Kim,^b Dae-Kee Kim,^b Moon Woo Chun^{a,*} and Lak Shin Jeong^b

> ^aCollege of Pharmacy, Seoul National University, Seoul 151-742, South Korea ^bCollege of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea ^cCollege of Pharmacy, Pusan National University, Pusan 609-735, South Korea

> > Received 13 October 2003; accepted 4 December 2003

Abstract—The present work describes the asymmetric synthesis of D- and L-apio-2',3'-dideoxynucleoside analogues, 4 and 5 with 2'-hydroxyl group via a common intermediate 9, starting from D-galactose. Stereoselective dihydroxylation and deoxygenation through radical inversion were successfully employed to synthesize the key intermediate 12 with D-apio structure, while stereoselective hydroboration-oxidation was used for the synthesis of another key intermediate 18 with L-apio structure. \bigcirc 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A number of nucleoside derivatives have been designed, synthesized and evaluated for the development of antiviral and antitumor agents. Particularly, 2',3'-unsubstituted-2',3'-dideoxynucleosides (ddNs) have exhibited potent antiviral activity against human immunodeficiency virus (HIV), among which 2',3'-dideoxycytidine (1, ddC, zalcitabine)¹ is one of the most potent anti-HIV agent and is being clinically used for the treatment of AIDS patients (Fig. 1).

However, ddC (1) has side effects such as peripheral neuropathy resulting from the inhibition of mitochondrial DNA^2 and appearance of the resistant strains.

Thus, as a part of worldwide efforts to look for antiviral agents with more potent anti-HIV activity and less side effects than ddC, iso- and apio-dideoxynucleosides (iso-ddNs **2** and apio-ddNs **3**) in which base and 4'-hydroxyl group are moved to 2' and 3' position, respectively have been designed and synthesized by several groups including our laboratory.^{3,4a,4d–4g} However, these nucleosides were less potent than ddC (1), although they were not reported to show peripheral neuropathy.^{4a,5}

Keywords: Apio nucleotides; Antiviral; Stereoselective.

* Corresponding author. Tel.: +82-2-880-7847; fax: +82-2-888-0649; e-mail: mwchun@snu.ac.kr

Therefore, in order to increase anti-HIV activity of apio-ddNs 3, we designed and synthesized D- and Lapio cytidines, 4 and 5 with 2'-hydroxyl group in the hope that the 2'-hydroxyl group might play an important role in binding affinity to their target enzyme, reverse transcriptase and kinases required for their activation into triphosphates as 3'-hydroxyl group of normal substrate, 2'-deoxycytidine does. For the synthesis of the desired D- and L-apio nucleosides 4 and 5, we employed highly stereoselective dihydroxylation, deoxygenation of *tert*-hydroxyl group, and hydroborationoxidation as key steps, starting from carbohydrate template, D-galactose and evaluated them for anti-HIV activity. Here, we wish to report the asymmetric synth-

Figure 1. The rationale for the design of the target nucleosides.

0968-0896/\$ - see front matter 0 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2003.12.002

esis of D- and L-apio ddC analogues 4 and 5 and their anti-HIV activity.

2. Results and discussion

A strategy for the synthesis of D- and L-apio ddC analogues 4 and 5 is illustrated in Scheme 1.

It was envisioned that the olefin 6 could be an appropriate common key intermediate to give access to the target nucleosides 4 and 5. Starting from the olefin 6 which can be prepared from D-galactose, stereoselective dihydroxylation followed by stereoselective deoxygenation would produce D-apio sugar intermediate, while regio- and stereoselective hydroboration-oxidation would afford L-apio sugar intermediate.

D-Apio ddC analogue 4 was synthesized starting from D-galactose, as shown in Scheme 2. The apio sugar 7 was prepared from D-galactose according to the known method.⁶ Oxidation of 7 with PCC followed by treatment of the resulting ketone 8 with methyl triphenylphosphonium bromide in the presence of NaH and t-amyl alcohol gave the olefin 9, which can be utilized for the synthesis of both D- and L-apio ddNs. Stereoselective cis-dihydroxylation of 9 with catalytic amount of OsO4 and NMO was occurred due to the steric effect of 1,2-isopropylidene group to yield diol 10. Primary hydroxyl group of compound 10 was regioselectively benzylated using organotin chemistry to afford monobenzyl ether 11. Treatment of 11 with NaH, CS₂ and MeI gave the xanthate, which was subjected to the deoxygenation (Et₃B and Bu₃SnH)⁷ to give 12 with D-apio skeleton through inversion of stereochemistry at

Scheme 1. Retrosynthetic analysis of the target nucleosides 4 and 5.

Scheme 2. Reagents: (a) PCC, 4A MS, CH₂Cl₂, rt, overnight, 68%; (b) CH₃PPh₃Br, NaH, *t*-amyl alcohol, THF, rt, 2 h, 80%; (c) OsO₄, NMO, acetone: H₂O (4:1), rt, 4 h, 98%; (d) *n*-Bu₂SnO, toluene, 140 °C, 2 h and then, *n*-Bu₄NBr, BnBr, 90–100 °C, overnight, 73%; (e) (i) NaH, THF, rt, 1 h and then, CS2, MeI, rt, 1 h; (ii) *n*-Bu₃SnH, Et3B, benzene, rt, 3 h, 70% from **11**; (f) *p*-TsOH, MeOH, rt, overnight, 75%; (g) Ac₂O, DMAP, pyridine, rt, 1 h, 86%; (h) silylated N4-benzoylcytosine, TMSOTf, CH₃CN, rt, overnight; (i) BCl₃, CH₂Cl₂, -78 °C, 2 h; (j) Ac₂O, pyridine, rt, overnight, 52% from **15a**; (k) K₂CO₃, MeOH, CH₂Cl₂, -5 °C, 40 min, 70%; (l) NaOMe, MeOH, rt, overnight, 92%.

C3-position. Acid-catalyzed methanolysis of 12 using p-TsOH in methanol produced methyl glycosides 13, which were acetylated to give the glycosyl donor 14. Condensation of 14 with silvlated N^4 -benzoylcytosine in the presence of TMSOTf afforded β -anomer 15a (71%) and α -anomer 15b (12%) after silica gel column chromatography. As in our previous report,⁸ the neighboring group effect by 2-acetoxy group in compound 14 was not large, when compared to that in 3-deoxy-2ribosyl acetate, because of the repulsive effect between exomethylene group and incoming silvlated N^4 -benzoylcytosine nucleophile. Anomeric configurations were assigned on the basis of ¹H NOE experiments between 1'-H and exomethylene's H on the protected nucleosides, 15a and 15b. A NOE (0.65%) of β -anomer 15a was smaller than that (2.25%) of α -anomer 15b. Treatment of 15a with BCl₃ at $-78 \,^{\circ}$ C produced the mixture of monoacetate 16a and diol 16b, which without further purification was acetylated with acetic anhydride in pyridine to give diacetate 16c. The diacetate 16c was chemoselectively deblocked in the presence of benzamide, using K_2CO_3 in a solution of methanol and methylene chloride at -5 °C to give the diol 17 (70%). D- β -Apio ddC analogue 4⁹ was finally obtained after the removal of benzoyl group of 17 with NaOMe.

The synthesis of L-apio ddC analogues 5 and its α -anomer 5a is depicted in Scheme 3. The same intermediate 9 used for the synthesis of D-apio ddC analogue 4 was treated with 9-BBN. Hydroboration was regioand stereoselectively occurred at the opposite side to the 1,2-isopropylidene group of 9 to afford borate, which was successively oxidized with NaBO₃ to give 18 with Lapio skeleton. Benzyl protection of 18 as benzyl ether 19 followed by methanolysis under acid conditions gave 20. The secondary hydroxyl group of 20 was protected with benzyl chloride to give methyl glycosides 21, which were ready for the condensation with N^4 -benzoylcytosine. Unfortunately, coupling of **21** with N^4 -benzoylcytosine in the presence of TMSOTf produced very small amounts of the desired nucleoside and two other major UV absorbing spots on TLC. ¹H NMR spectra of the two major spots showed the presence of methoxy group and cytosine, indicating that condensation was occurred with ring-opened intermediate 21a generated from the binding of Lewis acid (TMSOTf) to the ring oxygen of 21, giving a diastereomeric mixture of ring-opened product **21b** (Scheme 4).

It is worthy to note that condensation of methyl glycosides 14 afforded the desired cyclic nucleoside 15a without giving a ring-opened nucleoside, probably due to electron withdrawing effect by 2-acetoxy group. Thus, to remove the formation of 21b, electron-donating methoxy group of 21 was converted to the electronwithdrawing acetoxy group in two steps to give the acetate 23. As expected, coupling of 23 with N^4 benzoylcytosine afforded a mixture of the desired nucleosides, 24a (22%) and 24b (43%). Higher yield of α -anomer over β -anomer appears to be due to the steric hindrance by 2-*O*-benzyl group. Anomeric configurations were assigned based on the ¹H NOE experiments between 1'-H and 3'-H on the protected nucleosides, 24a and 24b. A NOE (2.05%) of β -anomer 24a was larger

Scheme 3. Reagents: (a) 9-BBN, THF, 0 °C, 3 h and then, NaBO₃, H₂O, rt, overnight, 70%; (b) BnBr, NaH, *n*-Bu4NI, THF, rt, overnight, 90%; (c) *p*-TsOH, MeOH, rt, 2 d, 97%; (d) BnBr, NaH, *n*-Bu4NI, THF, rt, overnight, 98%; (e) 8 N HCl, H₂O:1,4-dioxane (1:2), rt, 2 d, 95%; (f) Ac₂O, pyridine, rt, overnight, 93%; (g) silylated N⁴-benzoylcytosine, TMSOTf, ClCH₂CH₂Cl, -35 °C, 1 h; (h) BCl₃, CH₂Cl₂, -78 °C, 30 min, 68% for 25a, 70% for 25b; (i) NaOMe, MeOH, rt, overnight, 97% for 5, 81% for 5a.

Scheme 4. Ring-opened product 21b formed during condensation of 21 with cytosine.

than that (0.36%) of α -anomer **24b**. Removal of benzyl group of **24a** and **24b** with BCl₃ at -78 °C followed by debenzoylation with NaOMe produced L- β -apio ddC analogue **5** and its α -anomer **5a**,^{9a} respectively.

The antiviral activity of D- and L-apio ddC analogues 4, 5 and 5a was evaluated against HIV-1 in MT-4 cells. However, all compounds showed neither significant anti-HIV activity nor cytotoxicity up to 100 μ M. Lack of antiviral activity of the synthesized nucleosides may be attributed to the poor affinity to cellular kinases, not being converted into their triphosphates.

In summary, asymmetric synthesis of D- and L-apio ddC analogues 4 and 5 was achieved, using three stereoselective dihydroxylation, deoxygenation, and hydroboration-oxidation as key steps from the common intermediate 9. These stereoselective reactions may be widely applied in the nucleoside chemistry. Chemoselective deprotection of acetyl group in the presence of the benzoyl group, poor neighboring group effect by 2-acetoxy group of apio-sugar and generation of ringopened nucleosides may also provide nucleoside chemists with useful information.

3. Experimental

3.1. (3*aR*,6*aS*)-2,2-Dimethyl-dihydro-furo[2,3-*d*][1,3]dioxol-6-one (8)

To a suspension of PCC (21.6 g, 100.2 mmol) and 4 Å molecular sieves (16.7 g, 0.5 g/1.0 mmol) in CH_2Cl_2 (330 mL) was added a solution of 7 (5.35 g, 33.4 mmol) in CH₂Cl₂ (40 mL) at 0 °C and the mixture was stirred at room temperature overnight. Diethyl ether and Celite were added to the mixture and stirred for 1 h. The whole mixture was filtered through a short pad of silica gel and Celite and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 2:1) to give 8 (3.6 g, 68%) as a hygroscopic white solid: ¹H NMR (CDCl₃) δ 1.37 (s, 3H, CH₃), 1.46 (s, 3H, CH₃), 4.06 (d, 1H, J = 17.2 Hz, 5-H_a), 4.31 (dd, 1H, J=0.8, 4.4 Hz, 6a-H), 4.34 (dd, 1H, J=0.8, 17.2 Hz, 5-H_b), 6.05 (d, 1H, J = 4.4 Hz, 3a-H); ¹³C NMR (CDCl₃) δ 27.2, 27.5, 69.1, 75.9, 104.2, 114.4, 209.1. Anal. calcd for C₇H₁₀O₄: C, 53.16; H, 6.37. Found: C, 52.84; H, 6.39.

3.2. (3a*R*,6a*R*)-2,2-Dimethyl-6-methylene-tetrahydrofuro[2,3-*d*][1,3]dioxole (9)

To a suspension of methyltriphenylphosphonium bromide (24.4 g, 68.28 mmol) and t-amyl alcohol (8.2 mL, 75.10 mmol) in dry THF (200 mL) was added NaH (3.1 g, 77.38 mmol, 60% in mineral oil) at 0°C and the reaction mixture was stirred at room temperature for 2 h. To this yellow ylide was added a solution of 8 (3.6 g, 22.76 mmol) in dry THF (20 mL) dropwise at 0 °C and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution and extracted with EtOAc. The organic layer was washed with water, dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 7:1) to give 9 (2.84 g, 80%) as a colorless oil: ¹H NMR (CDCl₃) δ 1.37 (s, 3H, CH₃), 1.52 (s, 3H, CH₃), 4.31 (m, 1H, 5-H_a), 4.64 (m, 1H, 5-H_b), 4.84 (m, 1H, 6a-H), 5.19 (m, 1H, vinylic H_a), 5.38 (m, 1H, vinylic H_b), 5.86 (d, 1H, J = 10 Hz, 3a-H). Anal. calcd for C₈H₁₂O₃: C, 61.52; H, 7.74. Found: C, 61.66; H, 7.59.

3.3. (-)-(3a*R*,6*S*,6a*R*)-6-Hydroxymethyl-2,2-dimethyl-tetrahydro-furo[2,3-*d*][1,3]dioxol-6-ol (10)

To a solution of 9 (2.5g, 16.04 mmol) in acetone (86 mL) and water (21 mL) were added osmium tetroxide (2 mL, 0.16 mmol, 2.5 wt%) and N-methyl morpholine-Noxide (19 mL, 97.31 mmol, 60 w/v%) at 0° C and the reaction mixture was stirred at room temperature for 4 h and then quenched with saturated aqueous $Na_2S_2O_3$ solution. The reaction mixture was extracted with EtOAc and the organic layer was washed with water, dried over ahnhydrous MgSO4, filtered, and evaporated. The residue was purified by silica gel column chromatography (methylene chloride:methanol = 10:1) to give 10 (2.99 g, 98%) as a white solid: mp $125 \,^{\circ}$ C; [α] $_{\rm D}^{25} = -37.4^{\circ}$ (c 0.91, MeOH); ¹H NMR (CD₃OD) δ 1.30 (s, 3H, CH₃), 1.46(s, 3H, CH₃), 3.63 (d, 1H, *J*=11.2 Hz, HOCHH), 3.73 (d, 1H, J=9.6 Hz, 5-H_a), 3.78 (d, 1H, J = 11.2 Hz, HOCHH), 3.88 (d, 1H, J = 9.6 Hz, 5-H_b), 4.32 (d, 1H, J = 3.6 Hz, 3-H), 5.90 (d, 1H, J = 3.6 Hz, 2-H); ${}^{13}C$ NMR (CD₃OD) δ 26.6, 27.4, 63.4, 74.9, 83.5, 85.6, 107.9, 113.7. Anal. calcd for C₈H₁₄O₅: C, 50.52; H, 7.42. Found: C, 50.79; H, 7.71.

3.4. (-)-(3a*R*,6*S*,6a*R*)-6-Benzyloxymethyl-2,2-dimethyltetrahydro-furo[2,3-*d*][1,3]dioxol-6-ol (11)

To a solution of **10** (2.58 g, 13.56 mmol) in toluene (100 mL) was added *n*-Bu₂SnO (5.5 g, 22.09 mmol) and the reaction mixture was heated at 140-150 °C for 2 h. After the oil bath was cooled to 90-100 °C, n-Bu₄NBr (2.2 g, 6.82 mmol) and benzyl bromide (2.5 mL, 21.01 mmol) were added to the reaction mixture. The reaction mixture was heated at 90-100 °C overnight and evaporated to give the residue, which was purified by silica gel column chromatography (hexane:ethyl acetate = 2:1) to give 11 (2.77 g, 73%) as a white solid: mp 62°C; $[\alpha]_{D}^{25} = -29.4^{\circ} (c \ 1.26, \text{CHCl}_3); {}^{1}\text{H NMR} (\text{CDCl}_3) \delta 1.29$ (s, 3H, CH₃),1.45 (s, 3H, CH₃), 2.74 (br s, 1H, OH), 3.51 (d, 1H, J=9.6 Hz, BnOCHH), 3.77 (d, 1H, J=9.6 Hz, BnOCHH), 3.80 (d, 1H, J = 9.6 Hz, 5-H_a), 3.85 (d, 1H, J = 9.6 Hz, 5-H_b), 4.32 (d, 1H, J = 3.6 Hz, 3-H), 4.55 (d, 1H, J = 12.0 Hz, benzylic H_a), 4.61 (d, 1H, J = 12.0Hz, benzylic H_b), 5.95 (d, 1H, J = 3.6 Hz, 2-H), 7.28– 7.34 (m, 5H, Ph); 13 C NMR (CDCl₃) δ 26.6, 27.2, 69.5, 73.9, 74.0, 81.5, 84.5, 106.4, 112.7, 127.9, 128.1, 128.7, 137.7. Anal. calcd for C₁₅H₂₀O₅: C, 64.27; H, 7.19. Found: C, 64.10; H, 7.15.

3.5. (-)-(3a*R*,6*S*,6a*R*)-6-Benzyloxymethyl-2,2-dimethyl-tetrahydro-furo[2,3-*d*][1,3]dioxole (12)

To a solution of 11 (2.77 g, 9.88 mmol) in dry THF (60 mL) was added 60% NaH (1.18 g, 29.64 mmol) at -5° C and the reaction mixture was stirred at room temperature for 1 h. To this mixture were added CS_2 (8.8 mL, 148.2 mmol) and MeI (19 mL, 296.4 mmol) and the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was evaporated to give crude xanthate, which was used for the next step without further purification. To a solution of the xanthate in dry benzene (60 mL) were added triethylborane (14.8 mL, 14.80 mmol, 1.0 M solution in hexane) and *n*-Bu₃SnH (4 mL, 14.8 mmol) at room temperature and the mixture was stirred at the same temperature for 3 h. The reaction mixture was quenched with water, extracted with EtOAc, dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 7.5:1) to give 12 (1.82 g, 70%) as a colorless oil: $[\alpha]_{D}^{25} = -4.2^{\circ}$ (c 1.9, CHCl₃); ¹H NMR (CDCl₃) δ 1.29 (s, 3H, CH₃), 1.45 (s, 3H, CH₃), 2.39–2.46 (m, 1H, 4-H), 3.50 (dd, 1H, J=7.6, 9.2 Hz, BnOCHH), 3.67 (dd, 1H, J=8.4, 10.8 Hz, 5-H_a), 3.76 (dd, 1H, J = 6.8, 9.2 Hz, BnOCHH), $3.99 (dd, 1H, J = 7.2, 8.4 Hz, 5-H_b), 4.48 (d, 1H, J = 12.0$ Hz, benzylic H_a), 4.53 (d, 1H, J = 12.0 Hz, benzylic H_b), 4.63 (t, 1H, J = 4.0 Hz, 3-H), 5.81 (d, 1H, J = 4.0 Hz, 2-H), 7.26–7.32 (m, 5H, Ph); ¹³C NMR (CDCl₃) δ 26.4, 26.6, 44.8, 66.6, 69.3, 73.4, 80.2, 106.4, 111.9, 127.7, 127.8, 128.5, 138.3. Anal. calcd for C₁₅H₂₀O₄: C, 68.16; H, 7.63. Found: C, 67.97; H, 7.67.

3.6. (*2RS*, *3R*, *4S*)-4-Benzyloxymethyl-2-methoxy-tetrahydro-furan-3-ol (13)

A solution of **12** (1.8 g, 6.80 mmol) and p-TsOH (647 mg, 3.40 mmol) in methanol (40 mL) was stirred at

room temperature overnight, neutralized with triethylamine and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 1.5:1) to give **13** (1.22 g, 75%) as a colorless oil: ¹H NMR (CDCl₃) δ 2.67–2.75 (m, 1H, 4-H), 3.32 (s, 3H, OCH₃), 3.71 (d, 2H, J=5.6 Hz, BnOCH₂), 3.87 (t, 1H, J=8.4 Hz, 5-H_a), 4.00 (t, 1H, J=8.4 Hz, 5-H_b), 4.21 (d, 1H, J=4.8 Hz, 3-H), 4.49 (d, 1H, J=12.0 Hz, benzylic H_a), 4.54 (d, 1H, J=12.0 Hz, benzylic H_b), 4.81 (s, 1H, 2-H), 7.28–7.34 (m, 5H, Ph). Anal. calcd for C₁₃H₁₈O₄: C, 65.53; H, 7.61. Found: C, 65.52; H, 7.91.

3.7. Acetic acid (2*RS*,3*R*,4*S*)-4-benzyloxymethyl-2-methoxy-tetrahydro-furan-3-yl ester (14)

To a solution of 13 (1.36 g, 5.39 mmol) in pyridine (10 mL) were added acetic anhydride (1.53 g, 16.17 mmol) and 4-(dimethylamino)pyridine (100 mg) at 0 °C and the reaction mixture was stirred at room temperature for 1 h. The reaction mixture was evaporated, and partitioned between ethyl acetate and dilute HCl. The organic layer was dried over anhydrous MgSO₄, filtered and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 5:1) to give 14 (1.38 g, 86%) as a colorless oil: ¹H NMR (CDCl₃) δ 1.99 (s, 3H, OCOCH₃), 2.91–2.98 (m, 1H, 4-H), 3.33 (s, 3H, OCH₃), 3.44 (dd, 1H, J = 7.6, 9.6 Hz, BnOCHH), 3.60 (dd, 1H, J=7.6, 9.6 Hz, BnOCHH), 3.77 (t, 1H, J=8.4 Hz, 5-H_a), 4.13 (t, 1H, J=8.4 Hz, 5- H_b), 4.45 (d, 1H, J=12.0 Hz, benzylic H_a), 4.50 (d, 1H, J = 12.0 Hz, benzylic H_b), 4.82 (s, 1H, 2-H), 5.14 (d, 1H, J = 3.2 Hz, 3-H), 7.27–7.35 (m, 5H, Ph). Anal. calcd for C₁₅H₂₀O₅: C, 64.27; H, 7.19. Found: C, 64.41; H, 7.27.

3.8. Acetic acid (2*R*,3*R*,4*S*)- and (2*S*,3*R*,4*S*)-2-(4-benzoylamino-2-oxo-2*H*-pyrimidin-1-yl)-4-benzyloxymethyltetrahydro-furan-3-yl ester (15a and 15b)

A suspension of N^4 -benzoylcytosine (1.18 g, 5.50 mmol) and ammonium sulfate (catalytic amount) in hexamethyldisilazane (HMDS, 15 mL) was heated at 150-160 °C overnight to give a clear solution. The reaction mixture was cooled to room temperature and HMDS was removed under anhydrous condition in vacuo. To a solution of the residue in dry acetonitrile (15 mL) were added a solution of 15 (1.03 g, 3.67 mmol) in dry acetonitrile (5 mL) and TMSOTf (1 mL, 5.5 mmol) at 0 °C and the reaction mixture was stirred at room temperature overnight. After quenched with saturated aqueous NaHCO₃ solution, the reaction mixture was filtered through a Celite and the filtrate was partitioned between methylene chloride and water. The organic layer was dried over anhydrous MgSO₄, filtered and evaporated. The residue was purified by silica gel column chromatography (methylene chloride:methanol = 40:1) to give β -isomer 15a (1.2 g, 71%) as a white solid and α -isomer **15b** (0.2 g, 12%) as a white solid.

β-isomer **15a**: UV (CH₂Cl₂) λ_{max} 259 nm; ¹H NMR (CDCl₃) δ 2.08 (s, 3H, OCOCH₃), 2.69–2.75 (m, 1H, 4-H), 3.45 (dd, 1H, J=8.0, 8.8 Hz, BnOCHH), 3.66 (dd, 1H, J=5.6, 8.8 Hz, BnOCHH), 4.08 (t, 1H, J=9.2 Hz, 5-H_a), 4.47 (s, 2H, benzylic CH₂), 4.52 (t, 1H, J=9.2

Hz, 5-H_b), 5.60 (d, 1H, J=5.6 Hz, 3-H), 5.93 (dd, 1H, J=1.6, 5.6 Hz, 2-H), 7.28–8.02 (m, 12H, 2*Ph, H-5, H-6). Anal. calcd for C₂₅H₂₅N₃O₆: C, 64.79; H, 5.44; N, 9.07. Found: C, 64.65; H, 5.60; N, 9.02.

α-isomer **15b**: ¹H NMR (CDCl₃) δ 2.07 (s, 3H, OCOCH₃), 2.69–2.75 (m, 1H, 4-H), 3.45 (dd, 1H, J=7.2, 9.2 Hz, BnOCHH), 3.64 (dd, 1H, J=6.0, 9.2 Hz, BnOCHH), 4.05 (t, 1H, J=9.2 Hz, 5-H_a), 4.47 (s, 2H, benzylic CH₂), 4.53 (t, 1H, J=9.2 Hz, 5-H_b), 5.64 (dd, 1H, J=0.8, 5.2 Hz, 3-H), 5.83 (d, 1H, J=0.8 Hz, 2-H), 7.26–8.12 (m, 12H, 2*Ph, H-5, H-6). Anal. calcd for C₂₅H₂₅N₃O₆: C, 64.79; H, 5.44; N, 9.07. Found: C, 64.52; H, 5.73; N, 8.86.

3.9. Acetic acid (2*R*,3*R*,4*S*)-4-acetoxymethyl-2-(4-benzoylamino-2-oxo-2*H*-pyrimidin-1-yl)-tetrahydro-furan-3yl ester (16c)

To a solution of 15a (0.96 g, 2.08 mmol) in anhydrous methylene chloride (15 mL) was added boron trichloride (20 mL, 20.0 mmol, 1.0 M solution in methylene chloride) at -78 °C and the mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with methanol, neutralized with pyridine and evaporated. Without further purification, the residue was dissolved in pyridine (15 mL) and acetic anhydride (4 mL, 41.6 mmol) at 0 °C and the reaction mixture was stirred at room temperature overnight and evaporated. The residue was partitioned between methylene chloride and water, and the organic layer was washed with dilute HCl, dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (methylene chloride:methanol = 40:1) to give 16c (0.45 g, 52%) as a white solid: UV (CH₂Cl₂) λ_{max} 259 nm; ^IH NMR (CDCl₃) δ 1.99 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃), 2.77-2.84 (m, 1H, 4-H), 3.96 (t, 1H, J = 9.2 Hz, 5-H_a), 4.01 (dd, 1H, J = 7.2, 11.2 Hz, AcOCHH), 4.21 (dd, 1H, J=7.2, 11.2 Hz, AcOCHH), 4.45 (t, 1H, J = 8.4 Hz, 5-H_b), 5.66 (dd, 1H, J=1.6, 5.6 Hz, 3-H), 5.82 (d, 1H, J=1.6 Hz, 2-H), 7.45 (br t, 2H, J=7.2, meta's H), 7.54–7.56 (m, 2H, para's H, H-5), 7.74 (d, 1H, J = 7.6 Hz, H-6), 7.90 (br d, 2H, J = 8.0Hz, ortho's H). Anal. calcd for $C_{20}H_{21}N_3O_7$: C, 57.83; H, 5.10; N, 10.12. Found: C, 58.00; H, 5.12; N, 9.99.

3.10. (-)-4-Amino-1-((2*R*,3*R*,4*S*)-3-hydroxy-4-hydroxymethyl-tetrahydro-furan-2-yl)-1*H*-pyrimidin-2-one (4)

To a solution of **16c** (450 mg, 1.08 mmol) in methanol (20 mL) and methylene chloride (5 mL) was added potassium carbonate (600 mg, 4.33 mmol) at -5° C and the reaction mixture was stirred at the same temperature for 40 min. After neutralized with acetic acid, the reaction mixture was filtered through a short pad of silica gel and Celite, and evaporated. The residue was purified by silica gel column chromatography (methylene chloride:methanol=30:1) to give **17** (250 mg, 70%) as a white solid: UV (MeOH) λ_{max} 258 nm; ¹H NMR (CD₃OD) δ 2.32–2.38 (m, 1H, 4-H), 3.70 (dd, 1H, J=6.8, 10.8 Hz, HOCHH), 3.88 (dd, 1H, J=6.8, 10.8 Hz, HOCHH), 4.03 (dd, 1H, J=8.4, 10.8 Hz, 5-Ha), 4.38 (d, 1H, J=4.4 Hz, 3-H), 4.49 (t, 1H, J=8.4 Hz, 5-

H_b), 5.79 (s, 1H, 2-H), 7.53–7.99 (m, 6H, Ph, H-5), 8.10 (d, 1H, J=7.6 Hz, H-6). To a solution of 17 (27 mg, 0.08 mmol) in methanol (3 mL) was added 0.1 M NaOMe solution (0.08 mL, 0.008 mmol) and the reaction mixture was stirred at room temperature overnight. After neutralized with acetic acid, the reaction mixture was evaporated and the residue was purified by silica gel column chromatography (methylene chloride:methanol=4:1) to give 4 (17 mg, 92%) as a white solid after crystallizaton from diethyl ether and methanol. The spectroscopic data was identical with those of authentic sample.^{9c} Anal. calcd for C₉H₁₃N₃O₄: C, 47.57; H, 5.77; N, 18.49. Found: C, 47.48; H, 5.89; N, 18.46

3.11. (-)-((3a*R*,6*R*,6a*R*)-2,2-Dimethyl-tetrahydro-furo[2,3*d*][1,3]dioxol-6-yl)-methanol (18)

To a solution of 9 (10.0 g, 64.02 mmol) in dry THF (400 mL) was added 9-BBN (512 mL, 256 mmol, 0.5 M solution in THF) dropwise at 0°C and the reaction mixture was stirred at the same temperature for 3 h. A solution of sodium perborate (59.0 g, 384.12 mmol) in water (170 mL) were added to the mixture and this mixture was stirred at room temperature overnight, extracted with EtOAc, dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = $\tilde{2}$:1) to give **18** (7.8 g, $\tilde{70\%}$) as a white solid: $[\alpha]_D^{25} = -34.2^{\circ}$ (*c* 1.11, CHCl₃); ¹H NMR (CDCl₃) δ 1.34 (s, 3H, CH₃), 1.53 (s, 3H, CH₃), 2.09 (t, 1H, J=5.6 Hz, OH), 2.30-2.36 (m, 1H, 6-H), 3.85-3.90 (m, 3H, 5-H_a, HOC H_2), 4.96 (t, 1H, J=8.0 Hz, 5-H_b), 4.73 (t, 1H, J = 4.0 Hz, 6a-H), 5.87 (d, 1H, J = 3.6 Hz, 3a-H); ¹³C NMR (CDCl₃) δ 26.4, 26.7, 46.1, 59.1, 68.0, 81.2, 106.5, 122.2. Anal. calcd for C₈H₁₄O₄: C, 55.16; H, 8.10. Found: C, 55.20; H, 8.23.

3.12. (-)-(3aR,6R,6aR)-6-Benzyloxymethyl-2,2-dimethyltetrahydro-furo[2,3-d][1,3] dioxole (19)

To a suspension of 60% NaH (273 mg, 6.82 mmol) and *n*-Bu₄NI (140 mg, 0.37 mmol) in anhydrous THF (20 mL) was added a solution of 18 (645 mg, 3.79 mmol) in anhydrous THF (5 mL) slowly at 0 °C and the reaction mixture was stirred 0°C for 20 min and then at room temperature for 30 min. After cooled to 0°C, the reaction mixture was treated with benzyl bromide (0.49 mL, 4.16 mmol). The reaction mixture was stirred at room temperature overnight and partitioned between EtOAc and water. The organic layer was dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 4:1) to give 19 (880 mg, 90%) as a yellowish oil: $[\alpha]_D^{25} = -27.9^\circ$ (c 2.26, CHCl₃); ¹H NMR (CDCl₃) δ 1.31 (s, 3H, CH₃), 1.48 (s, 3H, CH₃), 2.41–2.46 (m, 1H, 6-H), 3.51 (dd, 1H, J=7.6, 9.2 Hz, BnOCHH), 3.69 (dd, 1H, J=8.0, 11.2 Hz, 5-H_a), 3.78 (dd, 1H, J=7.2, 9.2 Hz, BnOCHH), 4.01 (dd, 1H, J=7.2, 8.4 Hz, 5-H_b), 4.50 (d, 1H, J=12.0 Hz, benzylic H_a), 4.54 (d, 1H, J = 12.0 Hz, benzylic H_b), 4.64 (t, 1H, J = 3.6 Hz, 6a-H), 5.83 (d, 1H, J = 3.6 Hz, 3a-H), 7.28–7.34 (m, 5H, Ph). Anal. calcd for C₁₅H₂₀O₄: C, 68.16; H, 7.63. Found: C, 68.40; H, 7.74.

3.13. (2*RS*,3*R*,4*R*)-4-Benzyloxymethyl-2-methoxy-tetrahydro-furan-3-ol (20)

A solution of **19** (880 mg, 3.33 mmol) and *p*-TsOH (317 mg, 1.66 mmol) in methanol (30 mL) was stirred at room temperature for 2 d. The reaction mixture was neutralized with triethylamine and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 3:1) to give **20** (770 mg, 97%) as a colorless oil: ¹H NMR (CDCl₃) δ 2.68–2.75 (m, 1H, 3-H), 3.32 (s, 3H, OCH₃), 3.68–3.71 (m, 2H, BnOC*H*₂), 3.86 (t, 1H, *J*=8.4 Hz, 5-H_a), 4.01 (t, 1H, *J*=8.8 Hz, 5-H_b), 4.21 (t, 1H, *J*=4.8 Hz, 3-H), 4.50 (d, 1H, *J*=12.0 Hz, benzylic H_a), 4.55 (d, 1H, *J*=12.0 Hz, benzylic H_b), 4.81 (s, 1H, 2-H), 7.28–7.34 (m, 5H, Ph). Anal. calcd for C₁₃H₁₈O₄: C, 65.53; H, 7.61. Found: C, 65.85; H, 7.71.

3.14. (*2RS*, 3*R*, 4*R*)-3-Benzyloxy-4-benzyloxymethyl-2-methoxy-tetrahydro-furan (21)

To a suspension of 60% NaH (1.36 g, 34.0 mmol) and n-Bu₄NI (0.7 g, 1.89 mmol) in anhydrous THF (35 mL) was added a solution of **20** (4.5 g, 18.89 mmol) in anhydrous THF (15 mL) slowly at 0 °C and the reaction mixture was stirred 0 °C for 20 min and then at room temperature for 30 min. After cooled to 0 °C, the reaction mixture was treated with benzyl bromide (0.49 mL, 4.16 mmol). The reaction mixture was stirred at room temperature overnight and partitioned between EtOAc and water. The organic layer was dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 6:1) to give **21** (6.1 g, 98%) as a colorless oil.

3.15. Major isomer

¹H NMR (CDCl₃) δ 2.79–2.86 (m, 1H, 4-H), 3.32 (s, 3H, OCH₃), 3.55 (dd, 1H, *J*=7.6, 9.2 Hz, BnOCHH), 3.77 (dd, 1H, *J*=6.8, 9.2 Hz, BnOCHH), 3.82 (t, 1H, *J*=8.4 Hz, 5-H_a), 3.96 (d, 1H, *J*=5.2 Hz, 3-H), 4.08 (t, 1H, *J*=8.4 Hz, 5-H_b), 4.51 (s, 2H, benzylic CH₂), 4.53 (d, 1H, *J*=12.0 Hz, benzylic H_a), 4.63 (d, 1H, *J*=12.0 Hz, benzylic H_a), 4.63 (d, 1H, *J*=12.0 Hz, benzylic H_b), 4.92 (s, 1H, 2-H), 7.28–7.34 (m, 10H, 2*Ph). Anal. calcd for C₂₀H₂₄O₄: C, 73.15; H, 7.37. Found: C, 73.10; H, 7.73.

3.16. Minor isomer

¹H NMR (CDCl₃) δ 2.58–2.67 (m, 1H, 4-H), 3.36 (s, 3H, OCH₃), 3.63 (dd, 1H, *J*=9.2, 9.6 Hz, BnOC*H*H), 3.78 (dd, 1H, *J*=4.8, 9.2 Hz, BnOCH*H*), 3.90 (dd, 1H, *J*=4.8, 9.2 Hz, 5-H_a), 3.95 (dd, 1H, *J*=4.8, 8.8 Hz, 3-H), 4.00 (t, 1H, *J*=8.8 Hz, 5-H_b), 4.47 (s, 2H, benzylic CH₂), 4.55 (d, 1H, *J*=12.4 Hz, benzylic H_a), 4.60 (d, 1H, *J*=12.4 Hz, benzylic H_b), 4.76 (d, 1H, *J*=4.4 Hz, 2-H), 7.25–7.31 (m, 10H, 2*Ph). Anal. calcd for C₂₀H₂₄O₄: C, 73.15; H, 7.37. Found: C, 73.29; H, 7.11.

3.17. (*2RS*,*3R*,*4R*)-**3**-Benzyloxy-**4**-benzyloxymethyl-tetrahydro-furan-2-ol (22)

A solution of **21** (6.4 g, 19.48 mmol) in aqueous 8 N HCl (22mL) and 1,4-dioxane (44 mL) was stirred at

room temperature for 2 d. After the reaction mixture was partitioned between water and EtOAc, the organic layer was washed with saturated aqueous NaHCO₃ solution, dried, filtered, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 2:1) to give 22 (5.3 g, recovery yield: 95%) as a colorless oil: ¹H NMR (CDCl₃) δ 2.55–2.62 (m, 1H, major's 4-H), 2.83-2.91 (m, 1H, minor's 4-H), 3.45 (dd, 1H, J=4.4, 9.2 Hz, major's BnOCHH), 3.53 (dd, 1H, J=7.6, 9.2 Hz, minor's BnOCHH), 3.65 (dd, 1H, J=4.0, 9.2 Hz, major BnOCHH), 3.74-3.80 (m, 2H, minor's BnOCHH, 5-H_a), 3.89 (dd, 1H, J=6.4, 8.8 Hz, major's 5-H_a), 3.93–3.98 (m, 2H, major's 5-H_b, minor's 5-H_b), 4.04 (dd, 1H, J=4.0, 8.4 Hz, major's 3-H), 4.17 (t, 1H, J=8.0 Hz, minor's 3-H), 4.50-4.56 (m, 6H, major's benzylic Ha, Hb, Hc, minor's Ha, Hb, Hc), 4.62 (d, 1H, J = 12.0 Hz, minor's benzylic H_d), 4.69 (d, 1H, J=12.0 Hz, major's benzylic H_d), 5.28 (br d, 1H, J=3.2 Hz, major's 2-H), 5.38 (s, 1H, minor's 2-H), 7.24–7.34 (m, 20H, major's 2*Ph, minor's 2*Ph). Anal. calcd for C₁₉H₂₂O₄: C, 72.59; H, 7.05. Found: C, 72.44; H, 7.23.

3.18. (2*RS*,3*R*,4*R*)-3-Benzyloxy-4-benzyloxymethyltetrahydro-furan-2-yl ester (23)

To a solution of **22** (5.3 g, 16.86 mmol) in pyridine (25 mL) was added acetic anhydride (5.2 mL, 50.58 mmol) at 0°C and the reaction mixture was stirred at room temperature overnight, and evaporated. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 4:1) to give **23** (5.6 g, 93%) as a colorless oil: ¹H NMR (CDCl₃) δ 2.01 (s, 3H, OCOCH₃), 2.55–2.65 (m, 1H, 4-H), 3.54 (dd, 1H, J=7.2, 8.8 Hz, BnOCHH), 3.75 (dd, 1H, J=7.2, 8.8 Hz, BnOCHH), 3.75 (dd, 1H, J=7.2, 8.8 Hz, BnOCHH), 3.82 (dd, 1H, J=8.0, 9.6 Hz, 5-H_a), 4.01 (d, 1H, J=5.2 Hz, 3-H), 4.20 (t, 1H, J=8.0 Hz, 5-H_b), 4.49 (d, 2H, J=1.6 Hz, benzylic CH₂), 4.53 (d, 1H, J=12.4 Hz, benzylic H_a), 4.71 (d, 1H, J=12.4 Hz, benzylic H_b), 6.22 (s, 1H, 2-H), 7.27–7.32 (m, 10H, 2*Ph). Anal. calcd for C₂₁H₂₄O₅: C, 70.77; H, 6.79. Found: C, 70.47; H, 6.81.

3.19. (+)-N-[1-((2S,3R,4R)-3-Benzyloxy-4-benzyloxymethyl-tetrahydro-furan-2-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-benzamide (24a) and (-)-N-[1-((2R,3R,4R)-3-Benzyloxy-4-benzyloxymethyl-tetrahydro-furan-2-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-benzamide (24b)

A suspension of N^4 -benzoylcytosine (6.0 g, 27.88 mmol) and ammonium sulfate (catalytic amount) in hexamethyldisilazane (HMDS, 40 mL) was heated at 150– 160 °C overnight to give a clear solution. The reaction mixture was cooled to room temperature and HMDS was removed under anhydrous condition in vacuo. To a solution of the residue in dry dichloroethane (40 mL) was added a solution of 23 (5.6 g, 15.71 mmol) in dry dichloroethane (10 mL) and TMSOTf (5.7 mL, 31.42 mmol) at -30 °C and the reaction mixture was stirred at the same temperature for 1 h. After quenched with saturated aqueous NaHCO₃ solution, the reaction mixture was filtered through a pad of Celite and the filtrate was partitioned between methylene chloride and water. The organic layer was dried over anhydrous MgSO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography (methylene chloride:methanol=20:1) to give β -isomer **24a** (1.8 g, 22%) as a white solid and α -isomer **24b** (3.4 g, 43%) as a white solid.

β-isomer **24a**: mp 127 °C; UV (CH₂Cl₂) λ_{max} 258 nm; [α]₂₅²⁵ = +89.1° (*c* 0.92, CHCl₃); ¹H NMR (CDCl₃) δ 2.78–2.87 (m, 1H, 4-H), 3.49 (dd, 1H, *J*=6.8, 9.2 Hz, BnOC*H*H), 3.66 (dd, 1H, *J*=8.0, 9.2 Hz, BnOC*HH*), 3.88 (dd, 1H, *J*=8.0, 11.2 Hz, 5-H_a), 4.16 (t, 1H, *J*=8.0 Hz, 5-H_b), 4.22 (d, 1H, *J*=11.6 Hz, benzylic H_a), 4.34 (d, 1H, *J*=11.6 Hz, benzylic H_b), 4.46 (s, 2H, benzylic CH₂), 4.47 (t, 1H, *J*=4.0 Hz, 3-H), 6.15 (d, 1H, *J*=3.2 Hz, 2-H), 7.01–7.53 (m, 15H, 3*Ph), 7.60 (d, 1H, *J*=7.2 Hz, H-5), 7.88 (d, 1H, *J*=7.2 Hz, H-6). Anal. calcd for C₃₀H₂₉N₃O₅: C, 70.43; H, 5.71; N, 8.21. Found: C, 70.26; H, 5.99; N, 8.04.

α-isomer **24b**: UV (CH₂Cl₂) λ_{max} 258 nm; [α]_D²⁵ = -62.8° (*c* 0.35, CHCl₃); ¹H NMR (CDCl₃) δ 2.35-2.42 (m, 1H, 4-H), 3.56 (dd, 1H, *J* = 7.2, 8.8 Hz, BnOC*H*H), 3.68 (dd, 1H, *J* = 6.8, 8.8 Hz, BnOC*HH*), 4.05 (dd, 1H, *J* = 4.4, 11.6 Hz, 5-H_a), 4.17 (d, 1H, *J* = 4.8 Hz, 3-H), 4.42 (s, 2H, benzylic CH₂), 4.44 (t, 1H, *J* = 8.8 Hz, 5-H_b), 4.79 (d, 1H, *J* = 12.0 Hz, benzylic H_a), 4.97 (d, 1H, *J* = 12.0 Hz, benzylic H_b), 6.05 (s, 1H, 2-H), 7.22-7.92 (m, 17H, 3*Ph, H-5, H-6). Anal. calcd for C₃₀H₂₉N₃O₅: C, 70.43; H, 5.71; N, 8.21. Found: C, 70.38; H, 5.60; N, 8.34.

3.20. (+)-N-[1-((2S,3R,4R)-3-Hydroxy-4-hydroxy-methyl-tetrahydro-furan-2-yl)-2-oxo-1,2-dihydro-pyr-imidin-4-yl]-benzamide (25a)

To a solution of 24a (82 mg, 0.15 mmol) in anhydrous methylene chloride (5 mL) was added boron trichloride (1.6 mL, 1.6 mmol, 1.0 M solution in methylene chloride) at $-78 \,^{\circ}$ C and the reaction mixture was stirred at the same temperature for 30 min. After quenched with methanol and neutralized with pyridine, the volatile materials were evaporated. The resulting residue was purified by silica gel column chromatography (methylene chloride:MeOH = 15:1) to give 25a (36 mg, 68%) as a white solid: mp 202 °C; UV (MeOH) λ_{max} 257 nm; $[\alpha]_{D}^{25} = +91.9^{\circ}$ (c 0.37, CHCl₃); ¹H NMR (CD₃OD) δ 2.61-2.68 (m, 1H, 4-H), 3.64 (dd, 1H, J=6.8, 10.8 Hz, BnOCHH), 3.85 (dd, 1H, J = 6.8, 10.8 Hz, BnOCHH), $3.96 (dd, 1H, J = 8.0, 11.2 Hz, 5-H_a), 4.14 (t, 1H, J = 8.0)$ Hz, 5-H_b), 4.47 (t, 1H, J = 4.0 Hz, 3-H), 6.03 (d, 1H, J=2.8 Hz, 2-H), 7.47-7.93 (m, 5H, Ph), 7.54 (d, 1H, J=7.2 Hz, H-5), 8.04 (d, 1H, J=7.2 Hz, H-6). Anal. calcd for C₁₆H₁₇N₃O₅: C, 58.00; H, 5.17; N, 12.68. Found: C, 57.78; H, 5.53; N, 12.64.

3.21. (-)-*N*-[1-((2*R*,3*R*,4*R*)-3-Hydroxy-4-hydroxymethyltetrahydro-furan-2-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]benzamide (25b)

Compound **24b** (42 mg, 0.08 mmol) was converted to compound **25b** (19 mg, 70%) as a white solid according to the same procedure used in the preparation of **25a**: UV (MeOH) λ_{max} 259 nm; $[\alpha]_D^{25} = -45.5^{\circ}$ (*c* 0.22, MeOH); ¹H NMR (CD₃OD) δ 2.23–2.29 (m, 1H, 4-H),

3.60 (dd, 1H, J=7.2, 10.8 Hz, BnOC*H*H), 3.78 (dd, 1H, J=7.2, 10.8 Hz, BnOCH*H*), 3.94 (dd, 1H, J=8.0, 10.4 Hz, 5-H_a), 4.28 (d, 1H, J=4.8 Hz, 3-H), 4.39 (t, 1H, J=8.0 Hz, 5-H_b), 5.69 (s, 1H, 2-H), 7.43–7.89 (m, 6H, Ph, H-5). 8.00 (d, 1H, J=7.6 Hz, H-6). Anal. calcd for C₁₆H₁₇N₃O₅: C, 58.00; H, 5.17; N, 12.68. Found: C, 57.82; H, 5.46; N, 12.81.

3.22. (+)-4-Amino-1-((2*S*,3*R*,4*R*)-3-hydroxy-4-hydroxy-methyl-tetrahydro-furan-2-yl)-1*H*-pyrimidin-2-one (5)

To a solution of **25a** (36 mg, 0.10 mmol) in methanol (2 mL) was added 0.1 M NaOMe solution (0.2 mL, 0.02 mmol) and the reaction mixture was stirred at room temperature overnight. After neutralized with acetic acid, the reaction mixture was evaporated and the residue was purified by silica gel column chromatography (methylene chloride:MeOH = 3:1) to give 5 (24 mg, 97%) as a white solid followed after crystallization from diethyl ether and methanol: mp 228 °C; MS m/z 228 (M⁺+1); UV (MeOH) λ_{max} 273 nm; $[\alpha]_{\text{D}}^{25} = +120.0^{\circ}$ (c 0.2, MeOH); ¹H NMR (CD₃OD) δ 2.61–2.68 (m, 1H, 4-H), 3.66 (dd, 1H, J=6.8, 10.8 Hz, HOCHH), 3.87 (dd 1H, J = 6.8, 10.8 Hz, HOCHH), 3.93 (dd, 1H, J = 7.6, 11.2 Hz, 5-H_a), 4.12 (t, 1H, J = 7.6 Hz, 5-H_b), 4.40 (dd, 1H, J = 2.8, 4.8 Hz, 3-H), 5.86 (d, 1H, J = 7.2 Hz, H-5), 6.00 (d, 1H, J = 2.8 Hz, 2-H), 7.63 (d, 1H, J = 7.2 Hz, H-6); ¹³C NMR (CD₃OD) δ 47.7, 59.9, 71.0, 71.3, 91.0, 94.6, 144.5, 158.4, 167.8. Anal. calcd for C₉H₁₃N₃O₄: C, 47.57; H, 5.77; N, 18.49. Found: C, 47.56; H, 5.90; N, 18.31.

3.23. (-)-4-Amino-1-((2R,3R,4R)-3-hydroxy-4-hydroxymethyl-tetrahydro-furan-2-yl)-1*H*-pyrimidin-2-one (5a)^{9a}

Compound **25b** (19 mg, 0.05 mmol) was converted to compound **5a** (11 mg, 81%) as a white solid according to the same procedure used in the preparation of **5**: MS m/z 228 (M⁺+1); UV (MeOH) λ_{max} 273 nm; $[\alpha]_{D}^{25} = -87.5^{\circ}$ (*c* 0.08, MeOH); ¹H NMR (CD₃OD) δ 2.25–2.33 (m, 1H, 4-H), 3.65 (dd, 1H, J=7.2, 10.8 Hz, HOCHH), 3.83 (dd, 1H, J=7.2, 10.8 Hz, HOCHH), 3.83 (dd, 1H, J=7.2, 10.8 Hz, HOCHH), 3.93 (dd, 1H, J=8.0, 10.8 Hz, 5-H_a), 4.25 (d, 1H, J=4.8 Hz, 3-H), 4.35 (t, 1H, J=2.8, 8.0 Hz, 5-H_b), 5.66 (s, 1H, 2-H), 5.87 (d, 1H, J=7.6 Hz, H-5), 8.00 (d, 1H, J=7.6 Hz, H-6); ¹³C NMR (CD₃OD) δ 44.6, 59.4, 73.0, 76.8, 95.7, 96.1, 141.7, 158.4, 168.0. Anal. calcd for C₉H₁₃N₃O₄: C, 47.57; H, 5.77; N, 18.49. Found: C, 47.35; H, 5.92; N, 18.27.

References and notes

- (a) Mitsuya, H.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 1911. (b) Lambert, J. S.; Seidlin, M.; Reichman, R. C.; Plank, C. S.; Laverty, M.; Morse, G. D.; Knupp, C.; McLaren, C.; Pettinelli, C.; Valentine, F. T.; Dolin, R. New Engl. J. Med. 1990, 322, 1333. (c) Mitsuya, H.; Jarrett, R. F.; Matsukura, M.; Di Marzo Veronese, F.; DeVico, A. L.; Sarngadharan, M. G.; Johns, D. G.; Reitz, M. S.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2033.
- (a) Cooney, D. A.; Ahluwalia, G.; Mitsuya, H.; Fridland, A.; Johnson, M.; Hao, Z.; Dalal, M.; Balzarini, J.; Bro-

der, S.; Johns, D. G. *Biochem. Pharmacol.* 1987, *36*, 1765.
(b) Carson, D. A.; Haertle, T.; Wasson, D. B.; Richman, D. D. *Biochem. Biophys. Res. Commun.* 1988, *151*, 788.

- 3. (a) Moon, H. R.; Kim, H. O.; Lee, S. K.; Choi, W. J.; Chun, M. W.; Jeong, L. S. Bioorg. Med. Chem. 2002, 10, 1499. (b) Jeong, L. S.; Moon, H. R.; Hong, J. H.; Yoo, S. J.; Choi, W. J.; Kim, H. O.; Ahn, H. S.; Baek, H. W.; Chun, M. W.; Kim, H.-D. Nucleosides Nucleotides 2001, 20, 657. (c) Hong, J. H.; Kim, H. O.; Moon, H. R.; Jeong, L. S. Arch. Pharm. Res. 2001, 24, 95. (d) Jeong, L. S.; Yoo, S. J.; Moon, H. R.; Chun, M. W.; Lee, C.-K. Nucleosides Nucleotides 1999, 18, 655. (e) Jeong, L. S.; Lee, Y. A.; Moon, H. R.; Chun, M. W. Nucleosides Nucleotides 1998, 17, 1473 62. (f) Choi, W. J.; Ahn, H. S.; Kim, H. O.; Kim, S.; Chun, M. W.; Jeong, L. S. Tetrahedron Lett. 2002, 43, 6241. (g) Moon, H. R.; Kim, H. O.; Lee, K. M.; Chun, M. W.; Kim, J. H.; Jeong, L. S. Org. Lett. 2002, 4, 3501. (h) Franchetti, P.; Cappellacci, L.; Grifantini, M.; Messini, L.; Sheikha, G. A.; Loi, A. G.; Tramontano, E.; Montis, A. D.; Spiga, M. G.; Colla, P. L. J. Med. Chem. 1994, 37, 3534. (i) Bera, S.; Nair, V. Helv. Chim. Acta 2000, 83, 1398. (j) Bolon, P.; Jahnke, T. S.; Nair, V. Tetrahedron 1995, 51, 10443 30. (k) Jeong, L. S.; Yoo, S. J. Bioorg. Med. Chem. Lett. 1998, 8, 847. (1) Yoo, S. J.; Kim, H. O.; Lim, Y.; Kim, J.; Jeong, L. S. Bioorg. Med. Chem. 2002, 10, 215. (m) Talekar, R. R.; Wightman, R. H. Nucleosides Nucleotides 1997, 16, 495. (n) Kikuchi, Y.; Kurata, H.; Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1997, 38, 4795.
- (a) Huryn, D. M.; Sluboski, B. C.; Tam, S. Y.; Weigele, M.; Sim, I.; Anderson, B. D.; Mitsuya, H.; Broder, S. J.

Med. Chem. **1992**, *35*, 2347. (b) Frank, K. B.; Connell, E. V.; Holman, M. J.; Huryn, D. M.; Sluboski, B. C.; Tam, S. Y.; Todaro, L. J.; Weigele, M.; Richman, D. D.; Mitsuya, H.; Broder, S.; Sim, I. S. *Ann. N. Y. Acad. Sci.* **1990**, *616*, 408. (c) Nair, V.; St Clair, M. H.; Reardon, J. E.; Krasny, H. C.; Hazen, R. J.; Paff, M. T.; Boone, L. R.; Tisdale, M.; Najera, I.; Dornsife, R. E.; Averett, D. R.; Borroto-Esoda, K.; Yale, J. L.; Zimmerman, T. P.; Rideout, J. L. *Antimicrob. Agents Chemother.* **1995**, *39*, 1993. (d) Sells, T. B.; Nair, V. *Tetrahedron Lett.* **1993**, *34*, 3527. (e) Sells, T. B.; Nair, V. *Tetrahedron* **1994**, *50*, 117. (f) Bolon, P. J.; Sells, T. B.; Nuesca, Z. M.; Purdy, D. F.; Nair, V. *Tetrahedron* **1994**, *50*, 7747. (g) Guenther, S.; Balzarini, J.; De Clerq, E.; Nair, V. *J. Med. Chem.* **2002**, *45*, 5426.

- (a) Huryn, D. M.; Sluboski, B. C.; Tam, S. Y.; Todaro, L. J.; Weigele, M. *Tetrahedron Lett.* **1989**, *30*, 6259. (b) Terao, Y.; Akamatsu, M.; Achiwa, K. *Chem. Pharm. Bull.* **1991**, *39*, 823.
- Smith, A. B., III; Sulikowski, G. A.; Sulikowski, M. M.; Fujimoto, K. J. Am. Chem. Soc. 1992, 114, 2567.
- (a) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans 1 1975, 1574. (b) Nozaki, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 6125.
- Jeong, L. S.; Lee, Y. A.; Moon, H. R.; Yoo, S. J.; Kim, S. Y. Tetrahedron Lett. 1998, 39, 7517.
- (a) Hammerschmidt, F.; Ohler, E.; Polsterer, J.-P.; Zbiral, E.; Balzarini, J.; DeClerq, E. *Liebigs Ann.* **1995**, 559. (b) Jung, M. E.; Toyota, A. *Tetrahedron Lett.* **2000**, *41*, 3577. (c) Jung, M. E.; Toyota, A.; De Clercq, E.; Balzarini, J. Monatshefte fur Chemie **2002**, *133*, 499.