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Abstract: Dipeptidyl peptidase IV (DPP4) deactivates glucose-
regulating hormones such as GLP-1 and GIP, thus, DPP4 inhibition
has become a useful therapy for type 2 diabetes. Optimization of the
high-throughput screening lead6 led to the discovery of25 (ABT-
341), a highly potent, selective, and orally bioavailable DPP4 inhibitor.
When dosed orally,25 dose-dependently reduced glucose excursion
in ZDF rats. Amide25 is safe in a battery of in vitro and in vivo tests
and may represent a new therapeutic agent for the treatment of type 2
diabetes.

Dipeptidyl peptidase IV (DPP4,a also known as CD26) is a
110-kDa serine protease that is ubiquitously distributed in the
body. It modulates biological activities of a number of peptides
by cleaving two amino acid residues from the N-terminus.1 Two
of the most prominent endogenous substrates of DPP4 are
glucagon-like peptide-1 (GLP-1) and glucose-dependent insuli-
notropic polypeptide (GIP, also known as gastric inhibitory
polypeptide), both of which play important roles in regulating
blood glucose levels.2 DPP4 knock-out mice not only showed
reduced degradation of both GLP-1 and GIP, but were also
healthy without any major immune phenotype (despite the
putative importance of DPP4 for immune function), showed
improved glucose tolerance, and were resistant to body weight
gain on a high-fat diet.3 DPP4-deficient Fisher rats also showed
similar phenotypes.4 Furthermore, chronic treatment with DPP4
inhibitors preserved islet function in diabetic mice and improved
â-cell survival and islet cell neogenesis in streptozotocin-induced
diabetic rats,5 which suggest that DPP4 inhibitors might be able
to induce production of newâ-cells in type 2 diabetics and thus
prevent the progression of the disease. More importantly, several
clinical trials in humans show that small-molecule DPP4
inhibitors are well-tolerated, lower blood glucose and/or HbA1c

levels, and increase glucose tolerance.6 All the above evidence
suggests that DPP4 inhibitors have the potential to be novel,
safe, and useful antidiabetic agents.7

Intensive research efforts have resulted in the discovery of a
number of potent DPP4 inhibitors.7 Pioneering work led to the
identification of first-generation DPP4 inhibitors such as18 and
29 (Chart 1). They are potent but may lack optimal selectivity10

against other related peptidases such as DPP811 and DPP9.12

Because inhibition of DPP8/9 was linked to toxicity in animal
studies,13 efforts were made to identify second-generation
inhibitors that areselectiVe. Another study demonstrated that
high levels of GLP-1 should be maintained for 24 h for optimal
glycemic control.14 These results provided impetus for us and
others to identify potential third-generation DPP4 inhibitors that
are not only potent and selective, but also possess pharmaco-
kinetic profiles that provideg90% DPP4 inhibition forg24 h
for maximal efficacy, particularly in more severe diabetic
patients (e.g., HbA1c > 9%).15 Preclinical studies will give
indications as to whether this goal is achieved by known DPP4
inhibitors 3,16 4,17 5,18 or our new compound, although a
definitive answer will await clinical trials in humans.

In this work, cyclohexene-constrained phenethylamine6
(Chart 2) was identified by high-throughput screening of the
Abbott compound collection and subsequently confirmed as a
weak DPP4 inhibitor with aKi of 0.82 µM, as assayed with
human DPP4 using Gly-Pro-7-amido-methylcoumarin (Gly-Pro-
AMC) as the substrate.19 After initial SAR exploration revealed
that (1) 2,4-dichlorophenyl increases potency over 2-chlorophen-
yl; (2) the most fruitful position on the cyclohexene ring to
modify is C5, as evidenced by compound7 (Ki < 0.14 µM),
acid 8 was identified as a lead with aKi of 0.045µM.

The general synthesis of cyclohexene-constrained phenethyl-
amines is outlined in Scheme 1. Thermal Diels-Alder reaction
between nitrostyrenes9 and 2-trimethylsiloxy-1,3-butadiene
gave racemic ketones10 after acidic workup. Vilsmeier bro-
moformylation of ketones10 furnished bromoaldehydes11 in
modest yields.20 After the aldehydes were reduced to alcohols
12, the bromine atom was removed to afford alcohols13. The
alcohol group was transformed to a mesylate group, which was
replaced with amines. Reduction of the nitro group and
subsequent reverse-phase HPLC purification afforded amines
8 or 14 as TFA salts. Alternatively, the nitro group of12b was
reduced with zinc, and the resulting amino group was protected
with a Boc group to afford15, which was then debrominated

* To whom correspondance should be addressed. Phone: 847-935-6254.
Fax: 847-938-1674. E-mail: zhonghua.pei@abbott.com.

a Abbreviations: DPP4, dipeptidyl peptidase IV; GLP-1, glucagon-like
peptide-1; GIP, glucose-dependent insulinotropic polypeptide; OGTT, oral
glucose tolerance test; HbA1c, glycosylated (or glycated) hemoglobin A.

Chart 1. Structures of Selected DPP4 Inhibitors in Clinical
Trials

Chart 2
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to alcohol16. Mitsunobu reaction between16 and a phenol,
then subsequent removal of the Boc group, yielded ether17.
Alcohol 16 was oxidized to aldehyde18, which underwent
reductive amination and subsequent removal of the Boc group
to give19. Aldehyde18 was further oxidized to acid20, which
was coupled with an amine, followed by removal of the Boc
group to provide amide22.

To make optically pure inhibitors, acid20 was transformed
to racemic ester23, which was resolved by chiral HPLC to give
optically pure ester24. Ester24 was hydrolyzed under basic
conditions to give chiral acid21, which was converted to
optically pure final product25 in a similar manner to that
described for amide22.

Table 1 summarizes the SAR of the DPP4 inhibition and
selectivity over DPP8 and DPP9. After dichlorophenyl was
switched to a less hydrophobic, equipotent trifluorophenyl at
the P1 position, bicyclic amine14 (Ki ) 12 nM) was identified
and showed significantly improved potency over acid8. Moving
the phenyl ring closer to the cyclohexene ring and introducing
an amidophenyl group resulted in19 with a single-digitKi of 6
nM. Analog17, with an ether linker, was also very potent, with
a Ki of 3.6 nM. However, all of these analogs had limited
selectivity over DPP8 and DPP9 (e.g., amine14was only 6-fold
selective over DPP9). Replacement of the flexible linkers with
a more rigid amide significantly improved the selectivity. Thus,
amide22 had aKi of 4.7 nM against DPP4 and was 1800-fold
and 3000-fold selective over DPP8 and DPP9, respectively.

Finally, introduction of a known bicyclic amine16 provided25
(A-916165), which showed excellent potency (Ki ) 1.3 nM)
and selectivity, and the potency was maintained even in the
presence of 10% human serum (Ki ) 1.6 nM). Neither was there
a change in potency when rat DPP4 was used.

The structure of the amide25/huDPP4 complex was solved
by X-ray crystallography. As shown in Figure 1, the trifluo-
rophenyl occupies the hydrophobic S1 pocket.21 The amino
group on the cyclohexene ring is in close proximity to the side
chains of Glu205 and Glu206 for an electrostatic interaction.
The carbonyl oxygen of25 is oriented toward a water mole-
cule positioned for a bridging hydrogen-bonding interaction
with the side chain of Arg669. A favorable hydrophobic
interaction of the heterocycle with the side chain of Phe357 is
observed.

Amide 25 showed superior pharmacokinetic (PK) profiles in
all three species tested (Table 2). Amide25 is characterized by
having good exposure across the species, good oral half-lives
(5.4 to 6.7 h), large volumes of distribution (7.19 to 3.20 L/kg),
and excellent oral bioavailabilities (54 to 104%). Based on the
PK in these three species, it is predicted that a 150 mg dose of

Scheme 1a

a Reagents and conditions: (a) trimethylsiloxy-1,3-butadiene, toluene,
120 °C, then TFA; (b) PBr3, DMF/CH2Cl2, 0 °C to rt; (c) NaBH4 or
NaBH(OAc)3, EtOH/CH2Cl2; (d) HCO2H, n-Bu3N, cat. Pd(PPh3)2Cl2, DMF,
80 °C; (e) MsCl, CH2Cl2, TEA, 0 °C; (f) R2R3NH, CH2Cl2, TEA; (g) Zn,
HOAc/MeOH, reflux; then HPLC; (h) (Boc)2O, THF;. (i) Ar ′OH, DBAD,
PPh3, toluene, 80°C; (j) TFA, CH2Cl2, rt; (k) Dess-Martin periodinane,
CH2Cl2; (l) NaBH3CN, Ar′NH2; (m) NaClO2, isoprene, NaH2PO4 buffer,
DMSO; (n) R4R5NH, TBTU, TEA, DMF, rt; (o) TMSCHN2, MeOH; (p)
chiral prep. HPLC; (q) NaOH, THF/H2O, rt.

Table 1. SAR Summary of DPP4 Inhibitorsa

a Values reported are the mean of at least two runs using human DPP4.
Potencies were unchanged when rat DPP4 was used.b Racemic.c Chiral.
d Ki in 10% of human serum.

Figure 1. X-ray crystal structure of25/huDPP4 complex. Color-
coding: all nitrogen atoms are in blue, all oxygen atoms in red and
fluorine atoms in cyan. Carbon atoms of25 are in green, while the
carbon atoms of the protein are in gray. The protein surface is shown
with atom coloring.
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amide25 once a day will provideg90% DPP4 inhibition for
24 h in humans.22

Next, we profiled amide25 in our efficacy model. Briefly,
10-week old, female Zucker diabetic fatty (ZDF) rats were dosed
with either vehicle or amide25 orally after an overnight fast.
Four hours later (t ) 0), the rats were allowed free access to a
highly palatable, macronutrient balanced food source during the
next 4 h. This model is analogous to oral glucose tolerance tests
(OGTT) used clinically to routinely evaluate glycemic control,
except that the “challenge” is a liquid mixed meal composed
of fats, proteins, and carbohydrates, thus a more realistic
representation of the nutritional makeup of normal food. Plasma
glucose levels were measured at six time points over the course
of 4 h, and the change of plasma glucose levels from the baseline
is shown in Figure 2. Amide25 caused a dose-dependent
reduction in glucose excursion. The reduction as measured by
area under curve (AUC) was 23, 37, and 51% at 0.3, 1.0, and
3.0 mpk, respectively. Consistent with the mechanism of action,
active GLP-1 levels (measured att ) 10 min) increased by
151%, 163% and 291% at 0.3, 1.0 and 3.0 mpk, respectively.
Glucagon levels (measured att ) 30 min) decreased by 36, 46,
and 61% at 0.3, 1.0, and 3.0 mpk, respectively. The plasma
concentration of amide25 reached 120 ng/mL (t ) 0), pro-
viding 98% (t ) 0) and 96% (t ) 240 min) inhibition of DPP4
at 3 mpk.

Besides being efficacious in vivo, amide25 also possesses
an excellent safety profile. It showed no inhibition of major
liver metabolic enzymes such as CYP3A4, CYP2D6, and
CYP2C9 (IC50 > 30 µM). It was negative in both mini-Ames
and clastogenicity tests23 (up to 2000µg/well). It exhibited no
hERG binding (dofetilideKi > 50 µM, IC50 > 300µM in patch
clamp using HEK 293 cells). When amide25was tested against
a panel of 74 receptor-binding/ion channel assays (Cerep
screening) at a concentration of 10µM,24 it did not display
control-specific binding by 50% or greater in any of the 74
assays. When administered intravenously using an anesthetized,
comprehensively instrumented dog model,25 amide25exhibited

a benign cardiovascular profile at plasma concentrations vastly
higher than those required to achieve efficacy in vivo. As such,
amide25produced no physiologically relevant effects on mean,
systolic, or diastolic arterial pressure, heart rate, cardiac output,
pulmonary arterial pressure, pulmonary vascular resistance, or
systemic vascular resistance at the highest concentration tested
(23.9 ( 1.3 µg/mL) and produced only a small reduction in
ventricular contractility at the same concentration. Also, con-
sistent with the absence of hERG binding, amide25 produced
no increase in the QT-interval corrected for changes in heart
rate.22 Amide25caused no toxicological effects in a 5-day study
in rats when dosed up to 1000 mg/kg/day. Taken together, the
combination of superb potency and pharmacokinetic profiles
offers the potential for amide25 to reach maximal efficacy
achievable by the mechanism of DPP4 inhibition (as limited
by the GLP-1 and GIP secretory capacity). Based on its
combined profile of excellent potency, selectivity, efficacy, and
safety, amide25 was selected as a drug development candidate
(ABT-341).

In summary, aided with structural information, we were able
to quickly optimize the high-throughput screening lead5, leading
to the discovery of amide25, a highly potent, selective, orally
efficacious, and potentially third-generation DPP4 inhibitor.
When dosed orally, amide25dose-dependently reduced glucose
excursion, increased active GLP-1 levels, and decreased glu-
cagon levels in ZDF rats. Amide25 is safe in a battery of in
vitro and in vivo safety tests and may represent a new
therapeutic agent for the treatment of type 2 diabetes.
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