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Abstract: Reagent-controlled chemo- and regioselective
reduction of 5,15-diazaporphyrins has been developed.

The selective reduction of carbon–carbon double bonds
of diazaporphyrins provides 18 p aromatic isobacterio-

chlorin-type products, whereas the reduction of carbon–
nitrogen double bonds leads to selective formation of

20 p N,N’-dihydrodiazaporphyrins in excellent yields. The
distinct antiaromatic character of N,N’-dihydrodiazapor-
phyrins has been revealed. The free-base N,N’-dihydrodia-

zaporphyrin exhibits slower inner NH tautomerism than
that in the corresponding 18 p porphyrins.

Porphyrinoids have attracted considerable attention, owing to
their excellent optical and electronic properties. Redox pro-

cesses of porphyrinoids are a promising route for the creation
of novel and unique p-conjugated skeletons, because these
processes can change the structures and the number of p elec-

trons in the conjugated circuits. Reduction of regular porphyr-
ins at the peripheral double bonds of the pyrrole units pro-

vides aromatic chlorins, bacteriochlorins, and isobacteriochlor-
ins, which are the key structures of chlorophylls (Figure 1).[1]

Reduction of carbon–carbon double bonds at the meso posi-
tions of porphyrins leads to phlorins, which show nonaromatic

behavior.[2] However, isophlorins, obtained from reduction of
two imine moieties of porphyrins, are known to have nonpla-
nar 20 p-electron systems.[3] In general, free-base isophlorins
adopt highly distorted conformations due to the steric repul-
sion among the four NH protons in the central cavity. Chen

and co-workers reported a 20 p free-base isophlorin that
shows a nonaromatic nature because of the nonplanar saddle

conformation.[4] In 2005, Vaid and co-workers reported the syn-
thesis of an antiaromatic 20 p silicon(IV) porphyrin with
a highly ruffled structure.[5] Since the isophlorin macrocycle

works as a tetravalent ligand, the choice of central metals is

limited.[6] The synthesis of 20 p porphyrinoids with both high
planarity and distinct antiaromaticity is still challenging.[7]

5,15-Diazaporphyrins (1 M, Scheme 1; M = Ni or 2 H) are 18 p

porphyrinoids with imine-type sp2-hybridized nitrogen atoms

at the meso positions.[8, 9] Because of its relatively low-lying
LUMO, 1 M is prone to undergo nucleophilic addition of alkyl-
lithium reagents.[8b] This characteristic feature of 1 M prompted
us to explore the reaction of 1 M with various reductants.

Figure 1. Reduction products of porphyrin.

Scheme 1. Chemo- and regioselective reduction of 5,15-diazaporphyrins.
Mes = 2,4,6-trimethylphenyl.
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We have now succeeded in the development of reagent-
controlled chemo- and regioselective reduction of 5,15-diaza-

porphyrins 1 M (Scheme 1). In this process, the selective reduc-
tion of carbon–carbon double bonds provided the 18 p aro-

matic isobacteriochlorin-type product 2 M, whereas the reduc-
tion of carbon–nitrogen double bonds yielded N,N’-dihydrodia-

zaporphyrins 3 M selectively. The planar structure and 20 p

conjugation, including lone pairs on the nitrogen atoms at the

meso positions, induce distinct antiaromatic character of 3 M.

In contrast to isophlorins, free-base N,N’-dihydrodiazaporphyrin
3 H2 has two NH protons in the central cavity, which is similar
to normal porphyrins.

We conducted the reaction of 1 Ni with a hydride reagent

(Scheme 2). Treatment of 1 Ni with 12 equivalents of NaBH4 in
the presence of Pd/C[10] in CH2Cl2/MeOH (3:1) at room temper-

ature for 2 h afforded 2 Ni as a single isomer in 79 % yield with

a trace amount of chlorine-type product 4 Ni. In the absence

of Pd/C, 2 Ni and 4 Ni were obtained in 13 % and 14 % yields,
respectively. The X-ray diffraction analysis of 2 Ni revealed the

high planarity of the macrocycle of 2 Ni. Unfortunately, the as-
signment of 2 Ni was not conclusive because three regioisom-

ers 2 Ni, 2 Ni-isomer A, and 2 Ni-isomer B could not be distin-
guished by the X-ray analysis because of the highly disordered
structure (see the Supporting Information, Figure S11).[11] The
1H NMR spectrum of 2 Ni displayed two doublet peaks for b-
protons in the aromatic region at d= 7.5 ppm and protons on

sp3 carbons at d�3.0–4.0 ppm, suggesting C2v symmetry. The
13C NMR spectrum of 2 Ni also indicated that the structure of

2 Ni adopted C2v symmetry. On the basis of these NMR data,
we concluded that 2 Ni has the isobacteriochlorin-type struc-

ture with 18 p aromatic conjugation.

A proposed reaction pathway for the reduction of 1 Ni to
2 Ni is shown in Scheme 3. In this reduction process, the attack

of hydride at the pyrrole rings should be a key step for the se-
lective reduction of carbon–carbon double bonds. The initial

nucleophilic attack of hydride would occur at the C3 position
because of a directing effect of the outer nitrogen atom

through coordination with the sodium cation.[8b] Protonation

of the initial adduct then affords 4 Ni. The DFT calculation of
4 Ni at the B3LYP/6-31G(d) + SDD level suggests that the MO

coefficient at the C17 position in the LUMO of 4 Ni is signifi-
cantly larger than those at other b-positions (Scheme 3 b). Con-

sequently, formation of 2 Ni should be favored in reduction
with NaBH4 over the bacteriochlorin-type reduction product.

Figure 2 shows the electronic absorption spectra of 1 Ni,
2 Ni, and 4 Ni in CH2Cl2. The characteristic changes of the ab-
sorption features of these compounds are consistent with the

general trend that is typically observed from porphyrin to
chlorine and isobacteriochlorin.[1] The Q-band of chlorin-type

4 Ni was substantially redshifted. In comparison to 1 Ni, the Q-

band of 2 Ni was hypsochromically shifted. This shift is well
supported by the DFT calculations. The calculated HOMO–

LUMO gaps of 1 Ni, 2 Ni, and 4 Ni were 2.73, 2.83, and 2.45 eV,
respectively. The relative intensity of the Q-band to the Soret

Scheme 2. Reduction of 1 Ni with NaBH4.

Scheme 3. a) Proposed reaction pathway for the reduction of 1 Ni to 2 Ni ;
b) DFT-calculated molecular orbitals of 4 Ni.

Figure 2. Electronic absorption spectra of 1 Ni, 2 Ni, and 4 Ni in CH2Cl2.
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band increased in the order of 1 Ni, 4 Ni, and 2 Ni, as the
number of reduced double bonds increased.

We then found that the use of N,N’-bis(trimethylsilyl)-1,4-di-
hydropyrazine 5[12] as a reductant for 1 M cleanly and selective-

ly furnished N,N’-dihydrodiazaporphyrins 3 M (Scheme 4). N,N’-
Disilyl-1,4-dihydropyrazine 5 serves as a versatile and strong re-

ducing reagent for group 4–6 metal and late transition metal
chlorides.[12b,c] When we carried out the reaction of 1 Ni with
1.6 equivalents of 5 in THF at room temperature, complete

conversion of 1 Ni was confirmed by 1H NMR spectroscopy.
Treatment of the resulting solution with an excess amount of
MeOH afforded 3 Ni in 84 % yield. This protocol was also ap-
plied to the reduction of free-base diazaporphyrin 1 H2 and di-

hydrodiazaporphyrin 3 H2 was obtained in 78 % yield. Both 3 Ni
and 3 H2 were easily oxidized back to diazaporphyrins 1 Ni and

1 H2, respectively, in solution under air.

The structures of 3 Ni[13] and 3 H2
[14] were unambiguously re-

vealed by X-ray diffraction analysis (Figure 3). The skeletons of

3 Ni and 3 H2 are almost perfectly planar (Figure 3 b,d) with
small mean plane deviations of 0.049 æ (3 Ni) and 0.031 æ

(3 H2). In addition, 3 Ni and 3 H2 display significant bond-length
alternations, which are diagnostic for antiaromatic porphyri-
noids (Figure 3 e). These results strongly suggest that 3 Ni and

3 H2 exhibit antiaromaticity, owing to planar 20 p conjugation.
The nucleus-independent chemical shift (NICS) values (calculat-
ed at points “a” and “b” in Figure 3 a,c) are + 15.5 and
+ 15.8 ppm, respectively, confirming the substantial paratropic

ring current effect of 3 Ni and 3 H2. Whereas 18 p diazaporphyr-
in 1 Ni exhibited b-protons in the aromatic region of d = 8.8–

9.2 ppm in its 1H NMR spectrum, the b-proton signals of 3 Ni
were shifted significantly upfield to d= 3.0–4.0 ppm. In addi-
tion, the inner two NH protons of 3 H2 were observed in the

downfield region at d = 24.5 ppm. These characteristic proton
chemical shifts confirm the distinct antiaromatic natures of

3 Ni and 3 H2. Free-base porphyrinoids with 4 n p conjugation
often adopt nonplanar conformations to relieve antiaromatic

destabilization. The highly planar structure of 3 H2 is probably

maintained by the effective hydrogen bonding interactions in
the central cavity,[15] as indicated by the highly downfield-shift-

ed NH proton signals.
Unexpectedly, the 1H NMR spectrum of 3 H2 displayed no b-

protons signals at room temperature. We then found that the
spectrum of 3 H2 was highly dependent on temperature

(Figure 4). At ¢50 8C, four doublet signals for b-protons were

detected at d = 3.0–4.5 ppm. As the temperature was raised,
the four doublet signals were broadened, reaching a coales-

cence point at 25 8C, where the b-proton signals nearly disap-

Scheme 4. Reduction of 1 M with 5.

Figure 3. X-ray crystal structures of dihydrodiazaporphyrins. Thermal ellip-
soids are scaled at 50 % probability level. Mesityl groups are omitted for
clarity : a) Top and b) side views of 3 Ni ; c) top and d) side views of 3 H2 ;
e) bond length alternations of 3 Ni and 3 H2.

Figure 4. Variable-temperature NMR spectra of 3 H2 at ¢50, 25, and 65 8C in
[D8]THF.
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peared. Two broad signals then appeared at higher tempera-
tures. We presumed that the spectral change with temperature

resulted from the inner proton exchange of 3 H2, in analogy to
NH tautomerization of porphyrins (Scheme 5 a).[16] The activa-

tion energy of inner proton exchange of 3 H2 was measured to
be 14.3 kcal mol¢1 at 25 8C.[17] This value is substantially larger

than that of the energy barrier of NH proton exchange in typi-
cal porphyrins (ca. 12 kcal mol¢1).[16c]

We then performed DFT calculations to obtain the transi-

tion-state structure for the inner NH migration reaction

(Figure 5). Calculations were conducted at the B3LYP/6-31 +

G(d) level on model compounds in which the mesityl substitu-

ents were replaced with hydrogen atoms. The transition-state
structure was obtained by the QST2 method. The activation

energy was calculated to be 14.6 kcal mol¢1, which is in good
agreement with the experimental value (14.3 kcal mol¢1).

Further evidence for our hypothesis was obtained by using
the deuterium-labeled compound [D4]3 H2. The coalescence

temperature of [D4]3 H2 was 45 8C (see the Supporting Informa-
tion, Figure S10). The activation barrier of [D4]3 H2 (15.3 kcal

mol¢1 at 45 8C) was higher than that of 3 H2 due to the kinetic
isotope effect (Scheme 5 b). As shown in the X-ray structure, di-
hydrodiazaporphyrin 3 H2 has rather localized p-bonds. This

considerable bond length alternation of 3 H2 should be due to
Jahn–Teller distortion.[18] However, the conjugation circuit is
switched by NH tautomerism and p-bonds in the transition
state (TS) should be delocalized (Scheme 5 c). The temporal de-

localization of p-electrons in the TS would enhance antiaroma-
ticity to destabilize the TS, resulting in the larger activation

barrier of NH tautomerization. In fact, the NICS value at the

ring center of the TS is + 21.0 ppm, which is substantially
larger than that of 3 H2 (+ 16.1 ppm; Figure 5).

To elucidate the reaction pathway, we monitored the reac-
tion of 1 Ni with 5 in [D8]THF at room temperature by 1H NMR

spectroscopy (Scheme 6 and Figure S6 in the Supporting Infor-
mation). After 1 h, 3 Ni, 3 Ni-TMS, and 3 Ni-TMS2 had formed in

38, 11, and 14 % yields, respectively, alongside the recovery of

34 % of 1 Ni. In addition, we also detected the formation of
pyrazine. This result clearly shows that both the electron trans-

fer from 5 to 1 Ni and the migration of trimethylsilyl (TMS)
groups are key steps in the formation of 3 Ni.[12b] The initial

step would be an electronic interaction between electron-defi-
cient 1 Ni and electron-rich 5, to provide the corresponding

radical ion pair. Then, the cleavage of N¢Si bonds in 5 and the

formation of N¢Si bonds in 3 Ni-TMS2 would furnish 3 Ni-TMS2

and pyrazine. Finally, 3 Ni-TMS2 is converted into 3 Ni through

desilylation with methanol.
The UV/Vis absorption spectra of 3 Ni and 3 H2 are shown in

Figure 6. The absorption spectra of 3 Ni and 3 H2 exhibit a sub-
stantially different shape from those of 1 Ni and 1 H2.[8] In par-

ticular, weak absorption bands were detected at l= 700–

1200 nm (dashed lines) and are assigned to the characteristic
forbidden bands that are typical for antiaromatic porphyri-
noids.[19] The electrochemical properties of 3 Ni and 3 H2 were
examined by using cyclic voltammetry (see the Supporting In-

formation, Figure S13). The cyclic voltammograms of 3 Ni and

Scheme 5. a) Inner proton exchange in 3 H2 ; b) [D4]3 H2 ; c) transition state in
tautomerization.

Figure 6. UV/Vis absorption spectra of 3 Ni and 3 H2 in CH2Cl2.Figure 5. Calculated pathway of the inner proton exchange of 3 H2.
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3 H2 showed reversible first oxidation waves at ¢0.717 and

¢0.534 V, respectively, suggesting the donating nature of 3 Ni
and 3 H2.

In summary, we have demonstrated the reagent-controlled

chemo- and regioselective reduction of 5,15-diazaporphyrins
1 M. The reduction of 1 M with NaBH4 provides the isobacterio-

chlorin-type product 2 M, whereas antiaromatic dihydrodiaza-
porphyrins 3 M was obtained through the reduction with N,N’-
bis(trimethylsilyl)-1,4-dihydropyrazine 5. This is the first exam-
ple of antiaromatic porphyrinoids bearing a conjugation circuit

including the lone pairs on the nitrogen atoms at the meso po-

sitions.[20, 21] The methodology described herein provides a new
route for the creation of antiaromatic compounds and will

open up the chemistry of antiaromatic heteroporphyrinoids.
Further investigation of the unique properties of 3 M is cur-

rently in progress in our group.
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