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The cooperativity between a radical and a transition-metal
ion in a single molecular entity is demonstrated in highly
sophisticated biocatalysts.[1] Galactose oxidase, which has an
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active site composed of a tyrosyl radical magnetically coupled
to a cupric ion, nicely exemplifies this synergy. In this example
the two redox centers work together to promote the two-
electron oxidation of primary alcohols to give aldehydes.[2]

For a better understanding of the metal–radical interaction
(and its biological relevance), transition-metal complexes
involving one or two coordinating radicals have been
characterized recently.[3] So far no complexes with a bridging
radical have been reported. We describe herein an unprece-
dented metal–radical system, a dicopper(ii) m-phenoxyl com-
plex. This was achieved using the dicopper(ii) complexes of
the dinucleating ligand HL. Its oxidative chemistry is
compared to that of the copper(ii) complex of the mono-
nucleating analogue HL’.

When two equivalents of Cu(ClO4)2·6 H2O and HL were
mixed in acetonitrile in the presence of one equivalent of
NEt3, complex [L(CH3CN)2Cu2]

3+ (1) was obtained as its
ClO4

� salt.[4] Its crystal structure (Figure 1) shows that the
ligand binds two copper(ii) atoms having square-pyramidal
geometry through coordination to three nitrogen atoms from
the ligand (two pyridyl N atoms and one tertiary amino
group) and one from an exogenous acetonitrile molecule. The
coordination sphere is completed by an oxygen atom of a m-
phenolato group, which bridges the two metal centers having
a separation of 4.06 �. The use of HL and two equivalents of
both Cu(ClO4)2·6 H2O and NEt3 affords complex
[L(mOH)Cu2]

2+ (2) as its ClO4
� salt.[5,6] Its crystal structure

(Figure 1) has been previously reported:[5] the coordination
sphere of the copper atoms contains three nitrogen atoms
from the ligand (two pyridyl and one tertiary amino group)
completed by two oxygen atoms (from one phenolato and one
hydroxo groups) which bridge the metal centers. The two
copper ions have trigonal-bipyramidal coordination geome-
try, with a Cu�Cu distance of 2.98 �. Addition of one
equivalent of Cu(CF3SO3)2 or Cu(ClO4)2·6 H2O to HL’ in
acetonitrile in the presence of one equivalent of NEt3 affords
the dimer [L’Cu]2

2+ (3) as its CF3SO3
� or ClO4

� salt
(Figure 1).[4] In 3 each copper atom is coordinated by two
pyridyl nitrogens, one amino nitrogen, and two m-phenolato
oxygens (one from each ligand), and the intermetallic
distance is 3.12 �. This dimer is relatively stable, as reflected
by its Kpy value of 0.297m�1.[7] All the ligands thus afford
copper(ii) complexes involving at least one coordinating m-
phenolato unit.

The UV/Vis spectra of 1 (Figure 2), 2, and 3 exhibit a m-
phenolato-to-copper charge-transfer (CT) transition in the
region between 450 and 550 nm, and a broad absorption at

higher wavelengths attributed to d–d transitions.[8] The X-
band EPR spectrum of 1 in CH3CN exhibits a DMS =� 2
transition at g = 4.3, associated with spin triplet resonances at
g = 2.24 and 1.99, indicating that the two copper(ii) atoms are
weakly ferromagnetically exchange-coupled. The zero-field
splitting (zfs) parameters (D = 0.036 cm�1, E = 0 cm�1) and

Figure 1. X-ray crystal structures of 1–3 (ORTEP diagrams, thermal
ellipsoids at the 30% probability level). Selected bond lengths [�] and
angles [8]: [L(CH3CN)2Cu2]

3+ (1): Cu1-O1 2.170(2), Cu2-O1 2.150(2),
Cu1-Cu2 4.059(5), Cu1-O1-Cu2 140.0(1); [L(mOH)Cu2]

2+ (2):[5] Cu1-O1
1.997(3), Cu2-O1 2.039(3), Cu1-Cu2 2.980(9), Cu1-O-Cu2 95.2(2);
[L’Cu]2

2+ (3): Cu1-O1 2.077(2), Cu1-O2 1.923(2), Cu2-O1 1.917(2),
Cu2-O2 2.303(2), Cu1-Cu2 3.123(5), O1-Cu1-O2 82.72(7), O1-Cu2-O2
77.05(7).

Figure 2. Electronic spectra of 0.1 mm solutions of 1 (solid lines) and
electrochemically generated 1C+ (dotted lines) recorded in CH3CN
(0.01m TBAP) at 233 K (l = 1 cm). Inset: Cyclic voltamogram (under Ar
atmosphere) of 1 (1 mm in CH3CN, 0.1m TBAP) at 298 K; scan rate:
0.1 Vs�1.
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gk= 2.30, g?= 2.07 were obtained from simulation. Using the
point dipole approximation,[9] we calculated a 4.5-� separa-
tion between the two copper(ii) atoms, a value in reasonable
agreement with the X-ray structure analysis. Complex 2 is
EPR-silent, indicating that the two copper(ii) atoms are
strongly antiferromagnetically exchange-coupled, due to
optimal magnetic orbital overlap.[5] Complex 3 exhibits a
ferromagnetic coupling between the two copper atoms similar
to that in 1 but with larger zfs parameters (D = 0.080 cm�1,
E = 0.027 cm�1, g1 = 2.04, g2 = 2.06, g3 = 2.12), as is expected
for a complex with a shorter intermetallic separation. (The
complex [L’(py)Cu]+ exhibits a SCu =

1
2 signal typical for a

mononuclear copper(ii) complex).
The cyclic voltammograms of 1 (Figure 2 inset) and 2 in

CH3CN (0.1m tetrabutylammonium perchlorate (TBAP))
display a reversible one-electron wave in the positive region
of potentials (E1/2 = 0.36 V vs Fc+/Fc, DEp = 0.09 V and E1/2 =

0.45 V, DEp = 0.09 V for 1 and 2, respectively), attributed to
the oxidation of the m-phenolato moiety into a m-phenoxyl
radical.[10] This signal is irreversible both for 3 (at Ep

a =

0.45 V) and [L’(py)Cu]+ (at Ep
a = 0.14 V), showing that the

radical evolves on the experiment timescale. Complexes 1–3
are thus oxidized in the same potential range, highlighting
that the structure of the complex affects weakly the oxidation
potential of the m-phenolato ligand. However, [L’(py)Cu]+ is
oxidized at a potential 0.3 V lower, which can be explained by
the lower electron density at the oxygen atom of a m-
phenolato ligand compared to that of a phenolate group. In
addition, we have previously shown that species such as 3 do
not retain their dimeric structure upon oxidation: if they are
stable enough to be generated, the phenoxyl radical species
evolve towards the corresponding monomers.[11] Thus, only 1
and 2 could be oxidized to give complexes with bridging
phenoxyl radicals.

The one-electron-oxidized complexes 1C+ and 2C+ exhibit
similar UV/Vis features: p–p* transitions typical of phenoxyl
radicals[12] are observed at 440 nm (3330m�1 cm�1) and 600 nm
(560m�1 cm�1) for 1C+ (Figure 2), and at 445 nm
(4730m�1 cm�1)[13] and 600 nm (1000m�1 cm�1)[13] for 2C+.
From the decay of the former band, a half-life of 22.3 min
was obtained for 1C+ at 298 K, and of less than 20 s for 2C+ at
290 K.

The 9.4-GHz EPR spectrum of the electrochemically
generated 1C+ recorded at 4 K (Figure 3) exhibits a DMS =� 3
transition at g = 8, typical of an S =

3
2 spin state, whose

intensity is proportional to the reciprocal of the absolute
temperature (T�1). This quartet thus corresponds to the
ground state.[14] The zfs parameters D =�0.056 cm�1 and E =

0.015 cm�1 (gk= 2.142, g?= 2.039) were obtained from simu-
lation of both the 9.4-GHz and 115-GHz EPR spectra
(Figure 3). The D value is close to that reported for an
excited S =

3
2 spin state in a triangular tricopper(ii) complex

(�53.5 mT),[15] but significantly different from those reported
for organic triradicals (j 0.003–0.008 j cm�1)[16] and mononu-
clear bis(phenoxyl) radical copper(ii) complexes (j 0.4 j
cm�1).[17] The 9.4-GHz EPR spectrum of 2C+ exhibits two

sets of signals, a weak DMS =� 3 transition at g = 8 and a
dominating SCu =

1
2 signal (attributed to a degraded complex

containing noninteracting copper(ii) nuclei) at g = 2.

Although the DMS =� 3 transition is weak (its intensity
decreases as the temperature increases), these results dem-
onstrate that 2C+ also exhibits a quartet ground state.

In summary, m-phenoxyl dicopper(ii) complexes in which
the two copper(ii) and the radical spins are ferromagnetically
exchange-coupled could be obtained. Their stability, and thus
their reactivity, is finely tuned by both the nuclearity of the
complex and the nature of coordinating solvent. Since tyrosyl
residues are ubiquitous in metalloenzymes, such species could
be biologically relevant. On the other hand, the chemical
reactivity of these m-phenoxyl dicopper(ii) species which
formally contain “three oxidizing equivalents” constitute a
promising and fascinating area for the studies of new chemical
properties.
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