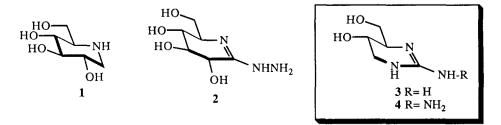


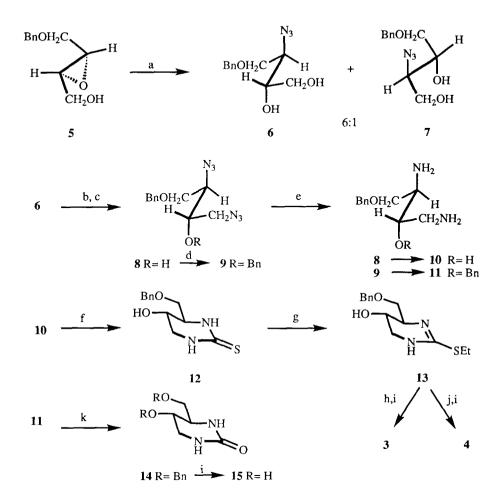
0040-4039(94)02392-1


GUANIDINE ANALOGS OF A DEOXYSUGAR

Anita W.-Y. Chan and Bruce Ganem*

Department of Chemistry Baker Laboratory Cornell University Ithaca, NY 14853-1301 USA

Abstract: Asymmetric syntheses of guanidine 3 and N-aminoguanidine 4 are described from (-)-epoxy alcohol 5. Compounds 3 and 4, which resemble D-glucose and D-mannose, were designed as generic hexopyranose substitutes and represent new templates for assembling glycomimetic structures.


A key objective in the emerging field of $glycobiology^{I}$ has been the development of specific glycomimetics, i.e. carbon or heteroanalogs of sugars which mimic the structure and properties of carbohydrates. Such research has produced many linkage and configuration-specific inhibitors of glycosidases^{2,3} such as the polyhydroxylated piperidines (e.g. 1)^{4,5} and amidrazones (e.g. 2)^{6,7} which disrupt the biosynthesis of N-linked glycoproteins and glycolipids that play prominent roles in immune recognition phenomena and cellular adhesion.⁸⁻¹¹ A major challenge for synthetic chemists is to devise non-carbohydrate templates (i.e. saccharide 'look-alikes') with which to assemble bioactive mono- and oligosaccharide analogs.

We and others¹²⁻¹⁴ have continued to explore related families of structures in designing new glycomimetic compounds for research and medicine. Here we describe an enantioselective route to guanidine **3** and N-aminoguanidine **4**, whose molecular frameworks bear close spatial relationships to a typical hexose.

Like their congener 2, both 3 and 4 mimic a conformationally flattened hexopyranose, with 3 resembling guanidino-threose.¹⁴ Additional sugar residues can be attached at the commonly substituted 1, 2, 4, and 6 positions on the ring. Moreover, by replacing the C2-hydroxyl group with nitrogen, both 3 and 4 can serve as a surrogate for either D-glucose or D-mannose, with electron density projected above and below the ring plane directly adjacent to the anomeric center. Like arginine residues which serve as key recognition and binding sites

SCHEME

(a) 1.2 equiv Ti(iPrO)₄, 2.4 equiv TMSN₃, benzene, 75°C, 15 min; (b) MsCl, Et₃N, CH₂Cl₂, 0°C, 3 h; (c) NaN₃, DMF, 60°C, 18 h; (d) 1 equiv each of PhCH₂Br and NaH, DMF, rt, 18 h (e)10% Pd/C, H₂, CH₃OH, rt, 18 h; (f) 1,1'-thiocarbonyldiimidazole, CH₂Cl₂, rt, 16 h; (g) EtI, EtOH, rt, 2 d; (h) 2 equiv NH₄⁺⁻O₂CCH₂CH₃ 130°C, 4 h; (i) Na-NH₃, -78°C to -33°C, 10 min; (j) NH₂NH₂, rt, 15 min; (k) 1,1'-carbonyldiimidazole, CH₂Cl₂, rt, 2 d.

for carboxylic acids,¹⁵ structures **3** and **4** present bilateral N-C=N arrays for favorable H-bonding and electrostatic interactions with carboxylate functional groups. Finally, we note that **3** and **4** are locked in the hexopyranose form, in contrast to the pH-dependent structure of guanidino-threose (which exists as a mixture of mutarotating α and β -furanose anomers at neutral pH, but as a 6-membered cyclic guanidine at pH 11).

The synthesis began with the known¹⁶ S,S-epoxide 5, which reacted regioselectively with Ti(OiPr)₂(N₃)₂ (prepared *in situ*) to afford azido-1,2-diol 6 and azido-1,3-diol 7 in a 6:1 ratio (55-65% yield overall).^{17,18} By careful flash column chromatography on SiO₂ using 1:1 hexane:ethyl acetate (EtOAc), pure 6 (R_f 0.47, EtOAc) could be obtained.¹⁹ Selective mesylation of 6 (1.2 equiv MsCl, 0°C, 70%) followed by S_N2 displacement with NaN₃ cleanly furnished diazide 8 (quantitative yield).²⁰ Diazide 8 (R_f 0.52, 2:1 hexane:EtOAc) could be further O-benzylated using NaH and PhCH₂Br to give ether 9 (R_f 0.68, 2:1 hexane:EtOAc). Heterogeneous catalytic reduction of 8 or 9 led to diamines 10 or 11, respectively, in 80-90% yield.

Hydroxydiamine 10 ($R_f 0.50$, 7:3:1 CH₂Cl₂:CH₃OH:NH₄OH) was not converted cleanly to the corresponding urea using 1,1'-carbonyldiimidazole, forming instead a kinetically stable 2-oxazolidone. In an alternative approach, reaction of 1,1'-carbonyldiimidazole (1 equiv, CH₂Cl₂, rt, 12 h) with the di-O-benzyl diamine 11²¹ did succeed in producing 14 ($R_f 0.58$, 17:3:1 EtOAc:CH₃OH:H₂O) in 70% yield. This cyclic urea could be deprotected to 15 ($R_f 0.50$, 1:1 CH₂Cl₂:CH₃OH), using excess sodium in ammonia, but neither 14 nor 15 could be transformed directly or indirectly (via a uronium salt) to the desired guanidine 3.

Ultimately, **10** did form thiourea **12** (40-50% yield; $R_f 0.32$, EtOAc) upon reaction with 1,1'-thiocarbonyldiimidazole. The corresponding S-ethylisothiourea **13**, prepared in 75% yield ($R_f 0.29$, 17:3:1 EtOAc:CH₃OH: H₂O), underwent smooth substitution either with ammonium propionate²² or hydrazine, followed by dissolving metal reduction to remove the benzyl ether, thus affording **3** or **4**, respectively. Guanidine **3** was isolated as its acetate salt (50% yield; m.p. >165°C, d) after column chromatography using 5:1:2 CH₃CN:HOAc: H₂O.²³ Similar purification furnished N-aminoguanidine **4** as an amorphous acetate salt which was dissolved in 1M HCl and thus converted to the more crystalline hydrochloride salt (52% yield; m.p. 141-145°C).²⁴

Pyranose mimics **3** and **4** are of particular interest as templates for the construction of novel glycomimetic oligomers for selectins and other adhesion receptors.^{10,11}

ACKNOWLEDGMENT: We thank the National Institutes of Health for financial assistance in the form of grant support (GM 35712 to BG) and a Traineeship (GM08384 to A. W.-Y. C.). Support of the Cornell NMR Facility by the NSF (CHE 7904825; PGM 8018643) and NIH (RR02002) is gratefully acknowledged.

REFERENCES AND NOTES

- 1. Winchester, B.; Fleet, G. W. J. Glycobiology 1992, 2, 199-210.
- Elbein, A. D.; Molyneux, R. J. in *Alkaloids: Chemical and Biological Perspectives*, Pelletier, S. W., Ed., Wiley & Sons, New York, 1987, 1-54.

- 3. Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319-384.
- 4. (a) Fellows, L. E. Chem. Brit. 1987, 23, 842-844; (b) Fellows, L. E. New Scientist 1989, 123, 45-46.
- 5. Truscheit, E.; Frommer, W.; Junge, B.; Muller, L.; Schmidt, D. D.; Wingender, W. Angew. Chem. Int. Ed. 1981, 20, 744-761.
- Y. T. Pan, G. P. Kaushal, G. Papandreou, B. Ganem, A. D. Elbein, J. Biol. Chem. 1992, 267, 8313-8318.
- 7. G. Papandreou, M. K. Tong, B. Ganem, J. Am. Chem. Soc. 1993, 115, 11682-11690.
- 8. Elbein, A. D. Ann. Rev. Biochem. 1987, 56, 497-534.
- 9. Sharon, N.; Lis, H. Sci. Amer. 1993, 268(1), 82-89.
- 10. Springer, T. A. Cell 1994, 78, 301-314.
- (a) Springer, T. A. Nature 1990, 346, 425-434; (b) Cronstein, B. N.; Weissmann, G. Arthritis Rheum. 1993, 36, 147-157.
- 12. Knapp, S.; Choe, Y. H.; Reilly, E. Tetrahedron Lett. 1993, 34, 4443-4446.
- 13. Blériot, Y.; Genre-Grandpierre, A.; Tellier, C. Tetrahedron Lett. 1994, 35, 1867-1870.
- 14. Fotsch, C. H.; Wong, C.-H. Tetrahedron Lett. 1994, 35, 3481-3484.
- 15. Rebek, J. Science 1987, 235, 1478-1484.
- Katsuki, T.; Lee, A. W. M.; Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Tuddenham, D.; Walker, F. J. J. Org. Chem. 1982, 47, 1378-1380.
- 17. Caron, M.; Carlier, P. R.; Sharpless, K. B. J. Org. Chem. 1988, 53, 5185-5187.
- 18. Satisfactory ¹H, ¹³C-NMR, IR and mass spectrometric data were obtained for all new compounds.
- 19. For 6: $[\alpha]_D = -44^\circ$ (c= 1.01, CH₂Cl₂); ¹H-NMR (300 MHz, CDCl₃) δ 7.24-7.45 (m, 5 H), 4.58 (s, 2 H), 3.51-3.81 (m, 6 H); ¹³C-NMR (75 MHz, CDCl₃) δ 137.2, 128.4, 127.8, 127.5, 73.4, 71.2, 69.8, 63.2, 61.9; IR (film) 3400, 3050, 2900, 2100, 1650, 1300, 1100 cm⁻¹.
- 20. For 8: $[\alpha]_D = -49^\circ$ (c= 1.34, CH₂Cl₂); ¹H-NMR (CDCl₃) δ 7.22-7.33 (m, 5 H), 4.50 (dd, 2 H, J= 13.1, 12.0 Hz), 3.34-3.75 (m, 6 H); ¹³C-NMR (CDCl₃) δ 137.0, 128.4, 127.6, 127.9, 73.4, 70.4, 69.5, 62.0, 53.6; IR (film) 3400, 3000, 2900, 2100, 1650, 1300, 1100 cm⁻¹.
- 21 For **11**: $[\alpha]_D = +77^{\circ}$ (c= 0.31, CH₂Cl₂); R_f 0.24 in 20:1:4 CH₃CN:HOAc:H₂O; ¹H-NMR (CDCl₃) δ 7.24-7.35 (m, 10 H), 4.49-4.58 (m, 4 H), 3.50-3.60 (m, 2 H), 3.45 (m, 1 H), 3.35 (m, 1 H), 2.90 (m, 2 H), 1.57 (br. s, 4 H, NH); ¹³C-NMR (CDCl₃) δ 138.2, 138.1, 128.4, 128.3, 127.7, 127.6, 127.5, 81.6, 73.2, 72.4, 72.1, 51.8, 41.3; IR (film) 3300, 3100, 2900, 1600, 1500, 1100 cm⁻¹.
- 22. Tarino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc. 1977, 99, 2818-2819.
- 23. For 3: $[\alpha]_D = +29^\circ$ (c= 0.38, CH₃OH); ¹H-NMR (D₂O) δ 3.99 (q, 1 H, J= 3.4 Hz), 3.44-3.52 (m, 2 H), 3.11-3.41 (m, 3 H); ¹³C-NMR (D₂O) δ 153.7, 62.3, 60.5, 56.1, 42.3; IR (film) 3400, 1650, 1625, 1500 cm⁻¹.
- 24. For 4: $[\alpha]_D = +93^\circ$ (c= 0.08, CH₃OH); ¹H-NMR (D₂O) δ 4.03 (q, 1 H, J= 3.3 Hz), 3.35-3.53 (m, 3 H), 3.15-3.33 (m, 2 H); ¹³C-NMR (D₂O) δ 154.8, 62.4, 60.9, 55.9, 42.0; IR (film) 3400, 1650, 1100 cm⁻¹; EIMS *m*/z 141 (M+1-H₂O, 24%), 128 (M+1-CH₂OH, 16%)

(Received in USA 7 September 1994; revised 18 November 1994; accepted 5 December 1994)