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Abstract: Asymmetric syntheses of guanidine 3 and N-aminoguanidine 4 are described from (-)-epoxy alcohol 
5. Compounds 3 and 4, which resemble D-glucose and D-mannose, were designed as generic hexopyranose 
substitutes and represent new templates for assembling glycomimetic structures. 

A key objective in the emerging field of glycobiology 1 has been the development of specific glycomimetics, 

i.e. carbon or heteroanalogs of sugars which mimic the structure and properties of carbohydrates. Such research 

has produced many linkage and configuration-specific inhibitors of glycosidases 2,3 such as the polyhydroxylated 

piperidines (e.g. 1) 4,5 and anaidrazones (e.g. 2) 6,7 which disrupt the biosynthesis of N-linked glycoproteins and 

glycolipids that play prominent roles in immune recognition phenomena and cellular adhesion. 8-11 A major 

challenge for synthetic chemists is to devise non-carbohydrate templates (i.e. saccharide 'look-alikes') with which 

to assemble bioactive mono- and oligosaccharide analogs. 
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We and others 12-14 have continued to explore related families of structures in designing new glycomimetic 

compounds for research and medicine. Here we describe an enantioselective route to guanidine 3 and N- 

aminogttanidine 4, whose naolecttlar frameworks bear close spatial relationships to a typical hexose. 

Like their congener 2, both 3 and 4 mimic a conformationally flattened hexopyranose, with 3 resembling 

guanidino-threose. 14 Additional sugar residues can be attached at the commonly substituted 1, 2, 4, and 6 

positions on the ring. Moreover, by replacing the C2-hydroxyl group with nitrogen, both 3 and 4 can serve as a 

surrogate for either D-glucose or D-matmose, with electron density projected above and below the ring plane 

directly adjacent to the anomeric center. Like arginine residues which serve as key recognition and binding sites 
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(a) 1.2 equiv Ti(iPrO)a, 2.4 equiv TMSN 3, benzene, 75°C, 15 rain; (b) MsC1, Et3N, CHzCI 2, 0°C, 3 h; 
(c) NAN3, DMF, 60°C, 18 h; (d) 1 equiv each of PhCH2Br and Nail, DMF, rt, 18 h (e)10% Pd/C, H 2, 
CH3OH, rt, 18 h; (f) 1,1'-thiocarbonyldiimidazole,CHzC12, rt, 16 h; (g) Eft, EtOH, rt, 2 d; (h) 2 equiv 
NHa + -O2CCH2CH3 130°C, 4 h: (i) Na-NH3, -78°C to -33°C, i0 rain; (j) NH2NH 2, rt, 15 min; (k) 
1, l'-carbonyldiimidazole, CH2C12, rt, 2 d. 
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for carboxylic acids, 15 structures 3 and 4 present bilateral N-C=N arrays for favorable H-bonding and 

electrostatic interactions with carboxylate functional groups. Finally, we note that 3 and 4 are locked in the 

hexopyranose form, in contrast to the pH-dependent structure of guanidino-threose (which exists as a mixture of 

mutarotating e~ and [~-furanose anomers at neutral pH, but as a 6-membered cyclic guanidine at pH 11). 

The synthesis began with the known t6 S,S-epoxide 5, which reacted regioselectively with Ti(OiPr)2(N3)2 

(prepared in situ) to afford azido-l,2-diol 6 and azido-l,3-diol 7 in a 6:1 ratio (55-65% yield overall).lT, 18 By 

careful flash column chromatography on SiO2 using 1:1 hexane:ethyl acetate (EtOAc), pure 6 (Rf 0.47, EtOAc) 

could be obtained. 19 Selective mesylation of 6 (1.2 equiv MsC1, 0oc, 70%) followed by SN2 displacement with 

NaN 3 cleanly furnished diazide 8 (quantitative yield). 20 Diazide 8 (Rf 0.52, 2:1 hexane:EtOAc) could be further 

O-benzylated using Nail and PhCH2Br to give ether 9 (Rf 0.68, 2:1 hexane:EtOAc). Heterogeneous catalytic 

reduction of 8 or 9 led to diamines 10 or 11, respectively, in 80-90% yield. 

Hydroxydiamine 10 (Rf 0.50, 7:3:1 CH2C12:CH3OH:NH4OH) was not converted cleanly to the 

corresponding urea using 1,1'-carbonyldiimidazole, forming instead a kinetically stable 2-oxazolidone. In an 

alternative approach, reaction of 1,1'-carbonyldiimidazole (1 equiv, CH2C12, rt, 12 h) with the di-O-benzyl 

diamine 1121 did succeed in producing 14 (Rf 0.58, 17:3:1 EtOAc:CH3OH:H20) in 70% yield. This cyclic urea 

could be deprotected to 15 (Rf 0.50, 1:1 CH2CI2:CH3OH), using excess sodium in ammonia, but neither 14 nor 

15 could be transfomaed directly or indirectly (via a uronium salt) to the desired guanidine 3. 

Ultimately, 10 did form thiourea 12 (40-50% yield; Rf 0.32, EtOAc) upon reaction with 1,1'-thiocarbonyl- 

diimidazole. The corresponding S-ethylisothiourea 13, prepared in 75% yield (Rf 0.29, 17:3:1 EtOAc:CH3OH: 

H20), underwent smooth substitution either with ammonium propionate 22 or hydrazine, followed by dissolving 

metal reduction to remove the benzyl ether, thus affording 3 or 4, respectively. Guanidine 3 was isolated as its 

acetate salt (50% yield; m.p. >165oc, d) after cohmm chromatography using 5:1:2 CH3CN:HOAc: H20. 23 

Similar purification furnished N-aminoguanidine 4 as an amorphous acetate salt which was dissolved in 1M HC1 

and thus converted to the more crystalline hydrochloride salt (52% yield; m.p. 141-145°C), 24 

Pyranose mimics 3 and 4 are of particular interest as templates for the construction of novel glycomimetic 

oligomers for selectins and other adhesion receptors.10,11 
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