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ABSTRACT: The incorporation of 2,3-

dimercaptoterephthalate (thiocatecholate, tcat) into a 

highly robust UiO-type metal-organic framework 

(MOF) has been achieved via postsynthetic exchange  

(PSE).  The anionic, electron-donating thiocatecholato 

motif provides an excellent platform to obtain site-

isolated and coordinatively unsaturated soft metal 

sites in a robust MOF architecture.  Metalation of the 

thiocatechol group with palladium affords unprece-

dented Pd-mono(thiocatecholato) moieties within the-

se MOFs.  Importantly, Pd-metalated MOFs are effi-

cient, heterogeneous, and recycable catalysts for regi-

oselective functionalization of sp
2
 C-H bond.   This 

material is a rare example of chelation-assisted C-H 

functionalization performed by a MOF catalyst. 

Metal-organic frameworks (MOFs) are a class of mi-

croporous crystalline materials gathering increasing at-

tention due to their tunable functionality and high sur-

face area, thus applications in gas storage, separation, 

molecular sensing, catalysis, and drug delivery.
1
  Im-

portantly, MOFs provide a versatile platform to achieve 

accessible and coordinatively unsaturated metal sites, 

and metalation of these free open-metal sites give rise to 

site-isolated catalytically active centers.
2,3

  Postsynthetic 

approaches have proven to be valuable for preparing 

these single-site solid catalysts, due to their limited ac-

cessibility via direct solvothermal synthesis.
4
  Recently, 

postsynthetic exchange (PSE, also known as SALE = 

solvent-assisted linker exchange) has been developed as 

a powerful and facile method to synthesize a variety of 

functionalized MOF materials that otherwise would be 

inaccessible.
5
  In particular, the incorporation of single-

site catalytic centers into the Zr(IV)-based UiO (UiO = 

University of Oslo) series of MOFs has proven attrac-

tive, due in part to their excellent chemical stability.
6
  

Among them, UiO-66 consists of 12-coordinated 

Zr(IV)-carboxylate clusters Zr6(µ3-O)4(µ3-OH)4(CO2)12 

bridged by linear 1,4-benzene dicarboxylate (bdc) lig-

ands.  UiO-66 has been extensively studied for gas ab-

sorption,
7
 catalysis,

8
 photochemical reactions,

9
 and mer-

cury sequestration.
10

 

Catechol, a widely studied chelator in coordination 

chemistry, has been successfully introduced into a UiO-

66 topology.
8b

  Subsequent metalation with high-valent, 

first-row transition metals affords metal-

mono(catecholato) species that act as reusable alcohol 

oxidation catalysis.  Herein, the hard Lewis base phenol 

groups of the catechol were replaced with thiophenols, 

thereby presenting a soft thiocatechol metal-chelating 

motif in a highly robust MOF.   Although relatively un-

explored in the literature,
11

 the thiocatechol group 

should be an excellent ligand for 2nd and 3rd-row transi-

tion metals, giving rise to isolated metal-

mono(thiocatecholato) sites.  Additionally, the dianionic, 

bidentate thiocatecholato ligands should tightly bind and 

stabilize active metal sites; thus, generating a stable, but 

highly unsaturated metal site suitable for catalysis. 

The regio- and chemoselective functionalization of ar-

omatic carbon-hydrogen bonds is of tremendous value 

for the synthesis of natural products and medicinal com-

pounds.
12

  Carbon-oxygen and carbon-halogen bond 

formation are two important fundamental reactions in 

organic transformations.
13

  Ether-containing and halo-

genated aromatic compounds are widely employed in 

the synthesis of pharmaceuticals.
13b, 14

   The use of che-

late-directed functionalization of C-H bonds has attract-

ed widespread attention, thanks to the pioneering work 

of Sanford and co-workers.
12c, 15

 

Herein, we report the synthesis and metalation of a 

thiocatechol-functionalized UiO-66 material via 

postsynthetic methods.  Though other thiol-containing 

MOFs have been reported,
16

 this is one of the few MOF 

examples with a sulfur-containing, open metal chelating 

site.  The metalated Pd(thiocatecholato) sites exhibit 

highly efficient, reusable, and selective catalysis for the 

oxidative functionalization of aromatic C-H bond.  To 

the best of our knowledge, this is the first example of a 
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MOF catalyst that performs chelation-assisted C-H func-

tionalization, achieved by a strong metal-sulfur coordi-

nation motif. 

 

Scheme 1. Synthesis of UiO-66-TCAT and UiO-66-

PdTCAT. 

The ligand precursor, 2,3-dimercaptoterephthalic acid 

(tcat-H2bdc), was synthesized starting from dimethyl 

2,3-dihydroxyterephthalate in three steps and 37% over-

all yield as described in the Supporting Information.  

Direct solvothermal synthesis of a DMF solution con-

taining anhydrous ZrCl4 and tcat-H2bdc did not afford a 

UiO-66 material, presumably due to the presence of the 

thiocatechol metal-chelating functionality.  Given the 

high structural analogy of the H2bdc and tcat-H2bdc lig-

ands, PSE was employed as a strategy to introduce di-

mercapto functionality into UiO-66.  UiO-66, consisting 

of Zr(IV)-based secondary building units [Zr6O4(OH)4] 

and bdc organic linkers, was prepared using solvother-

mal conditions containing a mixture of ZrCl4, H2bdc, 

and acetic acid (as a modulator) at 120 °C in DMF for 

24 h, followed by washing with MeOH and activation 

under dynamic vacuum.  PSE was performed by incu-

bating solid UiO-66 in an aqueous solution of tcat-H2bdc 

for 24 h at 85 °C.  The linker-exchanged material, UiO-

66-TCAT, was isolated as a yellow microcrystalline 

powder using centrifugation, followed by extensive 

washing with fresh MeOH and activation under vacuum.  

The presence of tcat-bdc in UiO-66-TCAT was con-

firmed by 
1
H NMR of the MOFs digested with dilute HF 

in CD3OD (Figure S1).  An equimolar reaction between 

bdc in the UiO-66 solid and tcat-H2bdc in aqueous solu-

tion affords 40% dimercapto-functionalized UiO-66-

TCAT.  The degree of functionalization was tunable be-

tween 40-71%, using 2-5 equivalents of tcat-H2bdc in 

the PSE solution (Figure S1).  Powder X-ray diffraction 

(PXRD) patterns and field-emission scanning electron 

microscopy (FE-SEM) of functionalized UiO-66 con-

firmed retention of crystallinity with high phase purity 

(Figure 1 and S2).  In addition, activated UiO-66-TCAT 

exhibited a Brunauer-Emmett-Teller (BET) surface area 

of 950±5 m
2
/g, measured with dinitrogen absorption at 

77 K.  This value is close to the BET surface area of 

unmodified UiO-66 (1110±105 m
2
/g), suggesting a clean 

ligand exchange process and not simple inclu-

sion/encapsulation of tcat-H2bdc within the MOF pores 

(which would significantly decrease the surface area).  

Indeed, extensive characterization in our previous stud-

ies on PSE of UiO-66 materials confirms a ligand me-

tathesis phenomenon for this functionalization 

method.
8b, 9a, 17

 

 

Figure 1.  PXRD of UiO-66 (a, black), UiO-66-TCAT (b, 

red), UiO-66-PdTCAT (c, blue), and recovered UiO-66-

PdTCAT after 1 (d, magenta) and 5 (e, gold) catalytic cy-

cles. 

 Transition metal bis(dithiolene) complexes, especially 

group 10 metals with square planar coordination geome-

tries, have attracted increasing attention in the field of 

magnetic and conducting materials because of the strong 

π-electron donor ability from the involvement of the 

sulfur donor atoms.
18

  Immobilized thiocatechol ligands 

on the UiO-66-TCAT provide an excellent platform to 

achieve accessible and unsaturated 

mono(thiocatecholato) metal centers.
19

  The metalation 

of 40% thiocatechol-functionalized UiO-66-TCAT using 

Pd(OAc)2 in CH2Cl2 afforded dark-brown solids.
20

  The 

crystallinity of UiO-66-PdTCAT was maintained upon 

metalation, as evidenced by PXRD and FE-SEM (Figure 

1 and S2).  Inductively coupled plasma-optical emission 

spectroscopy (ICP-OES) confirmed an atomic ratio of 

1:0.18:0.85 (Zr:Pd:S) in the metal-loaded sample, con-

firming ~42% of thiocatechol sites were metalated.  A 

slight, but expected decrease of the BET surface area 

was observed after metalation at 865±90 m
2
/g for UiO-

66-PdTCAT (N2 at 77 K). 

With isolated and coordinatively accessible Pd centers 

in a robust MOF, we sought to investigate its catalytic 

activity in regioselective C-H oxidation.  Commonly 

used methods to convert sp
2
 C-H bond to C-O or C-X 

(X=Cl, Br, I) require strong acids/bases, e.g. n-BuLi, 

CF3SO3H.
21

  Homogeneous Pd(II)-catalyzed methods 

SH
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for chelate-directed oxidative activation has been in-

creasingly studied,
12c, 22

 and MOFs can provide a solid-

state platform to prepare analogous catalysts that can 

reuse these precious-metal active sites, achieving recy-

clable catalysis.   

Table 1.  Regioselective alkoxy group installment of 1.
a
 

 

En-

try 

R (prod-

uct/solvent
Catalyst Pd    

(mol %) 

MOF  

(mol %) 

Yield 

(%)b 

1c CH3 blank 0 0 0 

2c CH3 UiO-66 0 25 0 

3c CH3 UiO-66-TCAT 0 25 0 

4c CH3 UiO-66-PdTCAT 5 25 99(1) 

5c CH3 Pd(OAc)2 5 25 99(1) 

6d CH2CH3 UiO-66-PdTCAT 15 75 95(2) 

7d CH2CF3 UiO-66-PdTCAT 10 50 99(1) 

8e (CH2)2CH3 UiO-66-PdTCAT 10 50 21(3) 

a 
0.21 mmol benzoquinoline, 0.42 mmol PhI(OAc)2, 5-15 mol% Pd in 

1.75 mL alcohol (R-OH).  b Determined by GC-MS and 1H NMR, three 

independent trials.  c 6h, 60 °C.  d 24h, 80 °C.  e 24h, 100 °C.   

The oxidation of benzo[h]quinoline (1) to install 

alkoxy groups on a C-H10 single bond using iodoben-

zene diacetate [PhI(OAc)2] as the oxidant was investi-

gated using the metalated MOF.  Using UiO-66-

PdTCAT (5 mol% in Pd) nearly quantitative yield of 

methoxy-functionalized 1 was achieved in 6 h at 60 °C 

(Table 1, entry 4).  By comparison, both pristine UiO-66 

and UiO-66-TCAT (before Pd metalation) gave no con-

version (Table 1, entries 2 and 3).  In order to confirm 

the heterogeneous nature of UiO-66-PdTCAT, a hot fil-

tration experiment was performed, removing the catalyst 

by filtration after the first hour of the reaction.  Time-

dependent GC yield indicated no additional conversion 

to product was observed (up to 5 h) after filtration (Fig-

ure S3).  No Pd leaching was observed (as evidenced by 

ICP-OES of the filtrate contained <0.1 ppm Pd), further 

confirming the heterogeneity of the MOF catalyst.  Alt-

hough the homogeneous Pd(II) catalysts [Pd(OAc)2] 

completed the reaction in only ~3 h, UiO-66-PdTCAT 

exhibited excellent recyclability without a significant 

decrease in yields (92~99%) over five catalytic cycles 

(Table S2).   Between each run, the catalyst could be 

recovered by centrifugation, washed with MeOH, dried 

under vacuum, and then directly used for additional re-

actions.  The crystallinity of the MOF was maintained 

after each cycle, as confirmed by PXRD and FE-SEM 

(Figure 1 and S2).  The alkoxy functional group installa-

tion of 1 can be successfully extended to achieve other 

alkyl-aryl ethers (e.g. OEt, OCH2CF3) in nearly quantita-

tive yields, as summarized in Table 1.  However, using 

1-propanol as solvent only gave 21% conversion, likely 

due to the weak nucleophilicity of the propoxy group.  

Nevertheless, the site-isolated Pd-thiocatecholato spe-

cies in the UiO platform presented here proved that 

MOFs can achieve efficient and recyclable catalysis for 

sp
2
 C-H activation and installation of alkoxy groups. 

Table 2.  Pd-catalyzed directed C-H bond halogenation reac-

tions.
a 

 

En-

try 
Product Catalyst Pd    

(mol %) 

MOF  

(mol %) 

Yield 

(%)b 

1 

 

blank 0 0 0 

2 

 

UiO-66 0 25 0 

3 

 

UiO-66-

TCAT 
0 25 0 

4 

 

UiO-66-

PdTCAT 
5 25 95(1) 

5 

 

UiO-66-

PdTCAT 
5 25 97(1) 

6 

 

UiO-66-

PdTCAT 
10 50 50(1) 

7 

 

UiO-66-

PdTCAT 
10 50 32(2) 

8 

 

UiO-66-

PdTCAT 
10 50 87(1) 

a 
0.21 mmol substrate, 0.252 mmol NXS, 5 mol% Pd in 1.75 mL 

CH3CN.  b Determined by GC-MS and 1H NMR, three independent trials. 

Chelate-directed oxidation can be extended to halo-

genations using N-halosuccinimides as both oxidants 

and halogenating reagents.  Using the same MOF cata-

lyst (5 mol% in Pd) as well as 1.2 eq. of N-

chlorosuccinimide achieved 95% yield of mono-

chlorinated benzo[h]quinoline product (Table 2, entry 4).  

Again, control reactions, such as using UiO-66-TCAT as 

catalyst, did not produce the desired product (Table 2, 

entry 1-3).  Recyclability tests were carried out with 

UiO-66-PdTCAT, showing conversions of 86~95% of 1 

to mono-chlorinated products over five successive runs 

(Table S2).  Palladium-catalyzed direct halogenations 

were also extended to bromination using N-

bromosuccinimide as a terminal oxidant (Table 2, entry 

5).  Though iodination was unsuccessful on 1, perhaps 

due to steric constraints of the rigid, planar substrate,
15c

 

N-iodosuccinimide could be used to selectively iodinate 

3-methyl-2-phenylpyridine (2) to give 87% of the mono-

iodinated product.  Chlorination and bromination of 2 

only afforded 50% and 32% yield (Table 2, entry 6, 7), 

N

H

R-OH, 60-100 oC

6-24 h

PhI(OAc)2

N

O

R

N

H

85 oC, 24 h

NXS, CH3CN

R R1

N

X

R R1

N
Cl

N
Cl

N
Cl

N
Cl

N
Br

N
Cl

N
Br

N
I
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respectively; however, these catalysis results are compa-

rable to homogeneous Pd catalysts (44~56% yield, Table 

S3).
15c

  The lower yield in these cases may be due to the 

low reactivity of the relatively electron-deficient arene 

substrate. 

In conclusion, PSE is shown to be a facile and mild 

functionalization approach to synthesize a sulfur-

containing thiocatechol site in a robust UiO-66 material.  

The robust MOF allows for preparation of unprecedent-

ed metal-mono(thiocatecholato) species with coordina-

tively unsaturated soft metal sites.  Pd metalation of the 

thiocatechol functionality affords an efficient and recy-

clable MOF catalyst for regioselective C-H oxidation.  

Aromatic substrates are readily oxidized with this meta-

lated MOF converting sp
2
 C-H bonds to ethers and aryl-

halides.  The strong covalent metal-thiocatecholato bind-

ing allows UiO-66-PdTCAT to act as a recyclable, effi-

cient chelation-assisted catalyst. 
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